diff options
Diffstat (limited to '')
-rw-r--r-- | gfx/thebes/gfxCoreTextShaper.cpp | 650 |
1 files changed, 650 insertions, 0 deletions
diff --git a/gfx/thebes/gfxCoreTextShaper.cpp b/gfx/thebes/gfxCoreTextShaper.cpp new file mode 100644 index 0000000000..0e24337bf4 --- /dev/null +++ b/gfx/thebes/gfxCoreTextShaper.cpp @@ -0,0 +1,650 @@ +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "mozilla/ArrayUtils.h" +#include "gfxCoreTextShaper.h" +#include "gfxMacFont.h" +#include "gfxFontUtils.h" +#include "gfxTextRun.h" +#include "mozilla/gfx/2D.h" +#include "mozilla/UniquePtrExtensions.h" + +#include <algorithm> + +#include <dlfcn.h> + +using namespace mozilla; + +// standard font descriptors that we construct the first time they're needed +CTFontDescriptorRef gfxCoreTextShaper::sFeaturesDescriptor[kMaxFontInstances]; + +// Helper to create a CFDictionary with the right attributes for shaping our +// text, including imposing the given directionality. +CFDictionaryRef gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft) { + // Because we always shape unidirectional runs, and may have applied + // directional overrides, we want to force a direction rather than + // allowing CoreText to do its own unicode-based bidi processing. + SInt16 dirOverride = kCTWritingDirectionOverride | + (aRightToLeft ? kCTWritingDirectionRightToLeft + : kCTWritingDirectionLeftToRight); + CFNumberRef dirNumber = + ::CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt16Type, &dirOverride); + CFArrayRef dirArray = ::CFArrayCreate( + kCFAllocatorDefault, (const void**)&dirNumber, 1, &kCFTypeArrayCallBacks); + ::CFRelease(dirNumber); + CFTypeRef attrs[] = {kCTFontAttributeName, kCTWritingDirectionAttributeName}; + CFTypeRef values[] = {mCTFont[0], dirArray}; + CFDictionaryRef attrDict = ::CFDictionaryCreate( + kCFAllocatorDefault, attrs, values, ArrayLength(attrs), + &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); + ::CFRelease(dirArray); + return attrDict; +} + +gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont* aFont) + : gfxFontShaper(aFont), + mAttributesDictLTR(nullptr), + mAttributesDictRTL(nullptr) { + for (size_t i = 0; i < kMaxFontInstances; i++) { + mCTFont[i] = nullptr; + } + // Create our default CTFontRef + mCTFont[0] = CreateCTFontWithFeatures( + aFont->GetAdjustedSize(), GetFeaturesDescriptor(kDefaultFeatures)); +} + +gfxCoreTextShaper::~gfxCoreTextShaper() { + if (mAttributesDictLTR) { + ::CFRelease(mAttributesDictLTR); + } + if (mAttributesDictRTL) { + ::CFRelease(mAttributesDictRTL); + } + for (size_t i = 0; i < kMaxFontInstances; i++) { + if (mCTFont[i]) { + ::CFRelease(mCTFont[i]); + } + } +} + +static bool IsBuggyIndicScript(unicode::Script aScript) { + return aScript == unicode::Script::BENGALI || + aScript == unicode::Script::KANNADA || + aScript == unicode::Script::ORIYA || aScript == unicode::Script::KHMER; +} + +bool gfxCoreTextShaper::ShapeText(DrawTarget* aDrawTarget, + const char16_t* aText, uint32_t aOffset, + uint32_t aLength, Script aScript, + nsAtom* aLanguage, bool aVertical, + RoundingFlags aRounding, + gfxShapedText* aShapedText) { + // Create a CFAttributedString with text and style info, so we can use + // CoreText to lay it out. + bool isRightToLeft = aShapedText->IsRightToLeft(); + const UniChar* text = reinterpret_cast<const UniChar*>(aText); + + CFStringRef stringObj = ::CFStringCreateWithCharactersNoCopy( + kCFAllocatorDefault, text, aLength, kCFAllocatorNull); + + // Figure out whether we should try to set the AAT small-caps feature: + // examine OpenType tags for the requested style, and see if 'smcp' is + // among them. + const gfxFontStyle* style = mFont->GetStyle(); + gfxFontEntry* entry = mFont->GetFontEntry(); + auto handleFeatureTag = [](const uint32_t& aTag, uint32_t& aValue, + void* aUserArg) -> void { + if (aTag == HB_TAG('s', 'm', 'c', 'p') && aValue) { + *static_cast<bool*>(aUserArg) = true; + } + }; + bool addSmallCaps = false; + MergeFontFeatures(style, entry->mFeatureSettings, false, entry->FamilyName(), + false, handleFeatureTag, &addSmallCaps); + + // Get an attributes dictionary suitable for shaping text in the + // current direction, creating it if necessary. + CFDictionaryRef attrObj = + isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR; + if (!attrObj) { + attrObj = CreateAttrDict(isRightToLeft); + (isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR) = attrObj; + } + + FeatureFlags featureFlags = kDefaultFeatures; + if (IsBuggyIndicScript(aScript)) { + // To work around buggy Indic AAT fonts shipped with OS X, + // we re-enable the Line Initial Smart Swashes feature that is needed + // for "split vowels" to work in at least Bengali and Kannada fonts. + // Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN, + // Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515. + // Also applies to Oriya and Khmer, see bug 1370927 and bug 1403166. + featureFlags |= kIndicFeatures; + } + if (aShapedText->DisableLigatures()) { + // For letterspacing (or maybe other situations) we need to make + // a copy of the CTFont with the ligature feature disabled. + featureFlags |= kDisableLigatures; + } + if (addSmallCaps) { + featureFlags |= kAddSmallCaps; + } + + // For the disabled-ligature, buggy-indic-font or small-caps case, replace + // the default CTFont in the attribute dictionary with a tweaked version. + CFMutableDictionaryRef mutableAttr = nullptr; + if (featureFlags != 0) { + if (!mCTFont[featureFlags]) { + mCTFont[featureFlags] = CreateCTFontWithFeatures( + mFont->GetAdjustedSize(), GetFeaturesDescriptor(featureFlags)); + } + mutableAttr = + ::CFDictionaryCreateMutableCopy(kCFAllocatorDefault, 2, attrObj); + ::CFDictionaryReplaceValue(mutableAttr, kCTFontAttributeName, + mCTFont[featureFlags]); + attrObj = mutableAttr; + } + + // Now we can create an attributed string + CFAttributedStringRef attrStringObj = + ::CFAttributedStringCreate(kCFAllocatorDefault, stringObj, attrObj); + ::CFRelease(stringObj); + + // Create the CoreText line from our string, then we're done with it + CTLineRef line = ::CTLineCreateWithAttributedString(attrStringObj); + ::CFRelease(attrStringObj); + + // and finally retrieve the glyph data and store into the gfxTextRun + CFArrayRef glyphRuns = ::CTLineGetGlyphRuns(line); + uint32_t numRuns = ::CFArrayGetCount(glyphRuns); + + // Iterate through the glyph runs. + bool success = true; + for (uint32_t runIndex = 0; runIndex < numRuns; runIndex++) { + CTRunRef aCTRun = (CTRunRef)::CFArrayGetValueAtIndex(glyphRuns, runIndex); + CFRange range = ::CTRunGetStringRange(aCTRun); + CFDictionaryRef runAttr = ::CTRunGetAttributes(aCTRun); + if (runAttr != attrObj) { + // If Core Text manufactured a new dictionary, this may indicate + // unexpected font substitution. In that case, we fail (and fall + // back to harfbuzz shaping)... + const void* font1 = ::CFDictionaryGetValue(attrObj, kCTFontAttributeName); + const void* font2 = ::CFDictionaryGetValue(runAttr, kCTFontAttributeName); + if (font1 != font2) { + // ...except that if the fallback was only for a variation + // selector or join control that is otherwise unsupported, + // we just ignore it. + if (range.length == 1) { + char16_t ch = aText[range.location]; + if (gfxFontUtils::IsJoinControl(ch) || + gfxFontUtils::IsVarSelector(ch)) { + continue; + } + } + NS_WARNING("unexpected font fallback in Core Text"); + success = false; + break; + } + } + if (SetGlyphsFromRun(aShapedText, aOffset, aLength, aCTRun) != NS_OK) { + success = false; + break; + } + } + + if (mutableAttr) { + ::CFRelease(mutableAttr); + } + ::CFRelease(line); + + return success; +} + +#define SMALL_GLYPH_RUN \ + 128 // preallocated size of our auto arrays for per-glyph data; + // some testing indicates that 90%+ of glyph runs will fit + // without requiring a separate allocation + +nsresult gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText* aShapedText, + uint32_t aOffset, uint32_t aLength, + CTRunRef aCTRun) { + typedef