diff options
Diffstat (limited to 'gfx/wr/webrender/src/renderer/mod.rs')
-rw-r--r-- | gfx/wr/webrender/src/renderer/mod.rs | 6165 |
1 files changed, 6165 insertions, 0 deletions
diff --git a/gfx/wr/webrender/src/renderer/mod.rs b/gfx/wr/webrender/src/renderer/mod.rs new file mode 100644 index 0000000000..7086e8805e --- /dev/null +++ b/gfx/wr/webrender/src/renderer/mod.rs @@ -0,0 +1,6165 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +//! The high-level module responsible for interfacing with the GPU. +//! +//! Much of WebRender's design is driven by separating work into different +//! threads. To avoid the complexities of multi-threaded GPU access, we restrict +//! all communication with the GPU to one thread, the render thread. But since +//! issuing GPU commands is often a bottleneck, we move everything else (i.e. +//! the computation of what commands to issue) to another thread, the +//! RenderBackend thread. The RenderBackend, in turn, may delegate work to other +//! thread (like the SceneBuilder threads or Rayon workers), but the +//! Render-vs-RenderBackend distinction is the most important. +//! +//! The consumer is responsible for initializing the render thread before +//! calling into WebRender, which means that this module also serves as the +//! initial entry point into WebRender, and is responsible for spawning the +//! various other threads discussed above. That said, WebRender initialization +//! returns both the `Renderer` instance as well as a channel for communicating +//! directly with the `RenderBackend`. Aside from a few high-level operations +//! like 'render now', most of interesting commands from the consumer go over +//! that channel and operate on the `RenderBackend`. +//! +//! ## Space conversion guidelines +//! At this stage, we shuld be operating with `DevicePixel` and `FramebufferPixel` only. +//! "Framebuffer" space represents the final destination of our rendeing, +//! and it happens to be Y-flipped on OpenGL. The conversion is done as follows: +//! - for rasterized primitives, the orthographics projection transforms +//! the content rectangle to -1 to 1 +//! - the viewport transformation is setup to map the whole range to +//! the framebuffer rectangle provided by the document view, stored in `DrawTarget` +//! - all the direct framebuffer operations, like blitting, reading pixels, and setting +//! up the scissor, are accepting already transformed coordinates, which we can get by +//! calling `DrawTarget::to_framebuffer_rect` + +use api::{BlobImageHandler, ColorF, ColorU, MixBlendMode}; +use api::{DocumentId, Epoch, ExternalImageHandler}; +use api::CrashAnnotator; +#[cfg(feature = "replay")] +use api::ExternalImageId; +use api::{ExternalImageSource, ExternalImageType, FontRenderMode, ImageFormat}; +use api::{PipelineId, ImageRendering, Checkpoint, NotificationRequest}; +use api::{VoidPtrToSizeFn, PremultipliedColorF}; +use api::{RenderNotifier, ImageBufferKind, SharedFontInstanceMap}; +#[cfg(feature = "replay")] +use api::ExternalImage; +use api::units::*; +use api::channel::{unbounded_channel, Sender, Receiver}; +pub use api::DebugFlags; +use core::time::Duration; + +use crate::render_api::{RenderApiSender, DebugCommand, ApiMsg, FrameMsg, MemoryReport}; +use crate::batch::{AlphaBatchContainer, BatchKind, BatchFeatures, BatchTextures, BrushBatchKind, ClipBatchList}; +#[cfg(any(feature = "capture", feature = "replay"))] +use crate::capture::{CaptureConfig, ExternalCaptureImage, PlainExternalImage}; +use crate::composite::{CompositeState, CompositeTileSurface, CompositeTile, ResolvedExternalSurface, CompositorSurfaceTransform}; +use crate::composite::{CompositorKind, Compositor, NativeTileId, CompositeSurfaceFormat, ResolvedExternalSurfaceColorData}; +use crate::composite::{CompositorConfig, NativeSurfaceOperationDetails, NativeSurfaceId, NativeSurfaceOperation}; +use crate::c_str; +use crate::debug_colors; +use crate::device::{DepthFunction, Device, DrawTarget, ExternalTexture, GpuFrameId}; +use crate::device::{ProgramCache, ReadTarget, ShaderError, Texture, TextureFilter, TextureFlags, TextureSlot}; +use crate::device::{UploadMethod, UploadPBOPool, UploadStagingBuffer, VertexUsageHint}; +use crate::device::query::{GpuSampler, GpuTimer}; +#[cfg(feature = "capture")] +use crate::device::FBOId; +use crate::debug_item::DebugItem; +use crate::frame_builder::{Frame, ChasePrimitive, FrameBuilderConfig}; +use crate::glyph_cache::GlyphCache; +use crate::glyph_rasterizer::{GlyphFormat, GlyphRasterizer}; +use crate::gpu_cache::{GpuCacheUpdate, GpuCacheUpdateList}; +use crate::gpu_cache::{GpuCacheDebugChunk, GpuCacheDebugCmd}; +use crate::gpu_types::{PrimitiveInstanceData, ScalingInstance, SvgFilterInstance}; +use crate::gpu_types::{BlurInstance, ClearInstance, CompositeInstance, ZBufferId}; +use crate::internal_types::{TextureSource, ResourceCacheError}; +use crate::internal_types::{CacheTextureId, DebugOutput, FastHashMap, FastHashSet, LayerIndex, RenderedDocument, ResultMsg}; +use crate::internal_types::{TextureCacheAllocationKind, TextureCacheUpdate, TextureUpdateList, TextureUpdateSource}; +use crate::internal_types::{RenderTargetInfo, Swizzle, DeferredResolveIndex}; +use crate::picture::{self, ResolvedSurfaceTexture}; +use crate::prim_store::DeferredResolve; +use crate::profiler::{self, GpuProfileTag, TransactionProfile}; +use crate::profiler::{Profiler, add_event_marker, add_text_marker, thread_is_being_profiled}; +use crate::device::query::{GpuProfiler, GpuDebugMethod}; +use crate::render_backend::{FrameId, RenderBackend}; +use crate::render_task_graph::RenderTaskGraph; +use crate::render_task::{RenderTask, RenderTaskKind}; +use crate::resource_cache::ResourceCache; +use crate::scene_builder_thread::{SceneBuilderThread, SceneBuilderThreadChannels, LowPrioritySceneBuilderThread}; +use crate::screen_capture::AsyncScreenshotGrabber; +use crate::render_target::{AlphaRenderTarget, ColorRenderTarget, PictureCacheTarget}; +use crate::render_target::{RenderTarget, TextureCacheRenderTarget}; +use crate::render_target::{RenderTargetKind, BlitJob, BlitJobSource}; +use crate::texture_cache::{TextureCache, TextureCacheConfig}; +use crate::texture_pack::{GuillotineAllocator, FreeRectSlice}; +use crate::tile_cache::PictureCacheDebugInfo; +use crate::util::drain_filter; + +use euclid::{rect, Transform3D, Scale, default}; +use gleam::gl; +use malloc_size_of::MallocSizeOfOps; +use rayon::{ThreadPool, ThreadPoolBuilder}; + +use std::{ + cell::RefCell, + collections::VecDeque, + f32, + mem, + num::NonZeroUsize, + path::PathBuf, + rc::Rc, + sync::Arc, + sync::atomic::{AtomicBool, Ordering}, + thread, +}; +#[cfg(any(feature = "capture", feature = "replay"))] +use std::collections::hash_map::Entry; +use tracy_rs::register_thread_with_profiler; +use time::precise_time_ns; + +cfg_if! { + if #[cfg(feature = "debugger")] { + use serde_json; + use crate::debug_server; + } +} + +mod debug; +mod gpu_cache; +mod shade; +mod vertex; + +pub use debug::DebugRenderer; +pub use shade::{Shaders, SharedShaders}; +pub use vertex::{desc, VertexArrayKind, MAX_VERTEX_TEXTURE_WIDTH}; + +/// Use this hint for all vertex data re-initialization. This allows +/// the driver to better re-use RBOs internally. +pub const ONE_TIME_USAGE_HINT: VertexUsageHint = VertexUsageHint::Stream; + +/// Is only false if no WR instances have ever been created. +static HAS_BEEN_INITIALIZED: AtomicBool = AtomicBool::new(false); + +/// Returns true if a WR instance has ever been initialized in this process. +pub fn wr_has_been_initialized() -> bool { + HAS_BEEN_INITIALIZED.load(Ordering::SeqCst) +} + +/// The size of the array of each type of vertex data texture that +/// is round-robin-ed each frame during bind_frame_data. Doing this +/// helps avoid driver stalls while updating the texture in some +/// drivers. The size of these textures are typically very small +/// (e.g. < 16 kB) so it's not a huge waste of memory. Despite that, +/// this is a short-term solution - we want to find a better way +/// to provide this frame data, which will likely involve some +/// combination of UBO/SSBO usage. Although this only affects some +/// platforms, it's enabled on all platforms to reduce testing +/// differences between platforms. +pub const VERTEX_DATA_TEXTURE_COUNT: usize = 3; + +/// Number of GPU blocks per UV rectangle provided for an image. +pub const BLOCKS_PER_UV_RECT: usize = 2; + +const GPU_TAG_BRUSH_OPACITY: GpuProfileTag = GpuProfileTag { + label: "B_Opacity", + color: debug_colors::DARKMAGENTA, +}; +const GPU_TAG_BRUSH_LINEAR_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "B_LinearGradient", + color: debug_colors::POWDERBLUE, +}; +const GPU_TAG_BRUSH_RADIAL_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "B_RadialGradient", + color: debug_colors::LIGHTPINK, +}; +const GPU_TAG_BRUSH_CONIC_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "B_ConicGradient", + color: debug_colors::GREEN, +}; +const GPU_TAG_BRUSH_YUV_IMAGE: GpuProfileTag = GpuProfileTag { + label: "B_YuvImage", + color: debug_colors::DARKGREEN, +}; +const GPU_TAG_BRUSH_MIXBLEND: GpuProfileTag = GpuProfileTag { + label: "B_MixBlend", + color: debug_colors::MAGENTA, +}; +const GPU_TAG_BRUSH_BLEND: GpuProfileTag = GpuProfileTag { + label: "B_Blend", + color: debug_colors::ORANGE, +}; +const GPU_TAG_BRUSH_IMAGE: GpuProfileTag = GpuProfileTag { + label: "B_Image", + color: debug_colors::SPRINGGREEN, +}; +const GPU_TAG_BRUSH_SOLID: GpuProfileTag = GpuProfileTag { + label: "B_Solid", + color: debug_colors::RED, +}; +const GPU_TAG_CACHE_CLIP: GpuProfileTag = GpuProfileTag { + label: "C_Clip", + color: debug_colors::PURPLE, +}; +const GPU_TAG_CACHE_BORDER: GpuProfileTag = GpuProfileTag { + label: "C_Border", + color: debug_colors::CORNSILK, +}; +const GPU_TAG_CACHE_LINE_DECORATION: GpuProfileTag = GpuProfileTag { + label: "C_LineDecoration", + color: debug_colors::YELLOWGREEN, +}; +const GPU_TAG_CACHE_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "C_Gradient", + color: debug_colors::BROWN, +}; +const GPU_TAG_SETUP_TARGET: GpuProfileTag = GpuProfileTag { + label: "target init", + color: debug_colors::SLATEGREY, +}; +const GPU_TAG_SETUP_DATA: GpuProfileTag = GpuProfileTag { + label: "data init", + color: debug_colors::LIGHTGREY, +}; +const GPU_TAG_PRIM_SPLIT_COMPOSITE: GpuProfileTag = GpuProfileTag { + label: "SplitComposite", + color: debug_colors::DARKBLUE, +}; +const GPU_TAG_PRIM_TEXT_RUN: GpuProfileTag = GpuProfileTag { + label: "TextRun", + color: debug_colors::BLUE, +}; +const GPU_TAG_BLUR: GpuProfileTag = GpuProfileTag { + label: "Blur", + color: debug_colors::VIOLET, +}; +const GPU_TAG_BLIT: GpuProfileTag = GpuProfileTag { + label: "Blit", + color: debug_colors::LIME, +}; +const GPU_TAG_SCALE: GpuProfileTag = GpuProfileTag { + label: "Scale", + color: debug_colors::GHOSTWHITE, +}; +const GPU_SAMPLER_TAG_ALPHA: GpuProfileTag = GpuProfileTag { + label: "Alpha targets", + color: debug_colors::BLACK, +}; +const GPU_SAMPLER_TAG_OPAQUE: GpuProfileTag = GpuProfileTag { + label: "Opaque pass", + color: debug_colors::BLACK, +}; +const GPU_SAMPLER_TAG_TRANSPARENT: GpuProfileTag = GpuProfileTag { + label: "Transparent pass", + color: debug_colors::BLACK, +}; +const GPU_TAG_SVG_FILTER: GpuProfileTag = GpuProfileTag { + label: "SvgFilter", + color: debug_colors::LEMONCHIFFON, +}; +const GPU_TAG_COMPOSITE: GpuProfileTag = GpuProfileTag { + label: "Composite", + color: debug_colors::TOMATO, +}; +const GPU_TAG_CLEAR: GpuProfileTag = GpuProfileTag { + label: "Clear", + color: debug_colors::CHOCOLATE, +}; + +/// The clear color used for the texture cache when the debug display is enabled. +/// We use a shade of blue so that we can still identify completely blue items in +/// the texture cache. +const TEXTURE_CACHE_DBG_CLEAR_COLOR: [f32; 4] = [0.0, 0.0, 0.8, 1.0]; + +impl BatchKind { + #[cfg(feature = "debugger")] + fn debug_name(&self) -> &'static str { + match *self { + BatchKind::SplitComposite => "SplitComposite", + BatchKind::Brush(kind) => { + match kind { + BrushBatchKind::Solid => "Brush (Solid)", + BrushBatchKind::Image(..) => "Brush (Image)", + BrushBatchKind::Blend => "Brush (Blend)", + BrushBatchKind::MixBlend { .. } => "Brush (Composite)", + BrushBatchKind::YuvImage(..) => "Brush (YuvImage)", + BrushBatchKind::ConicGradient => "Brush (ConicGradient)", + BrushBatchKind::RadialGradient => "Brush (RadialGradient)", + BrushBatchKind::LinearGradient => "Brush (LinearGradient)", + BrushBatchKind::Opacity => "Brush (Opacity)", + } + } + BatchKind::TextRun(_) => "TextRun", + } + } + + fn sampler_tag(&self) -> GpuProfileTag { + match *self { + BatchKind::SplitComposite => GPU_TAG_PRIM_SPLIT_COMPOSITE, + BatchKind::Brush(kind) => { + match kind { + BrushBatchKind::Solid => GPU_TAG_BRUSH_SOLID, + BrushBatchKind::Image(..) => GPU_TAG_BRUSH_IMAGE, + BrushBatchKind::Blend => GPU_TAG_BRUSH_BLEND, + BrushBatchKind::MixBlend { .. } => GPU_TAG_BRUSH_MIXBLEND, + BrushBatchKind::YuvImage(..) => GPU_TAG_BRUSH_YUV_IMAGE, + BrushBatchKind::ConicGradient => GPU_TAG_BRUSH_CONIC_GRADIENT, + BrushBatchKind::RadialGradient => GPU_TAG_BRUSH_RADIAL_GRADIENT, + BrushBatchKind::LinearGradient => GPU_TAG_BRUSH_LINEAR_GRADIENT, + BrushBatchKind::Opacity => GPU_TAG_BRUSH_OPACITY, + } + } + BatchKind::TextRun(_) => GPU_TAG_PRIM_TEXT_RUN, + } + } +} + +fn flag_changed(before: DebugFlags, after: DebugFlags, select: DebugFlags) -> Option<bool> { + if before & select != after & select { + Some(after.contains(select)) + } else { + None + } +} + +#[repr(C)] +#[derive(Copy, Clone, Debug)] +pub enum ShaderColorMode { + FromRenderPassMode = 0, + Alpha = 1, + SubpixelConstantTextColor = 2, + SubpixelWithBgColorPass0 = 3, + SubpixelWithBgColorPass1 = 4, + SubpixelWithBgColorPass2 = 5, + SubpixelDualSource = 6, + Bitmap = 7, + ColorBitmap = 8, + Image = 9, +} + +impl From<GlyphFormat> for ShaderColorMode { + fn from(format: GlyphFormat) -> ShaderColorMode { + match format { + GlyphFormat::Alpha | GlyphFormat::TransformedAlpha => ShaderColorMode::Alpha, + GlyphFormat::Subpixel | GlyphFormat::TransformedSubpixel => { + panic!("Subpixel glyph formats must be handled separately."); + } + GlyphFormat::Bitmap => ShaderColorMode::Bitmap, + GlyphFormat::ColorBitmap => ShaderColorMode::ColorBitmap, + } + } +} + +/// Enumeration of the texture samplers used across the various WebRender shaders. +/// +/// Each variant corresponds to a uniform declared in shader source. We only bind +/// the variants we need for a given shader, so not every variant is bound for every +/// batch. +#[derive(Debug, Copy, Clone, PartialEq, Eq)] +pub(crate) enum TextureSampler { + Color0, + Color1, + Color2, + GpuCache, + TransformPalette, + RenderTasks, + Dither, + PrimitiveHeadersF, + PrimitiveHeadersI, + ClipMask, +} + +impl TextureSampler { + pub(crate) fn color(n: usize) -> TextureSampler { + match n { + 0 => TextureSampler::Color0, + 1 => TextureSampler::Color1, + 2 => TextureSampler::Color2, + _ => { + panic!("There are only 3 color samplers."); + } + } + } +} + +impl Into<TextureSlot> for TextureSampler { + fn into(self) -> TextureSlot { + match self { + TextureSampler::Color0 => TextureSlot(0), + TextureSampler::Color1 => TextureSlot(1), + TextureSampler::Color2 => TextureSlot(2), + TextureSampler::GpuCache => TextureSlot(3), + TextureSampler::TransformPalette => TextureSlot(4), + TextureSampler::RenderTasks => TextureSlot(5), + TextureSampler::Dither => TextureSlot(6), + TextureSampler::PrimitiveHeadersF => TextureSlot(7), + TextureSampler::PrimitiveHeadersI => TextureSlot(8), + TextureSampler::ClipMask => TextureSlot(9), + } + } +} + +#[derive(Clone, Debug, PartialEq)] +pub enum GraphicsApi { + OpenGL, +} + +#[derive(Clone, Debug)] +pub struct GraphicsApiInfo { + pub kind: GraphicsApi, + pub renderer: String, + pub version: String, +} + +#[derive(Debug)] +pub struct GpuProfile { + pub frame_id: GpuFrameId, + pub paint_time_ns: u64, +} + +impl GpuProfile { + fn new(frame_id: GpuFrameId, timers: &[GpuTimer]) -> GpuProfile { + let mut paint_time_ns = 0; + for timer in timers { + paint_time_ns += timer.time_ns; + } + GpuProfile { + frame_id, + paint_time_ns, + } + } +} + +#[derive(Debug)] +pub struct CpuProfile { + pub frame_id: GpuFrameId, + pub backend_time_ns: u64, + pub composite_time_ns: u64, + pub draw_calls: usize, +} + +impl CpuProfile { + fn new( + frame_id: GpuFrameId, + backend_time_ns: u64, + composite_time_ns: u64, + draw_calls: usize, + ) -> CpuProfile { + CpuProfile { + frame_id, + backend_time_ns, + composite_time_ns, + draw_calls, + } + } +} + +/// The selected partial present mode for a given frame. +#[derive(Debug, Copy, Clone)] +enum PartialPresentMode { + /// The device supports fewer dirty rects than the number of dirty rects + /// that WR produced. In this case, the WR dirty rects are union'ed into + /// a single dirty rect, that is provided to the caller. + Single { + dirty_rect: DeviceRect, + }, +} + +/// Helper struct for resolving device Textures for use during rendering passes. +/// +/// Manages the mapping between the at-a-distance texture handles used by the +/// `RenderBackend` (which does not directly interface with the GPU) and actual +/// device texture handles. +struct TextureResolver { + /// A map to resolve texture cache IDs to native textures. + texture_cache_map: FastHashMap<CacheTextureId, Texture>, + + /// Map of external image IDs to native textures. + external_images: FastHashMap<DeferredResolveIndex, ExternalTexture>, + + /// A special 1x1 dummy texture used for shaders that expect to work with + /// the output of the previous pass but are actually running in the first + /// pass. + dummy_cache_texture: Texture, +} + +impl TextureResolver { + fn new(device: &mut Device) -> TextureResolver { + let dummy_cache_texture = device + .create_texture( + ImageBufferKind::Texture2D, + ImageFormat::RGBA8, + 1, + 1, + TextureFilter::Linear, + None, + 1, + ); + device.upload_texture_immediate( + &dummy_cache_texture, + &[0xff, 0xff, 0xff, 0xff], + ); + + TextureResolver { + texture_cache_map: FastHashMap::default(), + external_images: FastHashMap::default(), + dummy_cache_texture, + } + } + + fn deinit(self, device: &mut Device) { + device.delete_texture(self.dummy_cache_texture); + + for (_id, texture) in self.texture_cache_map { + device.delete_texture(texture); + } + } + + fn begin_frame(&mut self) { + } + + fn end_pass( + &mut self, + device: &mut Device, + textures_to_invalidate: &[CacheTextureId], + ) { + // For any texture that is no longer needed, immediately + // invalidate it so that tiled GPUs don't need to resolve it + // back to memory. + for texture_id in textures_to_invalidate { + let render_target = &self.texture_cache_map[texture_id]; + device.invalidate_render_target(render_target); + } + } + + // Bind a source texture to the device. + fn bind(&self, texture_id: &TextureSource, sampler: TextureSampler, device: &mut Device) -> Swizzle { + match *texture_id { + TextureSource::Invalid => { + Swizzle::default() + } + TextureSource::Dummy => { + let swizzle = Swizzle::default(); + device.bind_texture(sampler, &self.dummy_cache_texture, swizzle); + swizzle + } + TextureSource::External(ref index, _) => { + let texture = self.external_images + .get(index) + .expect("BUG: External image should be resolved by now"); + device.bind_external_texture(sampler, texture); + Swizzle::default() + } + TextureSource::TextureCache(index, swizzle) => { + let texture = &self.texture_cache_map[&index]; + device.bind_texture(sampler, texture, swizzle); + swizzle + } + } + } + + // Get the real (OpenGL) texture ID for a given source texture. + // For a texture cache texture, the IDs are stored in a vector + // map for fast access. + fn resolve(&self, texture_id: &TextureSource) -> Option<(&Texture, Swizzle)> { + match *texture_id { + TextureSource::Invalid => None, + TextureSource::Dummy => { + Some((&self.dummy_cache_texture, Swizzle::default())) + } + TextureSource::External(..) => { + panic!("BUG: External textures cannot be resolved, they can only be bound."); + } + TextureSource::TextureCache(index, swizzle) => { + Some((&self.texture_cache_map[&index], swizzle)) + } + } + } + + // Retrieve the deferred / resolved UV rect if an external texture, otherwise + // return the default supplied UV rect. + fn get_uv_rect( + &self, + source: &TextureSource, + default_value: TexelRect, + ) -> TexelRect { + match source { + TextureSource::External(ref index, _) => { + let texture = self.external_images + .get(index) + .expect("BUG: External image should be resolved by now"); + texture.get_uv_rect() + } + _ => { + default_value + } + } + } + + fn report_memory(&self) -> MemoryReport { + let mut report = MemoryReport::default(); + + // We're reporting GPU memory rather than heap-allocations, so we don't + // use size_of_op. + for t in self.texture_cache_map.values() { + report.texture_cache_textures += t.size_in_bytes(); + } + + report + } +} + +#[derive(Debug, Copy, Clone, PartialEq)] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +pub enum BlendMode { + None, + Alpha, + PremultipliedAlpha, + PremultipliedDestOut, + SubpixelDualSource, + SubpixelConstantTextColor(ColorF), + SubpixelWithBgColor, + Advanced(MixBlendMode), +} + +#[derive(PartialEq)] +struct TargetSelector { + size: DeviceIntSize, + num_layers: usize, + format: ImageFormat, +} + +/// Information about the state of the debugging / profiler overlay in native compositing mode. +struct DebugOverlayState { + /// True if any of the current debug flags will result in drawing a debug overlay. + is_enabled: bool, + + /// The current size of the debug overlay surface. None implies that the + /// debug surface isn't currently allocated. + current_size: Option<DeviceIntSize>, +} + +impl DebugOverlayState { + fn new() -> Self { + DebugOverlayState { + is_enabled: false, + current_size: None, + } + } +} + +/// Tracks buffer damage rects over a series of frames. +#[derive(Debug, Default)] +struct BufferDamageTracker { + damage_rects: [DeviceRect; 2], + current_offset: usize, +} + +impl BufferDamageTracker { + /// Sets the damage rect for the current frame. Should only be called *after* + /// get_damage_rect() has been called to get the current backbuffer's damage rect. + fn push_dirty_rect(&mut self, rect: &DeviceRect) { + self.damage_rects[self.current_offset] = rect.clone(); + self.current_offset = match self.current_offset { + 0 => self.damage_rects.len() - 1, + n => n - 1, + } + } + + /// Gets the damage rect for the current backbuffer, given the backbuffer's age. + /// (The number of frames since it was previously the backbuffer.) + /// Returns an empty rect if the buffer is valid, and None if the entire buffer is invalid. + fn get_damage_rect(&self, buffer_age: usize) -> Option<DeviceRect> { + match buffer_age { + // 0 means this is a new buffer, so is completely invalid. + 0 => None, + // 1 means this backbuffer was also the previous frame's backbuffer + // (so must have been copied to the frontbuffer). It is therefore entirely valid. + 1 => Some(DeviceRect::zero()), + // We must calculate the union of the damage rects since this buffer was previously + // the backbuffer. + n if n <= self.damage_rects.len() + 1 => { + Some( + self.damage_rects.iter() + .cycle() + .skip(self.current_offset + 1) + .take(n - 1) + .fold(DeviceRect::zero(), |acc, r| acc.union(r)) + ) + } + // The backbuffer is older than the number of frames for which we track, + // so we treat it as entirely invalid. + _ => None, + } + } +} + +/// The renderer is responsible for submitting to the GPU the work prepared by the +/// RenderBackend. +/// +/// We have a separate `Renderer` instance for each instance of WebRender (generally +/// one per OS window), and all instances share the same thread. +pub struct Renderer { + result_rx: Receiver<ResultMsg>, + debug_server: Box<dyn DebugServer>, + pub device: Device, + pending_texture_updates: Vec<TextureUpdateList>, + /// True if there are any TextureCacheUpdate pending. + pending_texture_cache_updates: bool, + pending_native_surface_updates: Vec<NativeSurfaceOperation>, + pending_gpu_cache_updates: Vec<GpuCacheUpdateList>, + pending_gpu_cache_clear: bool, + pending_shader_updates: Vec<PathBuf>, + active_documents: FastHashMap<DocumentId, RenderedDocument>, + + shaders: Rc<RefCell<Shaders>>, + + max_recorded_profiles: usize, + + clear_color: Option<ColorF>, + enable_clear_scissor: bool, + enable_advanced_blend_barriers: bool, + clear_caches_with_quads: bool, + + debug: debug::LazyInitializedDebugRenderer, + debug_flags: DebugFlags, + profile: TransactionProfile, + frame_counter: u64, + resource_upload_time: f64, + gpu_cache_upload_time: f64, + profiler: Profiler, + + last_time: u64, + + pub gpu_profiler: GpuProfiler, + vaos: vertex::RendererVAOs, + + gpu_cache_texture: gpu_cache::GpuCacheTexture, + vertex_data_textures: Vec<vertex::VertexDataTextures>, + current_vertex_data_textures: usize, + + /// When the GPU cache debugger is enabled, we keep track of the live blocks + /// in the GPU cache so that we can use them for the debug display. This + /// member stores those live blocks, indexed by row. + gpu_cache_debug_chunks: Vec<Vec<GpuCacheDebugChunk>>, + + gpu_cache_frame_id: FrameId, + gpu_cache_overflow: bool, + + pipeline_info: PipelineInfo, + + // Manages and resolves source textures IDs to real texture IDs. + texture_resolver: TextureResolver, + + texture_upload_pbo_pool: UploadPBOPool, + + dither_matrix_texture: Option<Texture>, + + /// Optional trait object that allows the client + /// application to provide external buffers for image data. + external_image_handler: Option<Box<dyn ExternalImageHandler>>, + + /// Optional function pointers for measuring memory used by a given + /// heap-allocated pointer. + size_of_ops: Option<MallocSizeOfOps>, + + pub renderer_errors: Vec<RendererError>, + + pub(in crate) async_frame_recorder: Option<AsyncScreenshotGrabber>, + pub(in crate) async_screenshots: Option<AsyncScreenshotGrabber>, + + /// List of profile results from previous frames. Can be retrieved + /// via get_frame_profiles(). + cpu_profiles: VecDeque<CpuProfile>, + gpu_profiles: VecDeque<GpuProfile>, + + /// Notification requests to be fulfilled after rendering. + notifications: Vec<NotificationRequest>, + + device_size: Option<DeviceIntSize>, + + /// A lazily created texture for the zoom debugging widget. + zoom_debug_texture: Option<Texture>, + + /// The current mouse position. This is used for debugging + /// functionality only, such as the debug zoom widget. + cursor_position: DeviceIntPoint, + + /// Guards to check if we might be rendering a frame with expired texture + /// cache entries. + shared_texture_cache_cleared: bool, + + /// The set of documents which we've seen a publish for since last render. + documents_seen: FastHashSet<DocumentId>, + + #[cfg(feature = "capture")] + read_fbo: FBOId, + #[cfg(feature = "replay")] + owned_external_images: FastHashMap<(ExternalImageId, u8), ExternalTexture>, + + /// The compositing config, affecting how WR composites into the final scene. + compositor_config: CompositorConfig, + + current_compositor_kind: CompositorKind, + + /// Maintains a set of allocated native composite surfaces. This allows any + /// currently allocated surfaces to be cleaned up as soon as deinit() is + /// called (the normal bookkeeping for native surfaces exists in the + /// render backend thread). + allocated_native_surfaces: FastHashSet<NativeSurfaceId>, + + /// If true, partial present state has been reset and everything needs to + /// be drawn on the next render. + force_redraw: bool, + + /// State related to the debug / profiling overlays + debug_overlay_state: DebugOverlayState, + + /// Tracks the dirty rectangles from previous frames. Used on platforms + /// that require keeping the front buffer fully correct when doing + /// partial present (e.g. unix desktop with EGL_EXT_buffer_age). + buffer_damage_tracker: BufferDamageTracker, + + max_primitive_instance_count: usize, + enable_instancing: bool, +} + +#[derive(Debug)] +pub enum RendererError { + Shader(ShaderError), + Thread(std::io::Error), + Resource(ResourceCacheError), + MaxTextureSize, +} + +impl From<ShaderError> for RendererError { + fn from(err: ShaderError) -> Self { + RendererError::Shader(err) + } +} + +impl From<std::io::Error> for RendererError { + fn from(err: std::io::Error) -> Self { + RendererError::Thread(err) + } +} + +impl From<ResourceCacheError> for RendererError { + fn from(err: ResourceCacheError) -> Self { + RendererError::Resource(err) + } +} + +impl Renderer { + /// Initializes WebRender and creates a `Renderer` and `RenderApiSender`. + /// + /// # Examples + /// Initializes a `Renderer` with some reasonable values. For more information see + /// [`RendererOptions`][rendereroptions]. + /// + /// ```rust,ignore + /// # use webrender::renderer::Renderer; + /// # use std::path::PathBuf; + /// let opts = webrender::RendererOptions { + /// device_pixel_ratio: 1.0, + /// resource_override_path: None, + /// enable_aa: false, + /// }; + /// let (renderer, sender) = Renderer::new(opts); + /// ``` + /// [rendereroptions]: struct.RendererOptions.html + pub fn new( + gl: Rc<dyn gl::Gl>, + notifier: Box<dyn RenderNotifier>, + mut options: RendererOptions, + shaders: Option<&SharedShaders>, + ) -> Result<(Self, RenderApiSender), RendererError> { + if !wr_has_been_initialized() { + // If the profiler feature is enabled, try to load the profiler shared library + // if the path was provided. + #[cfg(feature = "profiler")] + unsafe { + if let Ok(ref tracy_path) = std::env::var("WR_TRACY_PATH") { + let ok = tracy_rs::load(tracy_path); + println!("Load tracy from {} -> {}", tracy_path, ok); + } + } + + register_thread_with_profiler("Compositor".to_owned()); + } + + HAS_BEEN_INITIALIZED.store(true, Ordering::SeqCst); + + let (api_tx, api_rx) = unbounded_channel(); + let (result_tx, result_rx) = unbounded_channel(); + let gl_type = gl.get_type(); + + let debug_server = new_debug_server(options.start_debug_server, api_tx.clone()); + + let mut device = Device::new( + gl, + options.crash_annotator.clone(), + options.resource_override_path.clone(), + options.use_optimized_shaders, + options.upload_method.clone(), + options.cached_programs.take(), + options.allow_texture_storage_support, + options.allow_texture_swizzling, + options.dump_shader_source.take(), + options.surface_origin_is_top_left, + options.panic_on_gl_error, + ); + + let color_cache_formats = device.preferred_color_formats(); + let swizzle_settings = device.swizzle_settings(); + let use_dual_source_blending = + device.get_capabilities().supports_dual_source_blending && + options.allow_dual_source_blending; + let ext_blend_equation_advanced = + options.allow_advanced_blend_equation && + device.get_capabilities().supports_advanced_blend_equation; + let ext_blend_equation_advanced_coherent = + device.supports_extension("GL_KHR_blend_equation_advanced_coherent"); + + // 512 is the minimum that the texture cache can work with. + const MIN_TEXTURE_SIZE: i32 = 512; + if let Some(user_limit) = options.max_texture_size { + assert!(user_limit >= MIN_TEXTURE_SIZE); + device.clamp_max_texture_size(user_limit); + } + if device.max_texture_size() < MIN_TEXTURE_SIZE { + // Broken GL contexts can return a max texture size of zero (See #1260). + // Better to gracefully fail now than panic as soon as a texture is allocated. + error!( + "Device reporting insufficient max texture size ({})", + device.max_texture_size() + ); + return Err(RendererError::MaxTextureSize); + } + let max_texture_size = device.max_texture_size(); + + device.begin_frame(); + + let shaders = match shaders { + Some(shaders) => Rc::clone(shaders), + None => Rc::new(RefCell::new(Shaders::new(&mut device, gl_type, &options)?)), + }; + + let dither_matrix_texture = if options.enable_dithering { + let dither_matrix: [u8; 64] = [ + 0, + 48, + 12, + 60, + 3, + 51, + 15, + 63, + 32, + 16, + 44, + 28, + 35, + 19, + 47, + 31, + 8, + 56, + 4, + 52, + 11, + 59, + 7, + 55, + 40, + 24, + 36, + 20, + 43, + 27, + 39, + 23, + 2, + 50, + 14, + 62, + 1, + 49, + 13, + 61, + 34, + 18, + 46, + 30, + 33, + 17, + 45, + 29, + 10, + 58, + 6, + 54, + 9, + 57, + 5, + 53, + 42, + 26, + 38, + 22, + 41, + 25, + 37, + 21, + ]; + + let texture = device.create_texture( + ImageBufferKind::Texture2D, + ImageFormat::R8, + 8, + 8, + TextureFilter::Nearest, + None, + 1, + ); + device.upload_texture_immediate(&texture, &dither_matrix); + + Some(texture) + } else { + None + }; + + let max_primitive_instance_count = + RendererOptions::MAX_INSTANCE_BUFFER_SIZE / mem::size_of::<PrimitiveInstanceData>(); + let vaos = vertex::RendererVAOs::new( + &mut device, + if options.enable_instancing { None } else { NonZeroUsize::new(max_primitive_instance_count) }, + ); + + let texture_upload_pbo_pool = UploadPBOPool::new(&mut device, options.upload_pbo_default_size); + let texture_resolver = TextureResolver::new(&mut device); + + let mut vertex_data_textures = Vec::new(); + for _ in 0 .. VERTEX_DATA_TEXTURE_COUNT { + vertex_data_textures.push(vertex::VertexDataTextures::new()); + } + + // On some (mostly older, integrated) GPUs, the normal GPU texture cache update path + // doesn't work well when running on ANGLE, causing CPU stalls inside D3D and/or the + // GPU driver. See https://bugzilla.mozilla.org/show_bug.cgi?id=1576637 for much + // more detail. To reduce the number of code paths we have active that require testing, + // we will enable the GPU cache scatter update path on all devices running with ANGLE. + // We want a better solution long-term, but for now this is a significant performance + // improvement on HD4600 era GPUs, and shouldn't hurt performance in a noticeable + // way on other systems running under ANGLE. + let is_software = device.get_capabilities().renderer_name.starts_with("Software"); + + // On other GL platforms, like macOS or Android, creating many PBOs is very inefficient. + // This is what happens in GPU cache updates in PBO path. Instead, we switch everything + // except software GL to use the GPU scattered updates. + let supports_scatter = match gl_type { + gl::GlType::Gl => true, + gl::GlType::Gles => device.supports_extension("GL_EXT_color_buffer_float"), + }; + + let gpu_cache_texture = gpu_cache::GpuCacheTexture::new( + &mut device, + supports_scatter && !is_software, + )?; + + device.end_frame(); + + let backend_notifier = notifier.clone(); + + let prefer_subpixel_aa = options.force_subpixel_aa || (options.enable_subpixel_aa && use_dual_source_blending); + let default_font_render_mode = match (options.enable_aa, prefer_subpixel_aa) { + (true, true) => FontRenderMode::Subpixel, + (true, false) => FontRenderMode::Alpha, + (false, _) => FontRenderMode::Mono, + }; + + let compositor_kind = match options.compositor_config { + CompositorConfig::Draw { max_partial_present_rects, draw_previous_partial_present_regions, .. } => { + CompositorKind::Draw { max_partial_present_rects, draw_previous_partial_present_regions } + } + CompositorConfig::Native { ref compositor, max_update_rects, .. } => { + let capabilities = compositor.get_capabilities(); + + CompositorKind::Native { + max_update_rects, + virtual_surface_size: capabilities.virtual_surface_size, + } + } + }; + + let config = FrameBuilderConfig { + default_font_render_mode, + dual_source_blending_is_enabled: true, + dual_source_blending_is_supported: use_dual_source_blending, + chase_primitive: options.chase_primitive, + testing: options.testing, + gpu_supports_fast_clears: options.gpu_supports_fast_clears, + gpu_supports_advanced_blend: ext_blend_equation_advanced, + advanced_blend_is_coherent: ext_blend_equation_advanced_coherent, + gpu_supports_render_target_partial_update: device.get_capabilities().supports_render_target_partial_update, + batch_lookback_count: RendererOptions::BATCH_LOOKBACK_COUNT, + background_color: options.clear_color, + compositor_kind, + tile_size_override: None, + max_depth_ids: device.max_depth_ids(), + max_target_size: max_texture_size, + force_invalidation: false, + }; + info!("WR {:?}", config); + + let device_pixel_ratio = options.device_pixel_ratio; + let debug_flags = options.debug_flags; + let size_of_op = options.size_of_op; + let enclosing_size_of_op = options.enclosing_size_of_op; + let make_size_of_ops = + move || size_of_op.map(|o| MallocSizeOfOps::new(o, enclosing_size_of_op)); + let thread_listener = Arc::new(options.thread_listener); + let thread_listener_for_rayon_start = thread_listener.clone(); + let thread_listener_for_rayon_end = thread_listener.clone(); + let workers = options + .workers + .take() + .unwrap_or_else(|| { + let worker = ThreadPoolBuilder::new() + .thread_name(|idx|{ format!