gfxShapedText::CompressedGlyph CompressedGlyph; + + int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1; + + int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun); + if (numGlyphs == 0) { + return NS_OK; + } + + int32_t wordLength = aLength; + + // character offsets get really confusing here, as we have to keep track of + // (a) the text in the actual textRun we're constructing + // (c) the string that was handed to CoreText, which contains the text of + // the font run + // (d) the CTRun currently being processed, which may be a sub-run of the + // CoreText line + + // get the source string range within the CTLine's text + CFRange stringRange = ::CTRunGetStringRange(aCTRun); + // skip the run if it is entirely outside the actual range of the font run + if (stringRange.location + stringRange.length <= 0 || + stringRange.location >= wordLength) { + return NS_OK; + } + + // retrieve the laid-out glyph data from the CTRun + UniquePtr<CGGlyph[]> glyphsArray; + UniquePtr<CGPoint[]> positionsArray; + UniquePtr<CFIndex[]> glyphToCharArray; + const CGGlyph* glyphs = nullptr; + const CGPoint* positions = nullptr; + const CFIndex* glyphToChar = nullptr; + + // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds, + // and so allocating a new array and copying data with CTRunGetGlyphs + // will be extremely rare. + // If this were not the case, we could use an AutoTArray<> to + // try and avoid the heap allocation for small runs. + // It's possible that some future change to CoreText will mean that + // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<> + // may become an attractive option. + glyphs = ::CTRunGetGlyphsPtr(aCTRun); + if (!glyphs) { + glyphsArray = MakeUniqueFallible<CGGlyph[]>(numGlyphs); + if (!glyphsArray) { + return NS_ERROR_OUT_OF_MEMORY; + } + ::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get()); + glyphs = glyphsArray.get(); + } + + positions = ::CTRunGetPositionsPtr(aCTRun); + if (!positions) { + positionsArray = MakeUniqueFallible<CGPoint[]>(numGlyphs); + if (!positionsArray) { + return NS_ERROR_OUT_OF_MEMORY; + } + ::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get()); + positions = positionsArray.get(); + } + + // Remember that the glyphToChar indices relate to the CoreText line, + // not to the beginning of the textRun, the font run, + // or the stringRange of the glyph run + glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun); + if (!glyphToChar) { + glyphToCharArray = MakeUniqueFallible<CFIndex[]>(numGlyphs); + if (!glyphToCharArray) { + return NS_ERROR_OUT_OF_MEMORY; + } + ::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0), + glyphToCharArray.get()); + glyphToChar = glyphToCharArray.get(); + } + + double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0), + nullptr, nullptr, nullptr); + + AutoTArray<gfxShapedText::DetailedGlyph, 1> detailedGlyphs; + CompressedGlyph* charGlyphs = aShapedText->GetCharacterGlyphs() + aOffset; + + // CoreText gives us the glyphindex-to-charindex mapping, which relates each + // glyph to a source text character; we also need the charindex-to-glyphindex + // mapping to find the glyph for a given char. Note that some chars may not + // map to any glyph (ligature continuations), and some may map to several + // glyphs (eg Indic split vowels). We set the glyph index to NO_GLYPH for + // chars that have no associated glyph, and we record the last glyph index for + // cases where the char maps to several glyphs, so that our clumping will + // include all the glyph fragments for the character. + + // The charToGlyph array is indexed by char position within the stringRange of + // the glyph run. + + static const int32_t NO_GLYPH = -1; + AutoTArray<int32_t, SMALL_GLYPH_RUN> charToGlyphArray; + if (!charToGlyphArray.SetLength(stringRange.length, fallible)) { + return NS_ERROR_OUT_OF_MEMORY; + } + int32_t* charToGlyph = charToGlyphArray.Elements(); + for (int32_t offset = 0; offset < stringRange.length; ++offset) { + charToGlyph[offset] = NO_GLYPH; + } + for (int32_t i = 0; i < numGlyphs; ++i) { + int32_t loc = glyphToChar[i] - stringRange.location; + if (loc >= 0 && loc < stringRange.length) { + charToGlyph[loc] = i; + } + } + + // Find character and glyph clumps that correspond, allowing for ligatures, + // indic reordering, split glyphs, etc. + // + // The idea is that we'll find a character sequence starting at the first char + // of stringRange, and extend it until it includes the character associated + // with the first glyph; we also extend it as long as there are "holes" in the + // range of glyphs. So we will eventually have a contiguous sequence of + // characters, starting at the beginning of the range, that map to a + // contiguous sequence of glyphs, starting at the beginning of the glyph + // array. That's a clump; then we update the starting positions and repeat. + // + // NB: In the case of RTL layouts, we iterate over the stringRange in reverse. + // + + // This may find characters that fall outside the range 0:wordLength, + // so we won't necessarily use everything we find here. + + bool isRightToLeft = aShapedText->IsRightToLeft(); + int32_t glyphStart = + 0; // looking for a clump that starts at this glyph index + int32_t charStart = + isRightToLeft + ? stringRange.length - 1 + : 0; // and this char index (in the stringRange of the glyph run) + + while (glyphStart < + numGlyphs) { // keep finding groups until all glyphs are accounted for + bool inOrder = true; + int32_t charEnd = glyphToChar[glyphStart] - stringRange.location; + NS_WARNING_ASSERTION(charEnd >= 0 && charEnd < stringRange.length, + "glyph-to-char mapping points outside string range"); + // clamp charEnd to the valid range of the string + charEnd = std::max(charEnd, 0); + charEnd = std::min(charEnd, int32_t(stringRange.length)); + + int32_t glyphEnd = glyphStart; + int32_t charLimit = isRightToLeft ? -1 : stringRange.length; + do { + // This is normally executed once for each iteration of the outer loop, + // but in unusual cases where the character/glyph association is complex, + // the initial character range might correspond to a non-contiguous + // glyph range with "holes" in it. If so, we will repeat this loop to + // extend the character range until we have a contiguous glyph sequence. + NS_ASSERTION((direction > 0 && charEnd < charLimit) || + (direction < 0 && charEnd > charLimit), + "no characters left in range?"); + charEnd += direction; + while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) { + charEnd += direction; + } + + // find the maximum glyph index covered by the clump so far + if (isRightToLeft) { + for (int32_t i = charStart; i > charEnd; --i) { + if (charToGlyph[i] != NO_GLYPH) { + // update extent of glyph range + glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1); + } + } + } else { + for (int32_t i = charStart; i < charEnd; ++i) { + if (charToGlyph[i] != NO_GLYPH) { + // update extent of glyph range + glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1); + } + } + } + + if (glyphEnd == glyphStart + 1) { + // for the common case of a single-glyph clump, we can skip the + // following checks + break; + } + + if (glyphEnd == glyphStart) { + // no glyphs, try to extend the clump + continue; + } + + // check whether all glyphs in the range are associated with the + // characters in our clump; if not, we have a discontinuous range, and + // should extend it unless we've reached the end of the text + bool allGlyphsAreWithinCluster = true; + int32_t prevGlyphCharIndex = charStart; + for (int32_t i = glyphStart; i < glyphEnd; ++i) { + int32_t glyphCharIndex = glyphToChar[i] - stringRange.location; + if (isRightToLeft) { + if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) { + allGlyphsAreWithinCluster = false; + break; + } + if (glyphCharIndex > prevGlyphCharIndex) { + inOrder = false; + } + prevGlyphCharIndex = glyphCharIndex; + } else { + if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) { + allGlyphsAreWithinCluster = false; + break; + } + if (glyphCharIndex < prevGlyphCharIndex) { + inOrder = false; + } + prevGlyphCharIndex = glyphCharIndex; + } + } + if (allGlyphsAreWithinCluster) { + break; + } + } while (charEnd != charLimit); + + NS_WARNING_ASSERTION(glyphStart < glyphEnd, + "character/glyph clump contains no glyphs!"); + if (glyphStart == glyphEnd) { + ++glyphStart; // make progress - avoid potential infinite loop + charStart = charEnd; + continue; + } + + NS_WARNING_ASSERTION(charStart != charEnd, + "character/glyph clump contains no characters!"); + if (charStart == charEnd) { + glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s), + // as there's nowhere to attach them + continue; + } + + // Now charStart..charEnd is a ligature clump, corresponding to + // glyphStart..glyphEnd; Set baseCharIndex to the char we'll actually attach + // the glyphs to (1st of ligature), and endCharIndex to the limit (position + // beyond the last char), adjusting for the offset of the stringRange + // relative to the textRun. + int32_t baseCharIndex, endCharIndex; + if (isRightToLeft) { + while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) { + charEnd--; + } + baseCharIndex = charEnd + stringRange.location + 1; + endCharIndex = charStart + stringRange.location + 1; + } else { + while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) { + charEnd++; + } + baseCharIndex = charStart + stringRange.location; + endCharIndex = charEnd + stringRange.location; + } + + // Then we check if the clump falls outside our actual string range; if so, + // just go to the next. + if (endCharIndex <= 0 || baseCharIndex >= wordLength) { + glyphStart = glyphEnd; + charStart = charEnd; + continue; + } + // Ensure we won't try to go beyond the valid length of the word's text + baseCharIndex = std::max(baseCharIndex, 0); + endCharIndex = std::min(endCharIndex, wordLength); + + // Now we're ready to set the glyph info in the textRun; measure the glyph + // width of the first (perhaps only) glyph, to see if it is "Simple" + int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit(); + double toNextGlyph; + if (glyphStart < numGlyphs - 1) { + toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x; + } else { + toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x; + } + int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit); + + // Check if it's a simple one-to-one mapping + int32_t glyphsInClump = glyphEnd - glyphStart; + if (glyphsInClump == 1 && + gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) && + gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) && + charGlyphs[baseCharIndex].IsClusterStart() && + positions[glyphStart].y == 0.0) { + charGlyphs[baseCharIndex].SetSimpleGlyph(advance, glyphs[glyphStart]); + } else { + // collect all glyphs in a list to be assigned to the first char; + // there must be at least one in the clump, and we already measured its + // advance, hence the placement of the loop-exit test and the measurement + // of the next glyph + while (true) { + gfxTextRun::DetailedGlyph* details = detailedGlyphs.AppendElement(); + details->mGlyphID = glyphs[glyphStart]; + details->mOffset.y = -positions[glyphStart].y * appUnitsPerDevUnit; + details->mAdvance = advance; + if (++glyphStart >= glyphEnd) { + break; + } + if (glyphStart < numGlyphs - 1) { + toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x; + } else { + toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x; + } + advance = int32_t(toNextGlyph * appUnitsPerDevUnit); + } + + aShapedText->SetDetailedGlyphs(aOffset + baseCharIndex, + detailedGlyphs.Length(), + detailedGlyphs.Elements()); + + detailedGlyphs.Clear(); + } + + // the rest of the chars in the group are ligature continuations, no + // associated glyphs + while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) { + CompressedGlyph& shapedTextGlyph = charGlyphs[baseCharIndex]; + NS_ASSERTION(!shapedTextGlyph.IsSimpleGlyph(), + "overwriting a simple glyph"); + shapedTextGlyph.SetComplex(inOrder && shapedTextGlyph.IsClusterStart(), + false); + } + + glyphStart = glyphEnd; + charStart = charEnd; + } + + return NS_OK; +} + +#undef SMALL_GLYPH_RUN + +// Construct the font attribute descriptor that we'll apply by default when +// creating a CTFontRef. This will turn off line-edge swashes by default, +// because we don't know the actual line breaks when doing glyph shaping. + +// We also cache feature descriptors for shaping with disabled ligatures, and +// for buggy Indic AAT font workarounds, created on an as-needed basis. + +#define MAX_FEATURES 5 // max used by any of our Get*Descriptor functions + +CTFontDescriptorRef gfxCoreTextShaper::CreateFontFeaturesDescriptor( + const std::pair<SInt16, SInt16>* aFeatures, size_t aCount) { + MOZ_ASSERT(aCount <= MAX_FEATURES); + + CFDictionaryRef featureSettings[MAX_FEATURES]; + + for (size_t i = 0; i < aCount; i++) { + CFNumberRef type = ::CFNumberCreate( + kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].first); + CFNumberRef selector = ::CFNumberCreate( + kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].second); + + CFTypeRef keys[] = {kCTFontFeatureTypeIdentifierKey, + kCTFontFeatureSelectorIdentifierKey}; + CFTypeRef values[] = {type, selector}; + featureSettings[i] = ::CFDictionaryCreate( + kCFAllocatorDefault, (const void**)keys, (const void**)values, + ArrayLength(keys), &kCFTypeDictionaryKeyCallBacks, + &kCFTypeDictionaryValueCallBacks); + + ::CFRelease(selector); + ::CFRelease(type); + } + + CFArrayRef featuresArray = + ::CFArrayCreate(kCFAllocatorDefault, (const void**)featureSettings, + aCount, // not ArrayLength(featureSettings), as we + // may not have used all the allocated slots + &kCFTypeArrayCallBacks); + + for (size_t i = 0; i < aCount; i++) { + ::CFRelease(featureSettings[i]); + } + + const CFTypeRef attrKeys[] = {kCTFontFeatureSettingsAttribute}; + const CFTypeRef attrValues[] = {featuresArray}; + CFDictionaryRef attributesDict = ::CFDictionaryCreate( + kCFAllocatorDefault, (const void**)attrKeys, (const void**)attrValues, + ArrayLength(attrKeys), &kCFTypeDictionaryKeyCallBacks, + &kCFTypeDictionaryValueCallBacks); + ::CFRelease(featuresArray); + + CTFontDescriptorRef descriptor = + ::CTFontDescriptorCreateWithAttributes(attributesDict); + ::CFRelease(attributesDict); + + return descriptor; +} + +CTFontDescriptorRef gfxCoreTextShaper::GetFeaturesDescriptor( + FeatureFlags aFeatureFlags) { + MOZ_ASSERT(aFeatureFlags < kMaxFontInstances); + if (!sFeaturesDescriptor[aFeatureFlags]) { + typedef std::pair<SInt16, SInt16> FeatT; + AutoTArray<FeatT, MAX_FEATURES> features; + features.AppendElement( + FeatT(kSmartSwashType, kLineFinalSwashesOffSelector)); + if ((aFeatureFlags & kIndicFeatures) == 0) { + features.AppendElement( + FeatT(kSmartSwashType, kLineInitialSwashesOffSelector)); + } + if (aFeatureFlags & kAddSmallCaps) { + features.AppendElement(FeatT(kLetterCaseType, kSmallCapsSelector)); + features.AppendElement( + FeatT(kLowerCaseType, kLowerCaseSmallCapsSelector)); + } + if (aFeatureFlags & kDisableLigatures) { + features.AppendElement( + FeatT(kLigaturesType, kCommonLigaturesOffSelector)); + } + MOZ_ASSERT(features.Length() <= MAX_FEATURES); + sFeaturesDescriptor[aFeatureFlags] = + CreateFontFeaturesDescriptor(features.Elements(), features.Length()); + } + return sFeaturesDescriptor[aFeatureFlags]; +} + +CTFontRef gfxCoreTextShaper::CreateCTFontWithFeatures( + CGFloat aSize, CTFontDescriptorRef aDescriptor) { + const gfxFontEntry* fe = mFont->GetFontEntry(); + bool isInstalledFont = !fe->IsUserFont() || fe->IsLocalUserFont(); + CGFontRef cgFont = static_cast<gfxMacFont*>(mFont)->GetCGFontRef(); + return gfxMacFont::CreateCTFontFromCGFontWithVariations( + cgFont, aSize, isInstalledFont, aDescriptor); +} + +void gfxCoreTextShaper::Shutdown() // [static] +{ + for (size_t i = 0; i < kMaxFontInstances; i++) { + if (sFeaturesDescriptor[i] != nullptr) { + ::CFRelease(sFeaturesDescriptor[i]); + sFeaturesDescriptor[i] = nullptr; + } + } +} |