("WRWorker#{}", idx) }) + .start_handler(move |idx| { + register_thread_with_profiler(format!("WRWorker#{}", idx)); + if let Some(ref thread_listener) = *thread_listener_for_rayon_start { + thread_listener.thread_started(&format!("WRWorker#{}", idx)); + } + }) + .exit_handler(move |idx| { + if let Some(ref thread_listener) = *thread_listener_for_rayon_end { + thread_listener.thread_stopped(&format!("WRWorker#{}", idx)); + } + }) + .build(); + Arc::new(worker.unwrap()) + }); + let sampler = options.sampler; + let namespace_alloc_by_client = options.namespace_alloc_by_client; + + let font_instances = SharedFontInstanceMap::new(); + + let blob_image_handler = options.blob_image_handler.take(); + let thread_listener_for_render_backend = thread_listener.clone(); + let thread_listener_for_scene_builder = thread_listener.clone(); + let thread_listener_for_lp_scene_builder = thread_listener.clone(); + let scene_builder_hooks = options.scene_builder_hooks; + let rb_thread_name = format!("WRRenderBackend#{}", options.renderer_id.unwrap_or(0)); + let scene_thread_name = format!("WRSceneBuilder#{}", options.renderer_id.unwrap_or(0)); + let lp_scene_thread_name = format!("WRSceneBuilderLP#{}", options.renderer_id.unwrap_or(0)); + let glyph_rasterizer = GlyphRasterizer::new(workers)?; + + let (scene_builder_channels, scene_tx) = + SceneBuilderThreadChannels::new(api_tx.clone()); + + let sb_font_instances = font_instances.clone(); + + thread::Builder::new().name(scene_thread_name.clone()).spawn(move || { + register_thread_with_profiler(scene_thread_name.clone()); + if let Some(ref thread_listener) = *thread_listener_for_scene_builder { + thread_listener.thread_started(&scene_thread_name); + } + + let mut scene_builder = SceneBuilderThread::new( + config, + device_pixel_ratio, + sb_font_instances, + make_size_of_ops(), + scene_builder_hooks, + scene_builder_channels, + ); + scene_builder.run(); + + if let Some(ref thread_listener) = *thread_listener_for_scene_builder { + thread_listener.thread_stopped(&scene_thread_name); + } + })?; + + let low_priority_scene_tx = if options.support_low_priority_transactions { + let (low_priority_scene_tx, low_priority_scene_rx) = unbounded_channel(); + let lp_builder = LowPrioritySceneBuilderThread { + rx: low_priority_scene_rx, + tx: scene_tx.clone(), + simulate_slow_ms: 0, + }; + + thread::Builder::new().name(lp_scene_thread_name.clone()).spawn(move || { + register_thread_with_profiler(lp_scene_thread_name.clone()); + if let Some(ref thread_listener) = *thread_listener_for_lp_scene_builder { + thread_listener.thread_started(&lp_scene_thread_name); + } + + let mut scene_builder = lp_builder; + scene_builder.run(); + + if let Some(ref thread_listener) = *thread_listener_for_lp_scene_builder { + thread_listener.thread_stopped(&lp_scene_thread_name); + } + })?; + + low_priority_scene_tx + } else { + scene_tx.clone() + }; + + let backend_blob_handler = blob_image_handler + .as_ref() + .map(|handler| handler.create_similar()); + + let texture_cache_config = options.texture_cache_config.clone(); + let mut picture_tile_size = options.picture_tile_size.unwrap_or(picture::TILE_SIZE_DEFAULT); + // Clamp the picture tile size to reasonable values. + picture_tile_size.width = picture_tile_size.width.max(128).min(4096); + picture_tile_size.height = picture_tile_size.height.max(128).min(4096); + + let rb_scene_tx = scene_tx.clone(); + let rb_low_priority_scene_tx = scene_tx.clone(); + let rb_font_instances = font_instances.clone(); + let enable_multithreading = options.enable_multithreading; + thread::Builder::new().name(rb_thread_name.clone()).spawn(move || { + register_thread_with_profiler(rb_thread_name.clone()); + if let Some(ref thread_listener) = *thread_listener_for_render_backend { + thread_listener.thread_started(&rb_thread_name); + } + + let texture_cache = TextureCache::new( + max_texture_size, + picture_tile_size, + color_cache_formats, + swizzle_settings, + &texture_cache_config, + ); + + let glyph_cache = GlyphCache::new(); + + let mut resource_cache = ResourceCache::new( + texture_cache, + glyph_rasterizer, + glyph_cache, + rb_font_instances, + ); + + resource_cache.enable_multithreading(enable_multithreading); + + let mut backend = RenderBackend::new( + api_rx, + result_tx, + rb_scene_tx, + rb_low_priority_scene_tx, + device_pixel_ratio, + resource_cache, + backend_notifier, + backend_blob_handler, + config, + sampler, + make_size_of_ops(), + debug_flags, + namespace_alloc_by_client, + ); + backend.run(); + if let Some(ref thread_listener) = *thread_listener_for_render_backend { + thread_listener.thread_stopped(&rb_thread_name); + } + })?; + + let debug_method = if !options.enable_gpu_markers { + // The GPU markers are disabled. + GpuDebugMethod::None + } else if device.supports_extension("GL_KHR_debug") { + GpuDebugMethod::KHR + } else if device.supports_extension("GL_EXT_debug_marker") { + GpuDebugMethod::MarkerEXT + } else { + println!("Warning: asking to enable_gpu_markers but no supporting extension was found"); + GpuDebugMethod::None + }; + + info!("using {:?}", debug_method); + + let gpu_profiler = GpuProfiler::new(Rc::clone(device.rc_gl()), debug_method); + #[cfg(feature = "capture")] + let read_fbo = device.create_fbo(); + + let mut renderer = Renderer { + result_rx, + debug_server, + device, + active_documents: FastHashMap::default(), + pending_texture_updates: Vec::new(), + pending_texture_cache_updates: false, + pending_native_surface_updates: Vec::new(), + pending_gpu_cache_updates: Vec::new(), + pending_gpu_cache_clear: false, + pending_shader_updates: Vec::new(), + shaders, + debug: debug::LazyInitializedDebugRenderer::new(), + debug_flags: DebugFlags::empty(), + profile: TransactionProfile::new(), + frame_counter: 0, + resource_upload_time: 0.0, + gpu_cache_upload_time: 0.0, + profiler: Profiler::new(), + max_recorded_profiles: options.max_recorded_profiles, + clear_color: options.clear_color, + enable_clear_scissor: options.enable_clear_scissor, + enable_advanced_blend_barriers: !ext_blend_equation_advanced_coherent, + clear_caches_with_quads: options.clear_caches_with_quads, + last_time: 0, + gpu_profiler, + vaos, + vertex_data_textures, + current_vertex_data_textures: 0, + pipeline_info: PipelineInfo::default(), + dither_matrix_texture, + external_image_handler: None, + size_of_ops: make_size_of_ops(), + cpu_profiles: VecDeque::new(), + gpu_profiles: VecDeque::new(), + gpu_cache_texture, + gpu_cache_debug_chunks: Vec::new(), + gpu_cache_frame_id: FrameId::INVALID, + gpu_cache_overflow: false, + texture_upload_pbo_pool, + texture_resolver, + renderer_errors: Vec::new(), + async_frame_recorder: None, + async_screenshots: None, + #[cfg(feature = "capture")] + read_fbo, + #[cfg(feature = "replay")] + owned_external_images: FastHashMap::default(), + notifications: Vec::new(), + device_size: None, + zoom_debug_texture: None, + cursor_position: DeviceIntPoint::zero(), + shared_texture_cache_cleared: false, + documents_seen: FastHashSet::default(), + force_redraw: true, + compositor_config: options.compositor_config, + current_compositor_kind: compositor_kind, + allocated_native_surfaces: FastHashSet::default(), + debug_overlay_state: DebugOverlayState::new(), + buffer_damage_tracker: BufferDamageTracker::default(), + max_primitive_instance_count, + enable_instancing: options.enable_instancing, + }; + + // We initially set the flags to default and then now call set_debug_flags + // to ensure any potential transition when enabling a flag is run. + renderer.set_debug_flags(debug_flags); + + let sender = RenderApiSender::new( + api_tx, + scene_tx, + low_priority_scene_tx, + blob_image_handler, + font_instances, + ); + Ok((renderer, sender)) + } + + pub fn device_size(&self) -> Option<DeviceIntSize> { + self.device_size + } + + /// Update the current position of the debug cursor. + pub fn set_cursor_position( + &mut self, + position: DeviceIntPoint, + ) { + self.cursor_position = position; + } + + pub fn get_max_texture_size(&self) -> i32 { + self.device.max_texture_size() + } + + pub fn get_graphics_api_info(&self) -> GraphicsApiInfo { + GraphicsApiInfo { + kind: GraphicsApi::OpenGL, + version: self.device.gl().get_string(gl::VERSION), + renderer: self.device.gl().get_string(gl::RENDERER), + } + } + + pub fn preferred_color_format(&self) -> ImageFormat { + self.device.preferred_color_formats().external + } + + pub fn optimal_texture_stride_alignment(&self, format: ImageFormat) -> usize { + self.device.optimal_pbo_stride().num_bytes(format).get() + } + + pub fn set_clear_color(&mut self, color: Option<ColorF>) { + self.clear_color = color; + } + + pub fn flush_pipeline_info(&mut self) -> PipelineInfo { + mem::replace(&mut self.pipeline_info, PipelineInfo::default()) + } + + /// Returns the Epoch of the current frame in a pipeline. + pub fn current_epoch(&self, document_id: DocumentId, pipeline_id: PipelineId) -> Option<Epoch> { + self.pipeline_info.epochs.get(&(pipeline_id, document_id)).cloned() + } + + /// Processes the result queue. + /// + /// Should be called before `render()`, as texture cache updates are done here. + pub fn update(&mut self) { + profile_scope!("update"); + + // Pull any pending results and return the most recent. + while let Ok(msg) = self.result_rx.try_recv() { + match msg { + ResultMsg::PublishPipelineInfo(mut pipeline_info) => { + for ((pipeline_id, document_id), epoch) in pipeline_info.epochs { + self.pipeline_info.epochs.insert((pipeline_id, document_id), epoch); + } + self.pipeline_info.removed_pipelines.extend(pipeline_info.removed_pipelines.drain(..)); + } + ResultMsg::PublishDocument( + document_id, + mut doc, + resource_update_list, + ) => { + // Add a new document to the active set + + // If the document we are replacing must be drawn (in order to + // update the texture cache), issue a render just to + // off-screen targets, ie pass None to render_impl. We do this + // because a) we don't need to render to the main framebuffer + // so it is cheaper not to, and b) doing so without a + // subsequent present would break partial present. + if let Some(mut prev_doc) = self.active_documents.remove(&document_id) { + doc.profile.merge(&mut prev_doc.profile); + + if prev_doc.frame.must_be_drawn() { + self.render_impl( + document_id, + &mut prev_doc, + None, + 0, + ).ok(); + } + } + + self.active_documents.insert(document_id, doc); + + // IMPORTANT: The pending texture cache updates must be applied + // *after* the previous frame has been rendered above + // (if neceessary for a texture cache update). For + // an example of why this is required: + // 1) Previous frame contains a render task that + // targets Texture X. + // 2) New frame contains a texture cache update which + // frees Texture X. + // 3) bad stuff happens. + + //TODO: associate `document_id` with target window + self.pending_texture_cache_updates |= !resource_update_list.texture_updates.updates.is_empty(); + self.pending_texture_updates.push(resource_update_list.texture_updates); + self.pending_native_surface_updates.extend(resource_update_list.native_surface_updates); + self.documents_seen.insert(document_id); + } + ResultMsg::UpdateGpuCache(mut list) => { + if list.clear { + self.pending_gpu_cache_clear = true; + } + if list.clear { + self.gpu_cache_debug_chunks = Vec::new(); + } + for cmd in mem::replace(&mut list.debug_commands, Vec::new()) { + match cmd { + GpuCacheDebugCmd::Alloc(chunk) => { + let row = chunk.address.v as usize; + if row >= self.gpu_cache_debug_chunks.len() { + self.gpu_cache_debug_chunks.resize(row + 1, Vec::new()); + } + self.gpu_cache_debug_chunks[row].push(chunk); + }, + GpuCacheDebugCmd::Free(address) => { + let chunks = &mut self.gpu_cache_debug_chunks[address.v as usize]; + let pos = chunks.iter() + .position(|x| x.address == address).unwrap(); + chunks.remove(pos); + }, + } + } + self.pending_gpu_cache_updates.push(list); + } + ResultMsg::UpdateResources { + resource_updates, + memory_pressure, + } => { + if memory_pressure { + // If a memory pressure event arrives _after_ a new scene has + // been published that writes persistent targets (i.e. cached + // render tasks to the texture cache, or picture cache tiles) + // but _before_ the next update/render loop, those targets + // will not be updated due to the active_documents list being + // cleared at the end of this message. To work around that, + // if any of the existing documents have not rendered yet, and + // have picture/texture cache targets, force a render so that + // those targets are updated. + let active_documents = mem::replace( + &mut self.active_documents, + FastHashMap::default(), + ); + for (doc_id, mut doc) in active_documents { + if doc.frame.must_be_drawn() { + // As this render will not be presented, we must pass None to + // render_impl. This avoids interfering with partial present + // logic, as well as being more efficient. + self.render_impl( + doc_id, + &mut doc, + None, + 0, + ).ok(); + } + } + } + + self.pending_texture_cache_updates |= !resource_updates.texture_updates.updates.is_empty(); + self.pending_texture_updates.push(resource_updates.texture_updates); + self.pending_native_surface_updates.extend(resource_updates.native_surface_updates); + self.device.begin_frame(); + + self.update_texture_cache(); + self.update_native_surfaces(); + + // Flush the render target pool on memory pressure. + // + // This needs to be separate from the block below because + // the device module asserts if we delete textures while + // not in a frame. + if memory_pressure { + self.texture_upload_pbo_pool.on_memory_pressure(&mut self.device); + } + + self.device.end_frame(); + } + ResultMsg::AppendNotificationRequests(mut notifications) => { + // We need to know specifically if there are any pending + // TextureCacheUpdate updates in any of the entries in + // pending_texture_updates. They may simply be nops, which do not + // need to prevent issuing the notification, and if so, may not + // cause a timely frame render to occur to wake up any listeners. + if !self.pending_texture_cache_updates { + drain_filter( + &mut notifications, + |n| { n.when() == Checkpoint::FrameTexturesUpdated }, + |n| { n.notify(); }, + ); + } + self.notifications.append(&mut notifications); + } + ResultMsg::ForceRedraw => { + self.force_redraw = true; + } + ResultMsg::RefreshShader(path) => { + self.pending_shader_updates.push(path); + } + ResultMsg::DebugOutput(output) => match output { + DebugOutput::FetchDocuments(string) | + DebugOutput::FetchClipScrollTree(string) => { + self.debug_server.send(string); + } + #[cfg(feature = "capture")] + DebugOutput::SaveCapture(config, deferred) => { + self.save_capture(config, deferred); + } + #[cfg(feature = "replay")] + DebugOutput::LoadCapture(config, plain_externals) => { + self.active_documents.clear(); + self.load_capture(config, plain_externals); + } + }, + ResultMsg::DebugCommand(command) => { + self.handle_debug_command(command); + } + } + } + } + + #[cfg(not(feature = "debugger"))] + fn get_screenshot_for_debugger(&mut self) -> String { + // Avoid unused param warning. + let _ = &self.debug_server; + String::new() + } + + #[cfg(feature = "debugger")] + fn get_screenshot_for_debugger(&mut self) -> String { + use api::{ImageDescriptor, ImageDescriptorFlags}; + + let desc = ImageDescriptor::new(1024, 768, ImageFormat::BGRA8, ImageDescriptorFlags::IS_OPAQUE); + let data = self.device.read_pixels(&desc); + let screenshot = debug_server::Screenshot::new(desc.size, data); + + serde_json::to_string(&screenshot).unwrap() + } + + #[cfg(not(feature = "debugger"))] + fn get_passes_for_debugger(&self) -> String { + // Avoid unused param warning. + let _ = &self.debug_server; + String::new() + } + + #[cfg(feature = "debugger")] + fn debug_alpha_target(target: &AlphaRenderTarget) -> debug_server::Target { + let mut debug_target = debug_server::Target::new("A8"); + + debug_target.add( + debug_server::BatchKind::Cache, + "Scalings", + target.scalings.len(), + ); + debug_target.add( + debug_server::BatchKind::Cache, + "Zero Clears", + target.zero_clears.len(), + ); + debug_target.add( + debug_server::BatchKind::Cache, + "One Clears", + target.one_clears.len(), + ); + debug_target.add( + debug_server::BatchKind::Clip, + "BoxShadows [p]", + target.clip_batcher.primary_clips.box_shadows.len(), + ); + debug_target.add( + debug_server::BatchKind::Clip, + "BoxShadows [s]", + target.clip_batcher.secondary_clips.box_shadows.len(), + ); + debug_target.add( + debug_server::BatchKind::Cache, + "Vertical Blur", + target.vertical_blurs.len(), + ); + debug_target.add( + debug_server::BatchKind::Cache, + "Horizontal Blur", + target.horizontal_blurs.len(), + ); + debug_target.add( + debug_server::BatchKind::Clip, + "Slow Rectangles [p]", + target.clip_batcher.primary_clips.slow_rectangles.len(), + ); + debug_target.add( + debug_server::BatchKind::Clip, + "Fast Rectangles [p]", + target.clip_batcher.primary_clips.fast_rectangles.len(), + ); + debug_target.add( + debug_server::BatchKind::Clip, + "Slow Rectangles [s]", + target.clip_batcher.secondary_clips.slow_rectangles.len(), + ); + debug_target.add( + debug_server::BatchKind::Clip, + "Fast Rectangles [s]", + target.clip_batcher.secondary_clips.fast_rectangles.len(), + ); + for (_, items) in target.clip_batcher.primary_clips.images.iter() { + debug_target.add(debug_server::BatchKind::Clip, "Image mask [p]", items.len()); + } + for (_, items) in target.clip_batcher.secondary_clips.images.iter() { + debug_target.add(debug_server::BatchKind::Clip, "Image mask [s]", items.len()); + } + + debug_target + } + + #[cfg(feature = "debugger")] + fn debug_color_target(target: &ColorRenderTarget) -> debug_server::Target { + let mut debug_target = debug_server::Target::new("RGBA8"); + + debug_target.add( + debug_server::BatchKind::Cache, + "Scalings", + target.scalings.len(), + ); + debug_target.add( + debug_server::BatchKind::Cache, + "Vertical Blur", + target.vertical_blurs.len(), + ); + debug_target.add( + debug_server::BatchKind::Cache, + "Horizontal Blur", + target.horizontal_blurs.len(), + ); + debug_target.add( + debug_server::BatchKind::Cache, + "SVG Filters", + target.svg_filters.iter().map(|(_, batch)| batch.len()).sum(), + ); + + for alpha_batch_container in &target.alpha_batch_containers { + for batch in alpha_batch_container.opaque_batches.iter().rev() { + debug_target.add( + debug_server::BatchKind::Opaque, + batch.key.kind.debug_name(), + batch.instances.len(), + ); + } + + for batch in &alpha_batch_container.alpha_batches { + debug_target.add( + debug_server::BatchKind::Alpha, + batch.key.kind.debug_name(), + batch.instances.len(), + ); + } + } + + debug_target + } + + #[cfg(feature = "debugger")] + fn debug_texture_cache_target(target: &TextureCacheRenderTarget) -> debug_server::Target { + let mut debug_target = debug_server::Target::new("Texture Cache"); + + debug_target.add( + debug_server::BatchKind::Cache, + "Horizontal Blur", + target.horizontal_blurs.len(), + ); + + debug_target + } + + #[cfg(feature = "debugger")] + fn get_passes_for_debugger(&self) -> String { + let mut debug_passes = debug_server::PassList::new(); + + for (_, render_doc) in &self.active_documents { + for pass in &render_doc.frame.passes { + let mut debug_targets = Vec::new(); + debug_targets.extend(pass.alpha.targets.iter().map(Self::debug_alpha_target)); + debug_targets.extend(pass.color.targets.iter().map(Self::debug_color_target)); + debug_targets.extend(pass.texture_cache.iter().map(|(_, target)| Self::debug_texture_cache_target(target))); + + debug_passes.add(debug_server::Pass { targets: debug_targets }); + } + } + + serde_json::to_string(&debug_passes).unwrap() + } + + #[cfg(not(feature = "debugger"))] + fn get_render_tasks_for_debugger(&self) -> String { + String::new() + } + + #[cfg(feature = "debugger")] + fn get_render_tasks_for_debugger(&self) -> String { + let mut debug_root = debug_server::RenderTaskList::new(); + + for (_, render_doc) in &self.active_documents { + let debug_node = debug_server::TreeNode::new("document render tasks"); + let mut builder = debug_server::TreeNodeBuilder::new(debug_node); + + let render_tasks = &render_doc.frame.render_tasks; + match render_tasks.tasks.first() { + Some(main_task) => main_task.print_with(&mut builder, render_tasks), + None => continue, + }; + + debug_root.add(builder.build()); + } + + serde_json::to_string(&debug_root).unwrap() + } + + fn handle_debug_command(&mut self, command: DebugCommand) { + match command { + DebugCommand::EnableDualSourceBlending(_) | + DebugCommand::SetPictureTileSize(_) => { + panic!("Should be handled by render backend"); + } + DebugCommand::FetchDocuments | + DebugCommand::FetchClipScrollTree => {} + DebugCommand::FetchRenderTasks => { + let json = self.get_render_tasks_for_debugger(); + self.debug_server.send(json); + } + DebugCommand::FetchPasses => { + let json = self.get_passes_for_debugger(); + self.debug_server.send(json); + } + DebugCommand::FetchScreenshot => { + let json = self.get_screenshot_for_debugger(); + self.debug_server.send(json); + } + DebugCommand::SaveCapture(..) | + DebugCommand::LoadCapture(..) | + DebugCommand::StartCaptureSequence(..) | + DebugCommand::StopCaptureSequence => { + panic!("Capture commands are not welcome here! Did you build with 'capture' feature?") + } + DebugCommand::ClearCaches(_) + | DebugCommand::SimulateLongSceneBuild(_) + | DebugCommand::SimulateLongLowPrioritySceneBuild(_) + | DebugCommand::EnableNativeCompositor(_) + | DebugCommand::SetBatchingLookback(_) + | DebugCommand::EnableMultithreading(_) => {} + DebugCommand::InvalidateGpuCache => { + self.gpu_cache_texture.invalidate(); + } + DebugCommand::SetFlags(flags) => { + self.set_debug_flags(flags); + } + } + } + + /// Set a callback for handling external images. + pub fn set_external_image_handler(&mut self, handler: Box<dyn ExternalImageHandler>) { + self.external_image_handler = Some(handler); + } + + /// Retrieve (and clear) the current list of recorded frame profiles. + pub fn get_frame_profiles(&mut self) -> (Vec<CpuProfile>, Vec<GpuProfile>) { + let cpu_profiles = self.cpu_profiles.drain(..).collect(); + let gpu_profiles = self.gpu_profiles.drain(..).collect(); + (cpu_profiles, gpu_profiles) + } + + /// Reset the current partial present state. This forces the entire framebuffer + /// to be refreshed next time `render` is called. + pub fn force_redraw(&mut self) { + self.force_redraw = true; + } + + /// Renders the current frame. + /// + /// A Frame is supplied by calling [`generate_frame()`][webrender_api::Transaction::generate_frame]. + /// buffer_age is the age of the current backbuffer. It is only relevant if partial present + /// is active, otherwise 0 should be passed here. + pub fn render( + &mut self, + device_size: DeviceIntSize, + buffer_age: usize, + ) -> Result<RenderResults, Vec<RendererError>> { + self.device_size = Some(device_size); + + // TODO(gw): We want to make the active document that is + // being rendered configurable via the public + // API in future. For now, just select the last + // added document as the active one to render + // (Gecko only ever creates a single document + // per renderer right now). + let doc_id = self.active_documents.keys().last().cloned(); + + let result = match doc_id { + Some(doc_id) => { + // Remove the doc from the map to appease the borrow checker + let mut doc = self.active_documents + .remove(&doc_id) + .unwrap(); + + let result = self.render_impl( + doc_id, + &mut doc, + Some(device_size), + buffer_age, + ); + + self.active_documents.insert(doc_id, doc); + + result + } + None => { + self.last_time = precise_time_ns(); + Ok(RenderResults::default()) + } + }; + + drain_filter( + &mut self.notifications, + |n| { n.when() == Checkpoint::FrameRendered }, + |n| { n.notify(); }, + ); + + // This is the end of the rendering pipeline. If some notifications are is still there, + // just clear them and they will autimatically fire the Checkpoint::TransactionDropped + // event. Otherwise they would just pile up in this vector forever. + self.notifications.clear(); + + tracy_frame_marker!(); + + result + } + + /// Update the state of any debug / profiler overlays. This is currently only needed + /// when running with the native compositor enabled. + fn update_debug_overlay(&mut self, framebuffer_size: DeviceIntSize) { + // If any of the following debug flags are set, something will be drawn on the debug overlay. + self.debug_overlay_state.is_enabled = self.debug_flags.intersects( + DebugFlags::PROFILER_DBG | + DebugFlags::RENDER_TARGET_DBG | + DebugFlags::TEXTURE_CACHE_DBG | + DebugFlags::EPOCHS | + DebugFlags::GPU_CACHE_DBG | + DebugFlags::PICTURE_CACHING_DBG | + DebugFlags::PRIMITIVE_DBG | + DebugFlags::ZOOM_DBG + ); + + // Update the debug overlay surface, if we are running in native compositor mode. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + + // If there is a current surface, destroy it if we don't need it for this frame, or if + // the size has changed. + if let Some(current_size) = self.debug_overlay_state.current_size { + if !self.debug_overlay_state.is_enabled || current_size != framebuffer_size { + compositor.destroy_surface(NativeSurfaceId::DEBUG_OVERLAY); + self.debug_overlay_state.current_size = None; + } + } + + // Allocate a new surface, if we need it and there isn't one. + if self.debug_overlay_state.is_enabled && self.debug_overlay_state.current_size.is_none() { + compositor.create_surface( + NativeSurfaceId::DEBUG_OVERLAY, + DeviceIntPoint::zero(), + framebuffer_size, + false, + ); + compositor.create_tile( + NativeTileId::DEBUG_OVERLAY, + ); + self.debug_overlay_state.current_size = Some(framebuffer_size); + } + } + } + + /// Bind a draw target for the debug / profiler overlays, if required. + fn bind_debug_overlay(&mut self, device_size: DeviceIntSize) -> Option<DrawTarget> { + // Debug overlay setup are only required in native compositing mode + if self.debug_overlay_state.is_enabled { + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + let surface_size = self.debug_overlay_state.current_size.unwrap(); + + // Bind the native surface + let surface_info = compositor.bind( + NativeTileId::DEBUG_OVERLAY, + DeviceIntRect::new( + DeviceIntPoint::zero(), + surface_size, + ), + DeviceIntRect::new( + DeviceIntPoint::zero(), + surface_size, + ), + ); + + // Bind the native surface to current FBO target + let draw_target = DrawTarget::NativeSurface { + offset: surface_info.origin, + external_fbo_id: surface_info.fbo_id, + dimensions: surface_size, + }; + self.device.bind_draw_target(draw_target); + + // When native compositing, clear the debug overlay each frame. + self.device.clear_target( + Some([0.0, 0.0, 0.0, 0.0]), + None, // debug renderer does not use depth + None, + ); + + Some(draw_target) + } else { + // If we're not using the native compositor, then the default + // frame buffer is already bound. Create a DrawTarget for it and + // return it. + Some(DrawTarget::new_default(device_size, self.device.surface_origin_is_top_left())) + } + } else { + None + } + } + + /// Unbind the draw target for debug / profiler overlays, if required. + fn unbind_debug_overlay(&mut self) { + // Debug overlay setup are only required in native compositing mode + if self.debug_overlay_state.is_enabled { + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + // Unbind the draw target and add it to the visual tree to be composited + compositor.unbind(); + + compositor.add_surface( + NativeSurfaceId::DEBUG_OVERLAY, + CompositorSurfaceTransform::identity(), + DeviceIntRect::new( + DeviceIntPoint::zero(), + self.debug_overlay_state.current_size.unwrap(), + ), + ImageRendering::Auto, + ); + } + } + } + + // If device_size is None, don't render to the main frame buffer. This is useful to + // update texture cache render tasks but avoid doing a full frame render. If the + // render is not going to be presented, then this must be set to None, as performing a + // composite without a present will confuse partial present. + fn render_impl( + &mut self, + doc_id: DocumentId, + active_doc: &mut RenderedDocument, + device_size: Option<DeviceIntSize>, + buffer_age: usize, + ) -> Result<RenderResults, Vec<RendererError>> { + profile_scope!("render"); + let mut results = RenderResults::default(); + self.profile.start_time(profiler::RENDERER_TIME); + + let compositor_kind = active_doc.frame.composite_state.compositor_kind; + // CompositorKind is updated + if self.current_compositor_kind != compositor_kind { + let enable = match (self.current_compositor_kind, compositor_kind) { + (CompositorKind::Native { .. }, CompositorKind::Draw { .. }) => { + if self.debug_overlay_state.current_size.is_some() { + self.compositor_config + .compositor() + .unwrap() + .destroy_surface(NativeSurfaceId::DEBUG_OVERLAY); + self.debug_overlay_state.current_size = None; + } + false + } + (CompositorKind::Draw { .. }, CompositorKind::Native { .. }) => { + true + } + (current_compositor_kind, active_doc_compositor_kind) => { + dbg!(current_compositor_kind, active_doc_compositor_kind); + unreachable!(); + } + }; + + self.compositor_config + .compositor() + .unwrap() + .enable_native_compositor(enable); + self.current_compositor_kind = compositor_kind; + } + + // The texture resolver scope should be outside of any rendering, including + // debug rendering. This ensures that when we return render targets to the + // pool via glInvalidateFramebuffer, we don't do any debug rendering after + // that point. Otherwise, the bind / invalidate / bind logic trips up the + // render pass logic in tiled / mobile GPUs, resulting in an extra copy / + // resolve step when the debug overlay is enabled. + self.texture_resolver.begin_frame(); + + if let Some(device_size) = device_size { + self.update_gpu_profile(device_size); + } + + let cpu_frame_id = { + let _gm = self.gpu_profiler.start_marker("begin frame"); + let frame_id = self.device.begin_frame(); + self.gpu_profiler.begin_frame(frame_id); + + self.device.disable_scissor(); + self.device.disable_depth(); + self.set_blend(false, FramebufferKind::Main); + //self.update_shaders(); + + self.update_texture_cache(); + self.update_native_surfaces(); + + frame_id + }; + + // Inform the client that we are starting a composition transaction if native + // compositing is enabled. This needs to be done early in the frame, so that + // we can create debug overlays after drawing the main surfaces. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + compositor.begin_frame(); + } + + if let Some(device_size) = device_size { + // Update the state of the debug overlay surface, ensuring that + // the compositor mode has a suitable surface to draw to, if required. + self.update_debug_overlay(device_size); + } + + let frame = &mut active_doc.frame; + let profile = &mut active_doc.profile; + assert!(self.current_compositor_kind == frame.composite_state.compositor_kind); + + if self.shared_texture_cache_cleared { + assert!(self.documents_seen.contains(&doc_id), + "Cleared texture cache without sending new document frame."); + } + + match self.prepare_gpu_cache(&frame.deferred_resolves) { + Ok(..) => { + assert!(frame.gpu_cache_frame_id <= self.gpu_cache_frame_id, + "Received frame depends on a later GPU cache epoch ({:?}) than one we received last via `UpdateGpuCache` ({:?})", + frame.gpu_cache_frame_id, self.gpu_cache_frame_id); + + { + profile_scope!("gl.flush"); + self.device.gl().flush(); // early start on gpu cache updates + } + + self.draw_frame( + frame, + device_size, + buffer_age, + &mut results, + ); + + // TODO(nical): do this automatically by selecting counters in the wr profiler + // Profile marker for the number of invalidated picture cache + if thread_is_being_profiled() { + let duration = Duration::new(0,0); + if let Some(n) = self.profiler.get(profiler::RENDERED_PICTURE_TILES) { + let message = (n as usize).to_string(); + add_text_marker(cstr!("NumPictureCacheInvalidated"), &message, duration); + } + } + + if device_size.is_some() { + self.draw_frame_debug_items(&frame.debug_items); + } + + self.profile.merge(profile); + } + Err(e) => { + self.renderer_errors.push(e); + } + } + + self.unlock_external_images(&frame.deferred_resolves); + + let _gm = self.gpu_profiler.start_marker("end frame"); + self.gpu_profiler.end_frame(); + + if let Some(device_size) = device_size { + // Bind a surface to draw the debug / profiler information to. + if let Some(draw_target) = self.bind_debug_overlay(device_size) { + self.draw_render_target_debug(&draw_target); + self.draw_texture_cache_debug(&draw_target); + self.draw_gpu_cache_debug(device_size); + self.draw_zoom_debug(device_size); + self.draw_epoch_debug(); + } + } + + self.profile.end_time(profiler::RENDERER_TIME); + self.profile.end_time_if_started(profiler::TOTAL_FRAME_CPU_TIME); + + let current_time = precise_time_ns(); + if device_size.is_some() { + let time = profiler::ns_to_ms(current_time - self.last_time); + self.profile.set(profiler::FRAME_TIME, time); + } + + if self.max_recorded_profiles > 0 { + while self.cpu_profiles.len() >= self.max_recorded_profiles { + self.cpu_profiles.pop_front(); + } + let cpu_profile = CpuProfile::new( + cpu_frame_id, + (self.profile.get_or(profiler::FRAME_BUILDING_TIME, 0.0) * 1000000.0) as u64, + (self.profile.get_or(profiler::RENDERER_TIME, 0.0) * 1000000.0) as u64, + self.profile.get_or(profiler::DRAW_CALLS, 0.0) as usize, + ); + self.cpu_profiles.push_back(cpu_profile); + } + + if thread_is_being_profiled() { + let duration = Duration::new(0,0); + let message = (self.profile.get_or(profiler::DRAW_CALLS, 0.0) as usize).to_string(); + add_text_marker(cstr!("NumDrawCalls"), &message, duration); + } + + results.stats.texture_upload_mb = self.profile.get_or(profiler::TEXTURE_UPLOADS_MEM, 0.0); + self.frame_counter += 1; + results.stats.resource_upload_time = self.resource_upload_time; + self.resource_upload_time = 0.0; + results.stats.gpu_cache_upload_time = self.gpu_cache_upload_time; + self.gpu_cache_upload_time = 0.0; + + // Note: this clears the values in self.profile. + self.profiler.set_counters(&mut self.profile); + + // Note: profile counters must be set before this or they will count for next frame. + self.profiler.update(); + + if self.debug_flags.intersects(DebugFlags::PROFILER_DBG | DebugFlags::PROFILER_CAPTURE) { + if let Some(device_size) = device_size { + //TODO: take device/pixel ratio into equation? + if let Some(debug_renderer) = self.debug.get_mut(&mut self.device) { + self.profiler.draw_profile( + self.frame_counter, + debug_renderer, + device_size, + ); + } + } + } + + if self.debug_flags.contains(DebugFlags::ECHO_DRIVER_MESSAGES) { + self.device.echo_driver_messages(); + } + + if let Some(debug_renderer) = self.debug.try_get_mut() { + let small_screen = self.debug_flags.contains(DebugFlags::SMALL_SCREEN); + let scale = if small_screen { 1.6 } else { 1.0 }; + // TODO(gw): Tidy this up so that compositor config integrates better + // with the (non-compositor) surface y-flip options. + let surface_origin_is_top_left = match self.current_compositor_kind { + CompositorKind::Native { .. } => true, + CompositorKind::Draw { .. } => self.device.surface_origin_is_top_left(), + }; + debug_renderer.render( + &mut self.device, + device_size, + scale, + surface_origin_is_top_left, + ); + } + self.texture_upload_pbo_pool.end_frame(&mut self.device); + self.device.end_frame(); + + if device_size.is_some() { + self.last_time = current_time; + + // Unbind the target for the debug overlay. No debug or profiler drawing + // can occur afer this point. + self.unbind_debug_overlay(); + } + + // Inform the client that we are finished this composition transaction if native + // compositing is enabled. This must be called after any debug / profiling compositor + // surfaces have been drawn and added to the visual tree. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + profile_scope!("compositor.end_frame"); + let compositor = self.compositor_config.compositor().unwrap(); + compositor.end_frame(); + } + + self.documents_seen.clear(); + self.shared_texture_cache_cleared = false; + + if self.renderer_errors.is_empty() { + Ok(results) + } else { + Err(mem::replace(&mut self.renderer_errors, Vec::new())) + } + } + + fn update_gpu_profile(&mut self, device_size: DeviceIntSize) { + let _gm = self.gpu_profiler.start_marker("build samples"); + // Block CPU waiting for last frame's GPU profiles to arrive. + // In general this shouldn't block unless heavily GPU limited. + let (gpu_frame_id, timers, samplers) = self.gpu_profiler.build_samples(); + + if self.max_recorded_profiles > 0 { + while self.gpu_profiles.len() >= self.max_recorded_profiles { + self.gpu_profiles.pop_front(); + } + + self.gpu_profiles.push_back(GpuProfile::new(gpu_frame_id, &timers)); + } + + self.profiler.set_gpu_time_queries(timers); + + if !samplers.is_empty() { + let screen_fraction = 1.0 / device_size.to_f32().area(); + + fn accumulate_sampler_value(description: &str, samplers: &[GpuSampler]) -> f32 { + let mut accum = 0.0; + for sampler in samplers { + if sampler.tag.label != description { + continue; + } + + accum += sampler.count as f32; + } + + accum + } + + let alpha_targets = accumulate_sampler_value(&"Alpha targets", &samplers) * screen_fraction; + let transparent_pass = accumulate_sampler_value(&"Transparent pass", &samplers) * screen_fraction; + let opaque_pass = accumulate_sampler_value(&"Opaque pass", &samplers) * screen_fraction; + self.profile.set(profiler::ALPHA_TARGETS_SAMPLERS, alpha_targets); + self.profile.set(profiler::TRANSPARENT_PASS_SAMPLERS, transparent_pass); + self.profile.set(profiler::OPAQUE_PASS_SAMPLERS, opaque_pass); + self.profile.set(profiler::TOTAL_SAMPLERS, alpha_targets + transparent_pass + opaque_pass); + } + } + + fn update_texture_cache(&mut self) { + profile_scope!("update_texture_cache"); + + let _gm = self.gpu_profiler.start_marker("texture cache update"); + let mut pending_texture_updates = mem::replace(&mut self.pending_texture_updates, vec![]); + self.pending_texture_cache_updates = false; + + self.profile.start_time(profiler::TEXTURE_CACHE_UPLOAD_TIME); + + for update_list in pending_texture_updates.drain(..) { + for allocation in update_list.allocations { + match allocation.kind { + TextureCacheAllocationKind::Alloc(_) => add_event_marker(c_str!("TextureCacheAlloc")), + TextureCacheAllocationKind::Reset(_) => add_event_marker(c_str!("TextureCacheReset")), + TextureCacheAllocationKind::Free => add_event_marker(c_str!("TextureCacheFree")), + }; + let old = match allocation.kind { + TextureCacheAllocationKind::Alloc(ref info) | + TextureCacheAllocationKind::Reset(ref info) => { + // Create a new native texture, as requested by the texture cache. + // + // Ensure no PBO is bound when creating the texture storage, + // or GL will attempt to read data from there. + let mut texture = self.device.create_texture( + info.target, + info.format, + info.width, + info.height, + info.filter, + // This needs to be a render target because some render + // tasks get rendered into the texture cache. + Some(RenderTargetInfo { has_depth: info.has_depth }), + info.layer_count, + ); + + if info.is_shared_cache { + texture.flags_mut() + .insert(TextureFlags::IS_SHARED_TEXTURE_CACHE); + + // On Mali-Gxx devices we use batched texture uploads as it performs much better. + // However, due to another driver bug we must ensure the textures are fully cleared, + // otherwise we get visual artefacts when blitting to the texture cache. + if self.device.get_capabilities().prefers_batched_texture_uploads && + !self.device.get_capabilities().supports_render_target_partial_update + { + self.clear_texture(&texture, [0.0; 4]); + } + + // Textures in the cache generally don't need to be cleared, + // but we do so if the debug display is active to make it + // easier to identify unallocated regions. + if self.debug_flags.contains(DebugFlags::TEXTURE_CACHE_DBG) { + self.clear_texture(&texture, TEXTURE_CACHE_DBG_CLEAR_COLOR); + } + } + + self.texture_resolver.texture_cache_map.insert(allocation.id, texture) + } + TextureCacheAllocationKind::Free => { + self.texture_resolver.texture_cache_map.remove(&allocation.id) + } + }; + + match allocation.kind { + TextureCacheAllocationKind::Alloc(_) => { + assert!(old.is_none(), "Renderer and backend disagree!"); + } + TextureCacheAllocationKind::Reset(_) | + TextureCacheAllocationKind::Free => { + assert!(old.is_some(), "Renderer and backend disagree!"); + } + } + + if let Some(old) = old { + self.device.delete_texture(old); + } + } + + let mut bytes_uploaded = 0; + + // On some devices performing many small texture uploads is slow, so instead we batch + // updates in to a small number of uploads to temporary textures, then copy from those + // textures to the correct place in the texture cache. + // A list of temporary textures that batches of updates are uploaded to. + let mut batch_upload_textures = Vec::new(); + #[derive(Debug)] + pub struct BatchUploadCopy<'a> { + // Index within batch_upload_textures + src_texture_index: usize, + src_offset: DeviceIntPoint, + // We store the texture ID as well as a reference to the texture so that we + // can easily sort the copies to group them by destination target. + dest_texture_id: CacheTextureId, + dest_texture: &'a Texture, + dest_layer_index: LayerIndex, + dest_offset: DeviceIntPoint, + size: DeviceIntSize, + } + // A list of copies that must be performed from the temporary textures to the texture cache. + let mut batch_upload_copies = Vec::new(); + #[derive(Debug)] + pub struct BatchUploadBuffer<'a> { + staging_buffer: UploadStagingBuffer<'a>, + texture_index: usize, + } + // For each texture format, this stores a list of staging buffers + // and a texture allocator for packing the buffers. + let mut batch_upload_buffers = FastHashMap::default(); + + // For best performance we use a single TextureUploader for all uploads. + // This allows us to fill PBOs more efficiently and therefore allocate fewer PBOs. + let mut uploader = self.device.upload_texture( + &mut self.texture_upload_pbo_pool, + ); + let device = &mut self.device; + + for (texture_id, updates) in update_list.updates { + let texture = &self.texture_resolver.texture_cache_map[&texture_id]; + + for update in updates { + let TextureCacheUpdate { rect, stride, offset, layer_index, format_override, source } = update; + + let dummy_data; + let data = match source { + TextureUpdateSource::Bytes { ref data } => { + &data[offset as usize ..] + } + TextureUpdateSource::External { id, channel_index } => { + let handler = self.external_image_handler + .as_mut() + .expect("Found external image, but no handler set!"); + // The filter is only relevant for NativeTexture external images. + match handler.lock(id, channel_index, ImageRendering::Auto).source { + ExternalImageSource::RawData(data) => { + &data[offset as usize ..] + } + ExternalImageSource::Invalid => { + // Create a local buffer to fill the pbo. + let bpp = texture.get_format().bytes_per_pixel(); + let width = stride.unwrap_or(rect.size.width * bpp); + let total_size = width * rect.size.height; + // WR haven't support RGBAF32 format in texture_cache, so + // we use u8 type here. + dummy_data = vec![0xFFu8; total_size as usize]; + &dummy_data + } + ExternalImageSource::NativeTexture(eid) => { + panic!("Unexpected external texture {:?} for the texture cache update of {:?}", eid, id); + } + } + } + TextureUpdateSource::DebugClear => { + let draw_target = DrawTarget::from_texture( + texture, + layer_index as usize, + false, + ); + device.bind_draw_target(draw_target); + device.clear_target( + Some(TEXTURE_CACHE_DBG_CLEAR_COLOR), + None, + Some(draw_target.to_framebuffer_rect(update.rect.to_i32())) + ); + + continue; + } + }; + + const BATCH_UPLOAD_TEXTURE_SIZE: DeviceIntSize = DeviceIntSize::new(512, 512); + let use_batch_upload = device.get_capabilities().prefers_batched_texture_uploads && + texture.flags().contains(TextureFlags::IS_SHARED_TEXTURE_CACHE) && + rect.size.width <= BATCH_UPLOAD_TEXTURE_SIZE.width && + rect.size.height <= BATCH_UPLOAD_TEXTURE_SIZE.height; + + if use_batch_upload { + let (allocator, buffers) = batch_upload_buffers.entry(texture.get_format()) + .or_insert_with(|| (GuillotineAllocator::new(None), Vec::new())); + + // Allocate a region within the staging buffer for this update. If there is + // no room in an existing buffer then allocate another texture and buffer. + let (slice, origin) = match allocator.allocate(&rect.size) { + Some((slice, origin)) => (slice, origin), + None => { + let new_slice = FreeRectSlice(buffers.len() as u32); + allocator.extend(new_slice, BATCH_UPLOAD_TEXTURE_SIZE, rect.size); + + let staging_texture = device.create_texture( + ImageBufferKind::Texture2D, + texture.get_format(), + BATCH_UPLOAD_TEXTURE_SIZE.width, + BATCH_UPLOAD_TEXTURE_SIZE.height, + TextureFilter::Nearest, + // Currently we need render target support as we always use glBlitFramebuffer + // to copy the texture data. Instead, we should use glCopyImageSubData on some + // platforms, and avoid creating the FBOs in that case. + Some(RenderTargetInfo { has_depth: false }), + 1, + ); + + let staging_buffer = uploader.stage( + device, + staging_texture.get_format(), + staging_texture.get_dimensions(), + ).unwrap(); + + let texture_index = batch_upload_textures.len(); + batch_upload_textures.push(staging_texture); + + buffers.push(BatchUploadBuffer { + staging_buffer: staging_buffer, + texture_index, + }); + (new_slice, DeviceIntPoint::zero()) + } + }; + let buffer = &mut buffers[slice.0 as usize]; + let allocated_rect = DeviceIntRect::new(origin, rect.size); + + batch_upload_copies.push(BatchUploadCopy { + src_texture_index: buffer.texture_index, + src_offset: allocated_rect.origin, + dest_texture_id: texture_id, + dest_texture: texture, + dest_layer_index: layer_index as LayerIndex, + dest_offset: rect.origin, + size: rect.size, + }); + + unsafe { + let bytes_pp = texture.get_format().bytes_per_pixel() as usize; + let width_bytes = rect.size.width as usize * bytes_pp; + let src_stride = stride.map_or(width_bytes, |stride| { + assert!(stride >= 0); + stride as usize + }); + let src_size = (rect.size.height as usize - 1) * src_stride + width_bytes; + assert!(src_size <= data.len()); + + let src: &[mem::MaybeUninit<u8>] = std::slice::from_raw_parts(data.as_ptr() as *const _, src_size); + let dst_stride = buffer.staging_buffer.get_stride(); + let dst = buffer.staging_buffer.get_mapping(); + + // copy the data line-by-line in to the buffer so that we do not overwrite + // any other region of the buffer. + for y in 0..allocated_rect.size.height as usize { + let src_start = y * src_stride; + let src_end = src_start + width_bytes; + let dst_start = (allocated_rect.origin.y as usize + y as usize) * dst_stride + + allocated_rect.origin.x as usize * bytes_pp; + let dst_end = dst_start + width_bytes; + + dst[dst_start..dst_end].copy_from_slice(&src[src_start..src_end]) + } + } + } else { + bytes_uploaded += uploader.upload( + device, + texture, + rect, + layer_index, + stride, + format_override, + data.as_ptr(), + data.len() + ); + } + + if let TextureUpdateSource::External { id, channel_index } = source { + let handler = self.external_image_handler + .as_mut() + .expect("Found external image, but no handler set!"); + handler.unlock(id, channel_index); + } + } + } + + // Upload batched texture updates to their temporary textures. + for batch_buffer in batch_upload_buffers.into_iter().map(|(_, (_, buffers))| buffers).flatten() { + let texture = &batch_upload_textures[batch_buffer.texture_index]; + bytes_uploaded += uploader.upload_staged( + device, + texture, + DeviceIntRect::from_size(texture.get_dimensions()), + 0, + None, + batch_buffer.staging_buffer, + ); + } + + // Flush all uploads, batched or otherwise. + uploader.flush(device); + + // Copy updates that were batch uploaded to their correct destination in the texture cache. + // Sort them by destination and source to minimize framebuffer binding changes. + batch_upload_copies.sort_unstable_by_key(|b| (b.dest_texture_id.0, b.dest_layer_index, b.src_texture_index)); + for copy in batch_upload_copies { + device.copy_texture_sub_region( + &batch_upload_textures[copy.src_texture_index], + copy.src_offset.x as _, + copy.src_offset.y as _, + 0, + copy.dest_texture, + copy.dest_offset.x as _, + copy.dest_offset.y as _, + copy.dest_layer_index, + copy.size.width as _, + copy.size.height as _, + 1, + ); + } + + for texture in batch_upload_textures.drain(..) { + device.delete_texture(texture); + } + + if update_list.clears_shared_cache { + self.shared_texture_cache_cleared = true; + } + + self.profile.inc(profiler::TEXTURE_UPLOADS); + self.profile.add(profiler::TEXTURE_UPLOADS_MEM, profiler::bytes_to_mb(bytes_uploaded)); + } + + drain_filter( + &mut self.notifications, + |n| { n.when() == Checkpoint::FrameTexturesUpdated }, + |n| { n.notify(); }, + ); + + let t = self.profile.end_time(profiler::TEXTURE_CACHE_UPLOAD_TIME); + self.resource_upload_time += t; + } + + fn bind_textures(&mut self, textures: &BatchTextures) { + for i in 0 .. 3 { + self.texture_resolver.bind( + &textures.input.colors[i], + TextureSampler::color(i), + &mut self.device, + ); + } + + self.texture_resolver.bind( + &textures.clip_mask, + TextureSampler::ClipMask, + &mut self.device, + ); + + // TODO: this probably isn't the best place for this. + if let Some(ref texture) = self.dither_matrix_texture { + self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default()); + } + } + + fn draw_instanced_batch<T: Clone>( + &mut self, + data: &[T], + vertex_array_kind: VertexArrayKind, + textures: &BatchTextures, + stats: &mut RendererStats, + ) { + self.bind_textures(textures); + + // If we end up with an empty draw call here, that means we have + // probably introduced unnecessary batch breaks during frame + // building - so we should be catching this earlier and removing + // the batch. + debug_assert!(!data.is_empty()); + + let vao = &self.vaos[vertex_array_kind]; + self.device.bind_vao(vao); + + let chunk_size = if self.debug_flags.contains(DebugFlags::DISABLE_BATCHING) { + 1 + } else if vertex_array_kind == VertexArrayKind::Primitive { + self.max_primitive_instance_count + } else { + data.len() + }; + + for chunk in data.chunks(chunk_size) { + if self.enable_instancing { + self.device + .update_vao_instances(vao, chunk, ONE_TIME_USAGE_HINT, None); + self.device + .draw_indexed_triangles_instanced_u16(6, chunk.len() as i32); + } else { + self.device + .update_vao_instances(vao, chunk, ONE_TIME_USAGE_HINT, NonZeroUsize::new(4)); + self.device + .draw_indexed_triangles(6 * chunk.len() as i32); + } + self.profile.inc(profiler::DRAW_CALLS); + stats.total_draw_calls += 1; + } + + self.profile.add(profiler::VERTICES, 6 * data.len()); + } + + fn handle_readback_composite( + &mut self, + draw_target: DrawTarget, + uses_scissor: bool, + source: &RenderTask, + backdrop: &RenderTask, + readback: &RenderTask, + ) { + if uses_scissor { + self.device.disable_scissor(); + } + + let texture_source = TextureSource::TextureCache( + readback.get_target_texture(), + Swizzle::default(), + ); + let (cache_texture, _) = self.texture_resolver + .resolve(&texture_source).expect("bug: no source texture"); + + // Before submitting the composite batch, do the + // framebuffer readbacks that are needed for each + // composite operation in this batch. + let (readback_rect, readback_layer) = readback.get_target_rect(); + let (backdrop_rect, _) = backdrop.get_target_rect(); + let (backdrop_screen_origin, backdrop_scale) = match backdrop.kind { + RenderTaskKind::Picture(ref task_info) => (task_info.content_origin, task_info.device_pixel_scale), + _ => panic!("bug: composite on non-picture?"), + }; + let (source_screen_origin, source_scale) = match source.kind { + RenderTaskKind::Picture(ref task_info) => (task_info.content_origin, task_info.device_pixel_scale), + _ => panic!("bug: composite on non-picture?"), + }; + + // Bind the FBO to blit the backdrop to. + // Called per-instance in case the layer (and therefore FBO) + // changes. The device will skip the GL call if the requested + // target is already bound. + let cache_draw_target = DrawTarget::from_texture( + cache_texture, + readback_layer.0 as usize, + false, + ); + + let source_in_backdrop_space = source_screen_origin * (backdrop_scale.0 / source_scale.0); + + let mut src = DeviceIntRect::new( + (source_in_backdrop_space + (backdrop_rect.origin.to_f32() - backdrop_screen_origin)).to_i32(), + readback_rect.size, + ); + let mut dest = readback_rect.to_i32(); + let device_to_framebuffer = Scale::new(1i32); + + // Need to invert the y coordinates and flip the image vertically when + // reading back from the framebuffer. + if draw_target.is_default() { + src.origin.y = draw_target.dimensions().height as i32 - src.size.height - src.origin.y; + dest.origin.y += dest.size.height; + dest.size.height = -dest.size.height; + } + + self.device.blit_render_target( + draw_target.into(), + src * device_to_framebuffer, + cache_draw_target, + dest * device_to_framebuffer, + TextureFilter::Linear, + ); + + // Restore draw target to current pass render target + layer, and reset + // the read target. + self.device.bind_draw_target(draw_target); + self.device.reset_read_target(); + + if uses_scissor { + self.device.enable_scissor(); + } + } + + fn handle_blits( + &mut self, + blits: &[BlitJob], + render_tasks: &RenderTaskGraph, + draw_target: DrawTarget, + ) { + if blits.is_empty() { + return; + } + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLIT); + + // TODO(gw): For now, we don't bother batching these by source texture. + // If if ever shows up as an issue, we can easily batch them. + for blit in blits { + let (source, layer, source_rect) = match blit.source { + BlitJobSource::Texture(texture_id, layer, source_rect) => { + // A blit from a texture into this target. + (texture_id, layer as usize, source_rect) + } + BlitJobSource::RenderTask(task_id) => { + // A blit from the child render task into this target. + // TODO(gw): Support R8 format here once we start + // creating mips for alpha masks. + let source = &render_tasks[task_id]; + let (source_rect, layer) = source.get_target_rect(); + let source_texture = TextureSource::TextureCache( + source.get_target_texture(), + Swizzle::default(), + ); + (source_texture, layer.0, source_rect) + } + }; + + debug_assert_eq!(source_rect.size, blit.target_rect.size); + let (texture, swizzle) = self.texture_resolver + .resolve(&source) + .expect("BUG: invalid source texture"); + + if swizzle != Swizzle::default() { + error!("Swizzle {:?} can't be handled by a blit", swizzle); + } + + let read_target = DrawTarget::from_texture( + texture, + layer, + false, + ); + + self.device.blit_render_target( + read_target.into(), + read_target.to_framebuffer_rect(source_rect), + draw_target, + draw_target.to_framebuffer_rect(blit.target_rect), + TextureFilter::Linear, + ); + } + } + + fn handle_scaling( + &mut self, + scalings: &FastHashMap<TextureSource, Vec<ScalingInstance>>, + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + if scalings.is_empty() { + return + } + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SCALE); + + for (source, instances) in scalings { + let buffer_kind = source.image_buffer_kind(); + + self.shaders + .borrow_mut() + .get_scale_shader(buffer_kind) + .bind( + &mut self.device, + &projection, + &mut self.renderer_errors, + ); + + self.draw_instanced_batch( + instances, + VertexArrayKind::Scale, + &BatchTextures::composite_rgb(*source), + stats, + ); + } + } + + fn handle_svg_filters( + &mut self, + textures: &BatchTextures, + svg_filters: &[SvgFilterInstance], + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + if svg_filters.is_empty() { + return; + } + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SVG_FILTER); + + self.shaders.borrow_mut().cs_svg_filter.bind( + &mut self.device, + &projection, + &mut self.renderer_errors + ); + + self.draw_instanced_batch( + &svg_filters, + VertexArrayKind::SvgFilter, + textures, + stats, + ); + } + + fn draw_picture_cache_target( + &mut self, + target: &PictureCacheTarget, + draw_target: DrawTarget, + projection: &default::Transform3D<f32>, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + profile_scope!("draw_picture_cache_target"); + + self.profile.inc(profiler::RENDERED_PICTURE_TILES); + let _gm = self.gpu_profiler.start_marker("picture cache target"); + let framebuffer_kind = FramebufferKind::Other; + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET); + self.device.bind_draw_target(draw_target); + self.device.enable_depth_write(); + self.set_blend(false, framebuffer_kind); + + let clear_color = target.clear_color.map(|c| c.to_array()); + let scissor_rect = if self.device.get_capabilities().supports_render_target_partial_update { + target.alpha_batch_container.task_scissor_rect + } else { + None + }; + match scissor_rect { + // If updating only a dirty rect within a picture cache target, the + // clear must also be scissored to that dirty region. + Some(r) if self.clear_caches_with_quads => { + self.device.enable_depth(DepthFunction::Always); + // Save the draw call count so that our reftests don't get confused... + let old_draw_call_count = stats.total_draw_calls; + if clear_color.is_none() { + self.device.disable_color_write(); + } + let instance = ClearInstance { + rect: [ + r.origin.x as f32, r.origin.y as f32, + r.size.width as f32, r.size.height as f32, + ], + color: clear_color.unwrap_or([0.0; 4]), + }; + self.shaders.borrow_mut().ps_clear.bind( + &mut self.device, + &projection, + &mut self.renderer_errors, + ); + self.draw_instanced_batch( + &[instance], + VertexArrayKind::Clear, + &BatchTextures::empty(), + stats, + ); + if clear_color.is_none() { + self.device.enable_color_write(); + } + stats.total_draw_calls = old_draw_call_count; + self.device.disable_depth(); + } + other => { + let scissor_rect = other.map(|rect| { + draw_target.build_scissor_rect(Some(rect)) + }); + self.device.clear_target(clear_color, Some(1.0), scissor_rect); + } + }; + self.device.disable_depth_write(); + } + + self.draw_alpha_batch_container( + &target.alpha_batch_container, + draw_target, + framebuffer_kind, + projection, + render_tasks, + stats, + ); + + self.device.invalidate_depth_target(); + } + + /// Draw an alpha batch container into a given draw target. This is used + /// by both color and picture cache target kinds. + fn draw_alpha_batch_container( + &mut self, + alpha_batch_container: &AlphaBatchContainer, + draw_target: DrawTarget, + framebuffer_kind: FramebufferKind, + projection: &default::Transform3D<f32>, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + let uses_scissor = alpha_batch_container.task_scissor_rect.is_some(); + + if uses_scissor { + self.device.enable_scissor(); + let scissor_rect = draw_target.build_scissor_rect( + alpha_batch_container.task_scissor_rect, + ); + self.device.set_scissor_rect(scissor_rect) + } + + if !alpha_batch_container.opaque_batches.is_empty() + && !self.debug_flags.contains(DebugFlags::DISABLE_OPAQUE_PASS) { + let _gl = self.gpu_profiler.start_marker("opaque batches"); + let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE); + self.set_blend(false, framebuffer_kind); + //Note: depth equality is needed for split planes + self.device.enable_depth(DepthFunction::LessEqual); + self.device.enable_depth_write(); + + // Draw opaque batches front-to-back for maximum + // z-buffer efficiency! + for batch in alpha_batch_container + .opaque_batches + .iter() + .rev() + { + if should_skip_batch(&batch.key.kind, self.debug_flags) { + continue; + } + + self.shaders.borrow_mut() + .get(&batch.key, batch.features, self.debug_flags) + .bind( + &mut self.device, projection, + &mut self.renderer_errors, + ); + + let _timer = self.gpu_profiler.start_timer(batch.key.kind.sampler_tag()); + self.draw_instanced_batch( + &batch.instances, + VertexArrayKind::Primitive, + &batch.key.textures, + stats + ); + } + + self.device.disable_depth_write(); + self.gpu_profiler.finish_sampler(opaque_sampler); + } else { + self.device.disable_depth(); + } + + if !alpha_batch_container.alpha_batches.is_empty() + && !self.debug_flags.contains(DebugFlags::DISABLE_ALPHA_PASS) { + let _gl = self.gpu_profiler.start_marker("alpha batches"); + let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT); + self.set_blend(true, framebuffer_kind); + + let mut prev_blend_mode = BlendMode::None; + let shaders_rc = self.shaders.clone(); + + for batch in &alpha_batch_container.alpha_batches { + if should_skip_batch(&batch.key.kind, self.debug_flags) { + continue; + } + + let mut shaders = shaders_rc.borrow_mut(); + let shader = shaders.get( + &batch.key, + batch.features | BatchFeatures::ALPHA_PASS, + self.debug_flags, + ); + + if batch.key.blend_mode != prev_blend_mode { + match batch.key.blend_mode { + _ if self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) && + framebuffer_kind == FramebufferKind::Main => { + self.device.set_blend_mode_show_overdraw(); + } + BlendMode::None => { + unreachable!("bug: opaque blend in alpha pass"); + } + BlendMode::Alpha => { + self.device.set_blend_mode_alpha(); + } + BlendMode::PremultipliedAlpha => { + self.device.set_blend_mode_premultiplied_alpha(); + } + BlendMode::PremultipliedDestOut => { + self.device.set_blend_mode_premultiplied_dest_out(); + } + BlendMode::SubpixelDualSource => { + self.device.set_blend_mode_subpixel_dual_source(); + } + BlendMode::SubpixelConstantTextColor(color) => { + self.device.set_blend_mode_subpixel_constant_text_color(color); + } + BlendMode::SubpixelWithBgColor => { + // Using the three pass "component alpha with font smoothing + // background color" rendering technique: + // + // /webrender/doc/text-rendering.md + // + self.device.set_blend_mode_subpixel_with_bg_color_pass0(); + // need to make sure the shader is bound + shader.bind( + &mut self.device, + projection, + &mut self.renderer_errors, + ); + self.device.switch_mode(ShaderColorMode::SubpixelWithBgColorPass0 as _); + } + BlendMode::Advanced(mode) => { + if self.enable_advanced_blend_barriers { + self.device.gl().blend_barrier_khr(); + } + self.device.set_blend_mode_advanced(mode); + } + } + prev_blend_mode = batch.key.blend_mode; + } + + // Handle special case readback for composites. + if let BatchKind::Brush(BrushBatchKind::MixBlend { task_id, source_id, backdrop_id }) = batch.key.kind { + // composites can't be grouped together because + // they may overlap and affect each other. + debug_assert_eq!(batch.instances.len(), 1); + self.handle_readback_composite( + draw_target, + uses_scissor, + &render_tasks[source_id], + &render_tasks[task_id], + &render_tasks[backdrop_id], + ); + } + + let _timer = self.gpu_profiler.start_timer(batch.key.kind.sampler_tag()); + shader.bind( + &mut self.device, + projection, + &mut self.renderer_errors, + ); + + self.draw_instanced_batch( + &batch.instances, + VertexArrayKind::Primitive, + &batch.key.textures, + stats + ); + + if batch.key.blend_mode == BlendMode::SubpixelWithBgColor { + self.set_blend_mode_subpixel_with_bg_color_pass1(framebuffer_kind); + // re-binding the shader after the blend mode change + shader.bind( + &mut self.device, + projection, + &mut self.renderer_errors, + ); + self.device.switch_mode(ShaderColorMode::SubpixelWithBgColorPass1 as _); + + // When drawing the 2nd and 3rd passes, we know that the VAO, textures etc + // are all set up from the previous draw_instanced_batch call, + // so just issue a draw call here to avoid re-uploading the + // instances and re-binding textures etc. + self.device + .draw_indexed_triangles_instanced_u16(6, batch.instances.len() as i32); + + self.set_blend_mode_subpixel_with_bg_color_pass2(framebuffer_kind); + // re-binding the shader after the blend mode change + shader.bind( + &mut self.device, + projection, + &mut self.renderer_errors, + ); + self.device.switch_mode(ShaderColorMode::SubpixelWithBgColorPass2 as _); + + self.device + .draw_indexed_triangles_instanced_u16(6, batch.instances.len() as i32); + } + + if batch.key.blend_mode == BlendMode::SubpixelWithBgColor { + prev_blend_mode = BlendMode::None; + } + } + + self.set_blend(false, framebuffer_kind); + self.gpu_profiler.finish_sampler(transparent_sampler); + } + + self.device.disable_depth(); + if uses_scissor { + self.device.disable_scissor(); + } + } + + /// Rasterize any external compositor surfaces that require updating + fn update_external_native_surfaces( + &mut self, + external_surfaces: &[ResolvedExternalSurface], + results: &mut RenderResults, + ) { + if external_surfaces.is_empty() { + return; + } + + let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE); + + self.device.disable_depth(); + self.set_blend(false, FramebufferKind::Main); + + for surface in external_surfaces { + // See if this surface needs to be updated + let (native_surface_id, surface_size) = match surface.update_params { + Some(params) => params, + None => continue, + }; + + // When updating an external surface, the entire surface rect is used + // for all of the draw, dirty, valid and clip rect parameters. + let surface_rect = surface_size.into(); + + // Bind the native compositor surface to update + let surface_info = self.compositor_config + .compositor() + .unwrap() + .bind( + NativeTileId { + surface_id: native_surface_id, + x: 0, + y: 0, + }, + surface_rect, + surface_rect, + ); + + // Bind the native surface to current FBO target + let draw_target = DrawTarget::NativeSurface { + offset: surface_info.origin, + external_fbo_id: surface_info.fbo_id, + dimensions: surface_size, + }; + self.device.bind_draw_target(draw_target); + + let projection = Transform3D::ortho( + 0.0, + surface_size.width as f32, + 0.0, + surface_size.height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let ( textures, instance ) = match surface.color_data { + ResolvedExternalSurfaceColorData::Yuv{ + ref planes, color_space, format, rescale, .. } => { + + // Bind an appropriate YUV shader for the texture format kind + self.shaders + .borrow_mut() + .get_composite_shader( + CompositeSurfaceFormat::Yuv, + surface.image_buffer_kind, + ).bind( + &mut self.device, + &projection, + &mut self.renderer_errors + ); + + let textures = BatchTextures::composite_yuv( + planes[0].texture, + planes[1].texture, + planes[2].texture, + ); + + // When the texture is an external texture, the UV rect is not known when + // the external surface descriptor is created, because external textures + // are not resolved until the lock() callback is invoked at the start of + // the frame render. To handle this, query the texture resolver for the + // UV rect if it's an external texture, otherwise use the default UV rect. + let uv_rects = [ + self.texture_resolver.get_uv_rect(&textures.input.colors[0], planes[0].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[1], planes[1].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[2], planes[2].uv_rect), + ]; + + let instance = CompositeInstance::new_yuv( + surface_rect.to_f32(), + surface_rect.to_f32(), + // z-id is not relevant when updating a native compositor surface. + // TODO(gw): Support compositor surfaces without z-buffer, for memory / perf win here. + ZBufferId(0), + color_space, + format, + rescale, + [ + planes[0].texture_layer as f32, + planes[1].texture_layer as f32, + planes[2].texture_layer as f32, + ], + uv_rects, + ); + + ( textures, instance ) + }, + ResolvedExternalSurfaceColorData::Rgb{ ref plane, flip_y, .. } => { + self.shaders + .borrow_mut() + .get_composite_shader( + CompositeSurfaceFormat::Rgba, + surface.image_buffer_kind, + ).bind( + &mut self.device, + &projection, + &mut self.renderer_errors + ); + + let textures = BatchTextures::composite_rgb(plane.texture); + let mut uv_rect = self.texture_resolver.get_uv_rect(&textures.input.colors[0], plane.uv_rect); + if flip_y { + let y = uv_rect.uv0.y; + uv_rect.uv0.y = uv_rect.uv1.y; + uv_rect.uv1.y = y; + } + let instance = CompositeInstance::new_rgb( + surface_rect.to_f32(), + surface_rect.to_f32(), + PremultipliedColorF::WHITE, + plane.texture_layer as f32, + ZBufferId(0), + uv_rect, + ); + + ( textures, instance ) + }, + }; + + self.draw_instanced_batch( + &[instance], + VertexArrayKind::Composite, + &textures, + &mut results.stats, + ); + + self.compositor_config + .compositor() + .unwrap() + .unbind(); + } + + self.gpu_profiler.finish_sampler(opaque_sampler); + } + + /// Draw a list of tiles to the framebuffer + fn draw_tile_list<'a, I: Iterator<Item = &'a CompositeTile>>( + &mut self, + tiles_iter: I, + external_surfaces: &[ResolvedExternalSurface], + projection: &default::Transform3D<f32>, + partial_present_mode: Option<PartialPresentMode>, + stats: &mut RendererStats, + ) { + self.shaders + .borrow_mut() + .get_composite_shader( + CompositeSurfaceFormat::Rgba, + ImageBufferKind::Texture2D, + ).bind( + &mut self.device, + projection, + &mut self.renderer_errors + ); + + let mut current_shader_params = (CompositeSurfaceFormat::Rgba, ImageBufferKind::Texture2D); + let mut current_textures = BatchTextures::empty(); + let mut instances = Vec::new(); + + for tile in tiles_iter { + // Determine a clip rect to apply to this tile, depending on what + // the partial present mode is. + let partial_clip_rect = match partial_present_mode { + Some(PartialPresentMode::Single { dirty_rect }) => dirty_rect, + None => tile.rect, + }; + + let clip_rect = match partial_clip_rect.intersection(&tile.clip_rect) { + Some(rect) => rect, + None => continue, + }; + + // Simple compositor needs the valid rect in device space to match clip rect + let valid_device_rect = tile.valid_rect.translate( + tile.rect.origin.to_vector() + ); + + // Only composite the part of the tile that contains valid pixels + let clip_rect = match clip_rect.intersection(&valid_device_rect) { + Some(rect) => rect, + None => continue, + }; + + // Work out the draw params based on the tile surface + let (instance, textures, shader_params) = match tile.surface { + CompositeTileSurface::Color { color } => { + let dummy = TextureSource::Dummy; + let image_buffer_kind = dummy.image_buffer_kind(); + ( + CompositeInstance::new( + tile.rect, + clip_rect, + color.premultiplied(), + 0.0, + tile.z_id, + ), + BatchTextures::composite_rgb(dummy), + (CompositeSurfaceFormat::Rgba, image_buffer_kind), + ) + } + CompositeTileSurface::Clear => { + let dummy = TextureSource::Dummy; + let image_buffer_kind = dummy.image_buffer_kind(); + ( + CompositeInstance::new( + tile.rect, + clip_rect, + PremultipliedColorF::BLACK, + 0.0, + tile.z_id, + ), + BatchTextures::composite_rgb(dummy), + (CompositeSurfaceFormat::Rgba, image_buffer_kind), + ) + } + CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::TextureCache { texture, layer } } => { + ( + CompositeInstance::new( + tile.rect, + clip_rect, + PremultipliedColorF::WHITE, + layer as f32, + tile.z_id, + ), + BatchTextures::composite_rgb(texture), + (CompositeSurfaceFormat::Rgba, ImageBufferKind::Texture2D), + ) + } + CompositeTileSurface::ExternalSurface { external_surface_index } => { + let surface = &external_surfaces[external_surface_index.0]; + + match surface.color_data { + ResolvedExternalSurfaceColorData::Yuv{ ref planes, color_space, format, rescale, .. } => { + let textures = BatchTextures::composite_yuv( + planes[0].texture, + planes[1].texture, + planes[2].texture, + ); + + // When the texture is an external texture, the UV rect is not known when + // the external surface descriptor is created, because external textures + // are not resolved until the lock() callback is invoked at the start of + // the frame render. To handle this, query the texture resolver for the + // UV rect if it's an external texture, otherwise use the default UV rect. + let uv_rects = [ + self.texture_resolver.get_uv_rect(&textures.input.colors[0], planes[0].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[1], planes[1].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[2], planes[2].uv_rect), + ]; + + ( + CompositeInstance::new_yuv( + tile.rect, + clip_rect, + tile.z_id, + color_space, + format, + rescale, + [ + planes[0].texture_layer as f32, + planes[1].texture_layer as f32, + planes[2].texture_layer as f32, + ], + uv_rects, + ), + textures, + (CompositeSurfaceFormat::Yuv, surface.image_buffer_kind), + ) + }, + ResolvedExternalSurfaceColorData::Rgb{ ref plane, flip_y, .. } => { + + let mut uv_rect = self.texture_resolver.get_uv_rect(&plane.texture, plane.uv_rect); + if flip_y { + let y = uv_rect.uv0.y; + uv_rect.uv0.y = uv_rect.uv1.y; + uv_rect.uv1.y = y; + } + + ( + CompositeInstance::new_rgb( + tile.rect, + clip_rect, + PremultipliedColorF::WHITE, + plane.texture_layer as f32, + tile.z_id, + uv_rect, + ), + BatchTextures::composite_rgb(plane.texture), + (CompositeSurfaceFormat::Rgba, surface.image_buffer_kind), + ) + }, + } + } + CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::Native { .. } } => { + unreachable!("bug: found native surface in simple composite path"); + } + }; + + // Flush batch if shader params or textures changed + let flush_batch = !current_textures.is_compatible_with(&textures) || + shader_params != current_shader_params; + + if flush_batch { + if !instances.is_empty() { + self.draw_instanced_batch( + &instances, + VertexArrayKind::Composite, + ¤t_textures, + stats, + ); + instances.clear(); + } + } + + if shader_params != current_shader_params { + self.shaders + .borrow_mut() + .get_composite_shader(shader_params.0, shader_params.1) + .bind( + &mut self.device, + projection, + &mut self.renderer_errors + ); + + current_shader_params = shader_params; + } + + current_textures = textures; + + // Add instance to current batch + instances.push(instance); + } + + // Flush the last batch + if !instances.is_empty() { + self.draw_instanced_batch( + &instances, + VertexArrayKind::Composite, + ¤t_textures, + stats, + ); + } + } + + /// Composite picture cache tiles into the framebuffer. This is currently + /// the only way that picture cache tiles get drawn. In future, the tiles + /// will often be handed to the OS compositor, and this method will be + /// rarely used. + fn composite_simple( + &mut self, + composite_state: &CompositeState, + draw_target: DrawTarget, + projection: &default::Transform3D<f32>, + results: &mut RenderResults, + partial_present_mode: Option<PartialPresentMode>, + ) { + let _gm = self.gpu_profiler.start_marker("framebuffer"); + let _timer = self.gpu_profiler.start_timer(GPU_TAG_COMPOSITE); + + self.device.bind_draw_target(draw_target); + self.device.enable_depth(DepthFunction::LessEqual); + self.device.enable_depth_write(); + + // If using KHR_partial_update, call eglSetDamageRegion. + // This must be called exactly once per frame, and prior to any rendering to the main + // framebuffer. Additionally, on Mali-G77 we encountered rendering issues when calling + // this earlier in the frame, during offscreen render passes. So call it now, immediately + // before rendering to the main framebuffer. See bug 1685276 for details. + if let Some(partial_present) = self.compositor_config.partial_present() { + if let Some(PartialPresentMode::Single { dirty_rect }) = partial_present_mode { + partial_present.set_buffer_damage_region(&[dirty_rect.to_i32()]); + } + } + + // Clear the framebuffer + let clear_color = self.clear_color.map(|color| color.to_array()); + + match partial_present_mode { + Some(PartialPresentMode::Single { dirty_rect }) => { + // We have a single dirty rect, so clear only that + self.device.clear_target(clear_color, + Some(1.0), + Some(draw_target.to_framebuffer_rect(dirty_rect.to_i32()))); + } + None => { + // Partial present is disabled, so clear the entire framebuffer + self.device.clear_target(clear_color, + Some(1.0), + None); + } + } + + // We are only interested in tiles backed with actual cached pixels so we don't + // count clear tiles here. + let num_tiles = composite_state.opaque_tiles.len() + + composite_state.alpha_tiles.len(); + self.profile.set(profiler::PICTURE_TILES, num_tiles); + + // Draw opaque tiles first, front-to-back to get maxmum + // z-reject efficiency. + if !composite_state.opaque_tiles.is_empty() { + let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE); + self.device.enable_depth_write(); + self.set_blend(false, FramebufferKind::Main); + self.draw_tile_list( + composite_state.opaque_tiles.iter().rev(), + &composite_state.external_surfaces, + projection, + partial_present_mode, + &mut results.stats, + ); + self.gpu_profiler.finish_sampler(opaque_sampler); + } + + if !composite_state.clear_tiles.is_empty() { + let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT); + self.device.disable_depth_write(); + self.set_blend(true, FramebufferKind::Main); + self.device.set_blend_mode_premultiplied_dest_out(); + self.draw_tile_list( + composite_state.clear_tiles.iter(), + &composite_state.external_surfaces, + projection, + partial_present_mode, + &mut results.stats, + ); + self.gpu_profiler.finish_sampler(transparent_sampler); + } + + // Draw alpha tiles + if !composite_state.alpha_tiles.is_empty() { + let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT); + self.device.disable_depth_write(); + self.set_blend(true, FramebufferKind::Main); + self.set_blend_mode_premultiplied_alpha(FramebufferKind::Main); + self.draw_tile_list( + composite_state.alpha_tiles.iter(), + &composite_state.external_surfaces, + projection, + partial_present_mode, + &mut results.stats, + ); + self.gpu_profiler.finish_sampler(transparent_sampler); + } + } + + fn draw_color_target( + &mut self, + draw_target: DrawTarget, + target: &ColorRenderTarget, + clear_color: Option<[f32; 4]>, + clear_depth: Option<f32>, + render_tasks: &RenderTaskGraph, + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + profile_scope!("draw_color_target"); + + self.profile.inc(profiler::COLOR_PASSES); + let _gm = self.gpu_profiler.start_marker("color target"); + + // sanity check for the depth buffer + if let DrawTarget::Texture { with_depth, .. } = draw_target { + assert!(with_depth >= target.needs_depth()); + } + + let framebuffer_kind = if draw_target.is_default() { + FramebufferKind::Main + } else { + FramebufferKind::Other + }; + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET); + self.device.bind_draw_target(draw_target); + self.device.disable_depth(); + self.set_blend(false, framebuffer_kind); + + if clear_depth.is_some() { + self.device.enable_depth_write(); + } + + let clear_rect = match draw_target { + DrawTarget::NativeSurface { .. } => { + unreachable!("bug: native compositor surface in child target"); + } + DrawTarget::Default { rect, total_size, .. } if rect.origin == FramebufferIntPoint::zero() && rect.size == total_size => { + // whole screen is covered, no need for scissor + None + } + DrawTarget::Default { rect, .. } => { + Some(rect) + } + DrawTarget::Texture { .. } if self.enable_clear_scissor => { + // TODO(gw): Applying a scissor rect and minimal clear here + // is a very large performance win on the Intel and nVidia + // GPUs that I have tested with. It's possible it may be a + // performance penalty on other GPU types - we should test this + // and consider different code paths. + // + // Note: The above measurements were taken when render + // target slices were minimum 2048x2048. Now that we size + // them adaptively, this may be less of a win (except perhaps + // on a mostly-unused last slice of a large texture array). + Some(draw_target.to_framebuffer_rect(target.used_rect)) + } + DrawTarget::Texture { .. } | DrawTarget::External { .. } => { + None + } + }; + + self.device.clear_target( + clear_color, + clear_depth, + clear_rect, + ); + + if clear_depth.is_some() { + self.device.disable_depth_write(); + } + } + + // Handle any blits from the texture cache to this target. + self.handle_blits( + &target.blits, + render_tasks, + draw_target, + ); + + // Draw any blurs for this target. + // Blurs are rendered as a standard 2-pass + // separable implementation. + // TODO(gw): In the future, consider having + // fast path blur shaders for common + // blur radii with fixed weights. + if !target.vertical_blurs.is_empty() || !target.horizontal_blurs.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR); + + self.set_blend(false, framebuffer_kind); + self.shaders.borrow_mut().cs_blur_rgba8 + .bind(&mut self.device, projection, &mut self.renderer_errors); + + if !target.vertical_blurs.is_empty() { + self.draw_blurs( + &target.vertical_blurs, + stats, + ); + } + + if !target.horizontal_blurs.is_empty() { + self.draw_blurs( + &target.horizontal_blurs, + stats, + ); + } + } + + self.handle_scaling( + &target.scalings, + projection, + stats, + ); + + for (ref textures, ref filters) in &target.svg_filters { + self.handle_svg_filters( + textures, + filters, + projection, + stats, + ); + } + + for alpha_batch_container in &target.alpha_batch_containers { + self.draw_alpha_batch_container( + alpha_batch_container, + draw_target, + framebuffer_kind, + projection, + render_tasks, + stats, + ); + } + + if clear_depth.is_some() { + self.device.invalidate_depth_target(); + } + } + + fn draw_blurs( + &mut self, + blurs: &FastHashMap<TextureSource, Vec<BlurInstance>>, + stats: &mut RendererStats, + ) { + for (texture, blurs) in blurs { + let textures = BatchTextures::composite_rgb( + *texture, + ); + + self.draw_instanced_batch( + blurs, + VertexArrayKind::Blur, + &textures, + stats, + ); + } + } + + /// Draw all the instances in a clip batcher list to the current target. + fn draw_clip_batch_list( + &mut self, + list: &ClipBatchList, + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + if self.debug_flags.contains(DebugFlags::DISABLE_CLIP_MASKS) { + return; + } + + // draw rounded cornered rectangles + if !list.slow_rectangles.is_empty() { + let _gm2 = self.gpu_profiler.start_marker("slow clip rectangles"); + self.shaders.borrow_mut().cs_clip_rectangle_slow.bind( + &mut self.device, + projection, + &mut self.renderer_errors, + ); + self.draw_instanced_batch( + &list.slow_rectangles, + VertexArrayKind::ClipRect, + &BatchTextures::empty(), + stats, + ); + } + if !list.fast_rectangles.is_empty() { + let _gm2 = self.gpu_profiler.start_marker("fast clip rectangles"); + self.shaders.borrow_mut().cs_clip_rectangle_fast.bind( + &mut self.device, + projection, + &mut self.renderer_errors, + ); + self.draw_instanced_batch( + &list.fast_rectangles, + VertexArrayKind::ClipRect, + &BatchTextures::empty(), + stats, + ); + } + + // draw box-shadow clips + for (mask_texture_id, items) in list.box_shadows.iter() { + let _gm2 = self.gpu_profiler.start_marker("box-shadows"); + let textures = BatchTextures::composite_rgb(*mask_texture_id); + self.shaders.borrow_mut().cs_clip_box_shadow + .bind(&mut self.device, projection, &mut self.renderer_errors); + self.draw_instanced_batch( + items, + VertexArrayKind::ClipBoxShadow, + &textures, + stats, + ); + } + + // draw image masks + for (mask_texture_id, items) in list.images.iter() { + let _gm2 = self.gpu_profiler.start_marker("clip images"); + let textures = BatchTextures::composite_rgb(*mask_texture_id); + self.shaders.borrow_mut().cs_clip_image + .bind(&mut self.device, projection, &mut self.renderer_errors); + self.draw_instanced_batch( + items, + VertexArrayKind::ClipImage, + &textures, + stats, + ); + } + } + + fn draw_alpha_target( + &mut self, + draw_target: DrawTarget, + target: &AlphaRenderTarget, + projection: &default::Transform3D<f32>, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + profile_scope!("draw_alpha_target"); + + self.profile.inc(profiler::ALPHA_PASSES); + let _gm = self.gpu_profiler.start_marker("alpha target"); + let alpha_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_ALPHA); + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET); + self.device.bind_draw_target(draw_target); + self.device.disable_depth(); + self.device.disable_depth_write(); + self.set_blend(false, FramebufferKind::Other); + + // TODO(gw): Applying a scissor rect and minimal clear here + // is a very large performance win on the Intel and nVidia + // GPUs that I have tested with. It's possible it may be a + // performance penalty on other GPU types - we should test this + // and consider different code paths. + + let zero_color = [0.0, 0.0, 0.0, 0.0]; + for &task_id in &target.zero_clears { + let (rect, _) = render_tasks[task_id].get_target_rect(); + self.device.clear_target( + Some(zero_color), + None, + Some(draw_target.to_framebuffer_rect(rect)), + ); + } + + let one_color = [1.0, 1.0, 1.0, 1.0]; + for &task_id in &target.one_clears { + let (rect, _) = render_tasks[task_id].get_target_rect(); + self.device.clear_target( + Some(one_color), + None, + Some(draw_target.to_framebuffer_rect(rect)), + ); + } + } + + // Draw any blurs for this target. + // Blurs are rendered as a standard 2-pass + // separable implementation. + // TODO(gw): In the future, consider having + // fast path blur shaders for common + // blur radii with fixed weights. + if !target.vertical_blurs.is_empty() || !target.horizontal_blurs.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR); + + self.shaders.borrow_mut().cs_blur_a8 + .bind(&mut self.device, projection, &mut self.renderer_errors); + + if !target.vertical_blurs.is_empty() { + self.draw_blurs( + &target.vertical_blurs, + stats, + ); + } + + if !target.horizontal_blurs.is_empty() { + self.draw_blurs( + &target.horizontal_blurs, + stats, + ); + } + } + + self.handle_scaling( + &target.scalings, + projection, + stats, + ); + + // Draw the clip items into the tiled alpha mask. + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_CLIP); + + // TODO(gw): Consider grouping multiple clip masks per shader + // invocation here to reduce memory bandwith further? + + // Draw the primary clip mask - since this is the first mask + // for the task, we can disable blending, knowing that it will + // overwrite every pixel in the mask area. + self.set_blend(false, FramebufferKind::Other); + self.draw_clip_batch_list( + &target.clip_batcher.primary_clips, + projection, + stats, + ); + + // switch to multiplicative blending for secondary masks, using + // multiplicative blending to accumulate clips into the mask. + self.set_blend(true, FramebufferKind::Other); + self.set_blend_mode_multiply(FramebufferKind::Other); + self.draw_clip_batch_list( + &target.clip_batcher.secondary_clips, + projection, + stats, + ); + } + + self.gpu_profiler.finish_sampler(alpha_sampler); + } + + fn draw_texture_cache_target( + &mut self, + texture: &CacheTextureId, + layer: LayerIndex, + target: &TextureCacheRenderTarget, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + profile_scope!("draw_texture_cache_target"); + + self.device.disable_depth(); + self.device.disable_depth_write(); + + self.set_blend(false, FramebufferKind::Other); + + let texture = &self.texture_resolver.texture_cache_map[texture]; + let target_size = texture.get_dimensions(); + + let projection = Transform3D::ortho( + 0.0, + target_size.width as f32, + 0.0, + target_size.height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let draw_target = DrawTarget::from_texture( + texture, + layer, + false, + ); + self.device.bind_draw_target(draw_target); + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CLEAR); + + self.device.disable_depth(); + self.device.disable_depth_write(); + self.set_blend(false, FramebufferKind::Other); + + let color = [0.0, 0.0, 0.0, 0.0]; + if self.clear_caches_with_quads && !target.clears.is_empty() { + let instances = target.clears + .iter() + .map(|r| ClearInstance { + rect: [ + r.origin.x as f32, r.origin.y as f32, + r.size.width as f32, r.size.height as f32, + ], + color, + }) + .collect::<Vec<_>>(); + self.shaders.borrow_mut().ps_clear.bind( + &mut self.device, + &projection, + &mut self.renderer_errors, + ); + self.draw_instanced_batch( + &instances, + VertexArrayKind::Clear, + &BatchTextures::empty(), + stats, + ); + } else { + for rect in &target.clears { + self.device.clear_target( + Some(color), + None, + Some(draw_target.to_framebuffer_rect(*rect)), + ); + } + } + + // Handle any blits to this texture from child tasks. + self.handle_blits( + &target.blits, + render_tasks, + draw_target, + ); + } + + // Draw any borders for this target. + if !target.border_segments_solid.is_empty() || + !target.border_segments_complex.is_empty() + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_BORDER); + + self.set_blend(true, FramebufferKind::Other); + self.set_blend_mode_premultiplied_alpha(FramebufferKind::Other); + + if !target.border_segments_solid.is_empty() { + self.shaders.borrow_mut().cs_border_solid.bind( + &mut self.device, + &projection, + &mut self.renderer_errors, + ); + + self.draw_instanced_batch( + &target.border_segments_solid, + VertexArrayKind::Border, + &BatchTextures::empty(), + stats, + ); + } + + if !target.border_segments_complex.is_empty() { + self.shaders.borrow_mut().cs_border_segment.bind( + &mut self.device, + &projection, + &mut self.renderer_errors, + ); + + self.draw_instanced_batch( + &target.border_segments_complex, + VertexArrayKind::Border, + &BatchTextures::empty(), + stats, + ); + } + + self.set_blend(false, FramebufferKind::Other); + } + + // Draw any line decorations for this target. + if !target.line_decorations.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_LINE_DECORATION); + + self.set_blend(true, FramebufferKind::Other); + self.set_blend_mode_premultiplied_alpha(FramebufferKind::Other); + + self.shaders.borrow_mut().cs_line_decoration.bind( + &mut self.device, + &projection, + &mut self.renderer_errors, + ); + + self.draw_instanced_batch( + &target.line_decorations, + VertexArrayKind::LineDecoration, + &BatchTextures::empty(), + stats, + ); + + self.set_blend(false, FramebufferKind::Other); + } + + // Draw any gradients for this target. + if !target.gradients.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_GRADIENT); + + self.set_blend(false, FramebufferKind::Other); + + self.shaders.borrow_mut().cs_gradient.bind( + &mut self.device, + &projection, + &mut self.renderer_errors, + ); + + self.draw_instanced_batch( + &target.gradients, + VertexArrayKind::Gradient, + &BatchTextures::empty(), + stats, + ); + } + + // Draw any blurs for this target. + if !target.horizontal_blurs.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR); + + { + let mut shaders = self.shaders.borrow_mut(); + match target.target_kind { + RenderTargetKind::Alpha => &mut shaders.cs_blur_a8, + RenderTargetKind::Color => &mut shaders.cs_blur_rgba8, + }.bind(&mut self.device, &projection, &mut self.renderer_errors); + } + + self.draw_blurs( + &target.horizontal_blurs, + stats, + ); + } + } + + fn update_deferred_resolves(&mut self, deferred_resolves: &[DeferredResolve]) -> Option<GpuCacheUpdateList> { + // The first thing we do is run through any pending deferred + // resolves, and use a callback to get the UV rect for this + // custom item. Then we patch the resource_rects structure + // here before it's uploaded to the GPU. + if deferred_resolves.is_empty() { + return None; + } + + let handler = self.external_image_handler + .as_mut() + .expect("Found external image, but no handler set!"); + + let mut list = GpuCacheUpdateList { + frame_id: FrameId::INVALID, + clear: false, + height: self.gpu_cache_texture.get_height(), + blocks: Vec::new(), + updates: Vec::new(), + debug_commands: Vec::new(), + }; + + for (i, deferred_resolve) in deferred_resolves.iter().enumerate() { + self.gpu_profiler.place_marker("deferred resolve"); + let props = &deferred_resolve.image_properties; + let ext_image = props + .external_image + .expect("BUG: Deferred resolves must be external images!"); + // Provide rendering information for NativeTexture external images. + let image = handler.lock(ext_image.id, ext_image.channel_index, deferred_resolve.rendering); + let texture_target = match ext_image.image_type { + ExternalImageType::TextureHandle(target) => target, + ExternalImageType::Buffer => { + panic!("not a suitable image type in update_deferred_resolves()"); + } + }; + + // In order to produce the handle, the external image handler may call into + // the GL context and change some states. + self.device.reset_state(); + + let texture = match image.source { + ExternalImageSource::NativeTexture(texture_id) => { + ExternalTexture::new( + texture_id, + texture_target, + Swizzle::default(), + image.uv, + ) + } + ExternalImageSource::Invalid => { + warn!("Invalid ext-image"); + debug!( + "For ext_id:{:?}, channel:{}.", + ext_image.id, + ext_image.channel_index + ); + // Just use 0 as the gl handle for this failed case. + ExternalTexture::new( + 0, + texture_target, + Swizzle::default(), + image.uv, + ) + } + ExternalImageSource::RawData(_) => { + panic!("Raw external data is not expected for deferred resolves!"); + } + }; + + self.texture_resolver + .external_images + .insert(DeferredResolveIndex(i as u32), texture); + + list.updates.push(GpuCacheUpdate::Copy { + block_index: list.blocks.len(), + block_count: BLOCKS_PER_UV_RECT, + address: deferred_resolve.address, + }); + list.blocks.push(image.uv.into()); + list.blocks.push([0f32; 4].into()); + } + + Some(list) + } + + fn unlock_external_images( + &mut self, + deferred_resolves: &[DeferredResolve], + ) { + if !self.texture_resolver.external_images.is_empty() { + let handler = self.external_image_handler + .as_mut() + .expect("Found external image, but no handler set!"); + + for (index, _) in self.texture_resolver.external_images.drain() { + let props = &deferred_resolves[index.0 as usize].image_properties; + let ext_image = props + .external_image + .expect("BUG: Deferred resolves must be external images!"); + handler.unlock(ext_image.id, ext_image.channel_index); + } + } + } + + /// Update the dirty rects based on current compositing mode and config + // TODO(gw): This can be tidied up significantly once the Draw compositor + // is implemented in terms of the compositor trait. + fn calculate_dirty_rects( + &mut self, + buffer_age: usize, + composite_state: &CompositeState, + draw_target_dimensions: DeviceIntSize, + results: &mut RenderResults, + ) -> Option<PartialPresentMode> { + let mut partial_present_mode = None; + + let (max_partial_present_rects, draw_previous_partial_present_regions) = match self.current_compositor_kind { + CompositorKind::Native { .. } => { + // Assume that we can return a single dirty rect for native + // compositor for now, and that there is no buffer-age functionality. + // These params can be exposed by the compositor capabilities struct + // as the Draw compositor is ported to use it. + (1, false) + } + CompositorKind::Draw { draw_previous_partial_present_regions, max_partial_present_rects } => { + (max_partial_present_rects, draw_previous_partial_present_regions) + } + }; + + if max_partial_present_rects > 0 { + let prev_frames_damage_rect = if let Some(..) = self.compositor_config.partial_present() { + self.buffer_damage_tracker + .get_damage_rect(buffer_age) + .or_else(|| Some(DeviceRect::from_size(draw_target_dimensions.to_f32()))) + } else { + None + }; + + let can_use_partial_present = + composite_state.dirty_rects_are_valid && + !self.force_redraw && + !(prev_frames_damage_rect.is_none() && draw_previous_partial_present_regions) && + !self.debug_overlay_state.is_enabled; + + if can_use_partial_present { + let mut combined_dirty_rect = DeviceRect::zero(); + + // Work out how many dirty rects WR produced, and if that's more than + // what the device supports. + for tile in composite_state.opaque_tiles.iter().chain(composite_state.alpha_tiles.iter()) { + let tile_dirty_rect = tile.dirty_rect.translate(tile.rect.origin.to_vector()); + let transformed_dirty_rect = if let Some(transform) = tile.transform { + transform.outer_transformed_rect(&tile_dirty_rect) + } else { + Some(tile_dirty_rect) + }; + + if let Some(dirty_rect) = transformed_dirty_rect { + combined_dirty_rect = combined_dirty_rect.union(&dirty_rect); + } + } + + let combined_dirty_rect = combined_dirty_rect.round(); + let combined_dirty_rect_i32 = combined_dirty_rect.to_i32(); + // Return this frame's dirty region. If nothing has changed, don't return any dirty + // rects at all (the client can use this as a signal to skip present completely). + if !combined_dirty_rect.is_empty() { + results.dirty_rects.push(combined_dirty_rect_i32); + } + + // Track this frame's dirty region, for calculating subsequent frames' damage. + if draw_previous_partial_present_regions { + self.buffer_damage_tracker.push_dirty_rect(&combined_dirty_rect); + } + + // If the implementation requires manually keeping the buffer consistent, + // then we must combine this frame's dirty region with that of previous frames + // to determine the total_dirty_rect. The is used to determine what region we + // render to, and is what we send to the compositor as the buffer damage region + // (eg for KHR_partial_update). + let total_dirty_rect = if draw_previous_partial_present_regions { + combined_dirty_rect.union(&prev_frames_damage_rect.unwrap()) + } else { + combined_dirty_rect + }; + + partial_present_mode = Some(PartialPresentMode::Single { + dirty_rect: total_dirty_rect, + }); + } else { + // If we don't have a valid partial present scenario, return a single + // dirty rect to the client that covers the entire framebuffer. + let fb_rect = DeviceIntRect::new( + DeviceIntPoint::zero(), + draw_target_dimensions, + ); + results.dirty_rects.push(fb_rect); + + if draw_previous_partial_present_regions { + self.buffer_damage_tracker.push_dirty_rect(&fb_rect.to_f32()); + } + } + + self.force_redraw = false; + } + + partial_present_mode + } + + fn bind_frame_data(&mut self, frame: &mut Frame) { + profile_scope!("bind_frame_data"); + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_DATA); + + self.vertex_data_textures[self.current_vertex_data_textures].update( + &mut self.device, + &mut self.texture_upload_pbo_pool, + frame, + ); + self.current_vertex_data_textures = + (self.current_vertex_data_textures + 1) % VERTEX_DATA_TEXTURE_COUNT; + } + + fn update_native_surfaces(&mut self) { + profile_scope!("update_native_surfaces"); + + match self.compositor_config { + CompositorConfig::Native { ref mut compositor, .. } => { + for op in self.pending_native_surface_updates.drain(..) { + match op.details { + NativeSurfaceOperationDetails::CreateSurface { id, virtual_offset, tile_size, is_opaque } => { + let _inserted = self.allocated_native_surfaces.insert(id); + debug_assert!(_inserted, "bug: creating existing surface"); + compositor.create_surface( + id, + virtual_offset, + tile_size, + is_opaque, + ); + } + NativeSurfaceOperationDetails::CreateExternalSurface { id, is_opaque } => { + let _inserted = self.allocated_native_surfaces.insert(id); + debug_assert!(_inserted, "bug: creating existing surface"); + compositor.create_external_surface( + id, + is_opaque, + ); + } + NativeSurfaceOperationDetails::DestroySurface { id } => { + let _existed = self.allocated_native_surfaces.remove(&id); + debug_assert!(_existed, "bug: removing unknown surface"); + compositor.destroy_surface(id); + } + NativeSurfaceOperationDetails::CreateTile { id } => { + compositor.create_tile(id); + } + NativeSurfaceOperationDetails::DestroyTile { id } => { + compositor.destroy_tile(id); + } + NativeSurfaceOperationDetails::AttachExternalImage { id, external_image } => { + compositor.attach_external_image(id, external_image); + } + } + } + } + CompositorConfig::Draw { .. } => { + // Ensure nothing is added in simple composite mode, since otherwise + // memory will leak as this doesn't get drained + debug_assert!(self.pending_native_surface_updates.is_empty()); + } + } + } + + fn draw_frame( + &mut self, + frame: &mut Frame, + device_size: Option<DeviceIntSize>, + buffer_age: usize, + results: &mut RenderResults, + ) { + profile_scope!("draw_frame"); + + // These markers seem to crash a lot on Android, see bug 1559834 + #[cfg(not(target_os = "android"))] + let _gm = self.gpu_profiler.start_marker("draw frame"); + + if frame.passes.is_empty() { + frame.has_been_rendered = true; + return; + } + + self.device.disable_depth_write(); + self.set_blend(false, FramebufferKind::Other); + self.device.disable_stencil(); + + self.bind_frame_data(frame); + + // Determine the present mode and dirty rects, if device_size + // is Some(..). If it's None, no composite will occur and only + // picture cache and texture cache targets will be updated. + // TODO(gw): Split Frame so that it's clearer when a composite + // is occurring. + let present_mode = device_size.and_then(|device_size| { + self.calculate_dirty_rects( + buffer_age, + &frame.composite_state, + device_size, + results, + ) + }); + + // If we have a native OS compositor, then make use of that interface to + // specify how to composite each of the picture cache surfaces. First, we + // need to find each tile that may be bound and updated later in the frame + // and invalidate it so that the native render compositor knows that these + // tiles can't be composited early. Next, after all such tiles have been + // invalidated, then we queue surfaces for native composition by the render + // compositor before we actually update the tiles. This allows the render + // compositor to start early composition while the tiles are updating. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + // Invalidate any native surface tiles that might be updated by passes. + if !frame.has_been_rendered { + for tile in frame.composite_state.opaque_tiles.iter().chain(frame.composite_state.alpha_tiles.iter()) { + if !tile.dirty_rect.is_empty() { + if let CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::Native { id, .. } } = + tile.surface { + let valid_rect = tile.valid_rect + .round() + .to_i32(); + compositor.invalidate_tile(id, valid_rect); + } + } + } + } + // Ensure any external surfaces that might be used during early composition + // are invalidated first so that the native compositor can properly schedule + // composition to happen only when the external surface is updated. + // See update_external_native_surfaces for more details. + for surface in &frame.composite_state.external_surfaces { + if let Some((native_surface_id, size)) = surface.update_params { + let surface_rect = size.into(); + compositor.invalidate_tile(NativeTileId { surface_id: native_surface_id, x: 0, y: 0 }, surface_rect); + } + } + // Finally queue native surfaces for early composition, if applicable. By now, + // we have already invalidated any tiles that such surfaces may depend upon, so + // the native render compositor can keep track of when to actually schedule + // composition as surfaces are updated. + frame.composite_state.composite_native( + &results.dirty_rects, + &mut **compositor, + ); + } + + for (_pass_index, pass) in frame.passes.iter_mut().enumerate() { + #[cfg(not(target_os = "android"))] + let _gm = self.gpu_profiler.start_marker(&format!("pass {}", _pass_index)); + + profile_scope!("offscreen target"); + + // If this frame has already been drawn, then any texture + // cache targets have already been updated and can be + // skipped this time. + if !frame.has_been_rendered { + for (&(texture_id, target_index), target) in &pass.texture_cache { + self.draw_texture_cache_target( + &texture_id, + target_index, + target, + &frame.render_tasks, + &mut results.stats, + ); + } + + if !pass.picture_cache.is_empty() { + self.profile.inc(profiler::COLOR_PASSES); + } + + // Draw picture caching tiles for this pass. + for picture_target in &pass.picture_cache { + results.stats.color_target_count += 1; + + let draw_target = match picture_target.surface { + ResolvedSurfaceTexture::TextureCache { ref texture, layer } => { + let (texture, _) = self.texture_resolver + .resolve(texture) + .expect("bug"); + + DrawTarget::from_texture( + texture, + layer as usize, + true, + ) + } + ResolvedSurfaceTexture::Native { id, size } => { + let surface_info = match self.current_compositor_kind { + CompositorKind::Native { .. } => { + let compositor = self.compositor_config.compositor().unwrap(); + compositor.bind( + id, + picture_target.dirty_rect, + picture_target.valid_rect, + ) + } + CompositorKind::Draw { .. } => { + unreachable!(); + } + }; + + DrawTarget::NativeSurface { + offset: surface_info.origin, + external_fbo_id: surface_info.fbo_id, + dimensions: size, + } + } + }; + + let projection = Transform3D::ortho( + 0.0, + draw_target.dimensions().width as f32, + 0.0, + draw_target.dimensions().height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + self.draw_picture_cache_target( + picture_target, + draw_target, + &projection, + &frame.render_tasks, + &mut results.stats, + ); + + // Native OS surfaces must be unbound at the end of drawing to them + if let ResolvedSurfaceTexture::Native { .. } = picture_target.surface { + match self.current_compositor_kind { + CompositorKind::Native { .. } => { + let compositor = self.compositor_config.compositor().unwrap(); + compositor.unbind(); + } + CompositorKind::Draw { .. } => { + unreachable!(); + } + } + } + } + } + + for target in &pass.alpha.targets { + results.stats.alpha_target_count += 1; + + let texture_id = target.texture_id(); + + let alpha_tex = self.texture_resolver + .texture_cache_map + .get_mut(&texture_id) + .expect("bug: texture not allocated"); + + let draw_target = DrawTarget::from_texture( + alpha_tex, + 0, + false, + ); + + let projection = Transform3D::ortho( + 0.0, + draw_target.dimensions().width as f32, + 0.0, + draw_target.dimensions().height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + self.draw_alpha_target( + draw_target, + target, + &projection, + &frame.render_tasks, + &mut results.stats, + ); + } + + let color_rt_info = RenderTargetInfo { has_depth: pass.color.needs_depth() }; + + for target in &pass.color.targets { + results.stats.color_target_count += 1; + + let texture_id = target.texture_id(); + + let color_tex = self.texture_resolver + .texture_cache_map + .get_mut(&texture_id) + .expect("bug: texture not allocated"); + + self.device.reuse_render_target::<u8>( + color_tex, + color_rt_info, + ); + + let draw_target = DrawTarget::from_texture( + color_tex, + 0, + target.needs_depth(), + ); + + let projection = Transform3D::ortho( + 0.0, + draw_target.dimensions().width as f32, + 0.0, + draw_target.dimensions().height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let clear_depth = if target.needs_depth() { + Some(1.0) + } else { + None + }; + + self.draw_color_target( + draw_target, + target, + Some([0.0, 0.0, 0.0, 0.0]), + clear_depth, + &frame.render_tasks, + &projection, + &mut results.stats, + ); + } + + // Only end the pass here and invalidate previous textures for + // off-screen targets. Deferring return of the inputs to the + // frame buffer until the implicit end_pass in end_frame allows + // debug draw overlays to be added without triggering a copy + // resolve stage in mobile / tiled GPUs. + self.texture_resolver.end_pass( + &mut self.device, + &pass.textures_to_invalidate, + ); + { + profile_scope!("gl.flush"); + self.device.gl().flush(); + } + } + + self.composite_frame( + frame, + device_size, + results, + present_mode, + ); + + frame.has_been_rendered = true; + } + + fn composite_frame( + &mut self, + frame: &mut Frame, + device_size: Option<DeviceIntSize>, + results: &mut RenderResults, + present_mode: Option<PartialPresentMode>, + ) { + profile_scope!("main target"); + + if let Some(device_size) = device_size { + results.stats.color_target_count += 1; + results.picture_cache_debug = mem::replace( + &mut frame.composite_state.picture_cache_debug, + PictureCacheDebugInfo::new(), + ); + + let size = frame.device_rect.size.to_f32(); + let surface_origin_is_top_left = self.device.surface_origin_is_top_left(); + let (bottom, top) = if surface_origin_is_top_left { + (0.0, size.height) + } else { + (size.height, 0.0) + }; + + let projection = Transform3D::ortho( + 0.0, + size.width, + bottom, + top, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let fb_scale = Scale::<_, _, FramebufferPixel>::new(1i32); + let mut fb_rect = frame.device_rect * fb_scale; + + if !surface_origin_is_top_left { + fb_rect.origin.y = device_size.height - fb_rect.origin.y - fb_rect.size.height; + } + + let draw_target = DrawTarget::Default { + rect: fb_rect, + total_size: device_size * fb_scale, + surface_origin_is_top_left, + }; + + // If we have a native OS compositor, then make use of that interface + // to specify how to composite each of the picture cache surfaces. + match self.current_compositor_kind { + CompositorKind::Native { .. } => { + // We have already queued surfaces for early native composition by this point. + // All that is left is to finally update any external native surfaces that were + // invalidated so that composition can complete. + self.update_external_native_surfaces( + &frame.composite_state.external_surfaces, + results, + ); + } + CompositorKind::Draw { .. } => { + self.composite_simple( + &frame.composite_state, + draw_target, + &projection, + results, + present_mode, + ); + } + } + } else { + // Rendering a frame without presenting it will confuse the partial + // present logic, so force a full present for the next frame. + self.force_redraw(); + } + } + + pub fn debug_renderer(&mut self) -> Option<&mut DebugRenderer> { + self.debug.get_mut(&mut self.device) + } + + pub fn get_debug_flags(&self) -> DebugFlags { + self.debug_flags + } + + pub fn set_debug_flags(&mut self, flags: DebugFlags) { + if let Some(enabled) = flag_changed(self.debug_flags, flags, DebugFlags::GPU_TIME_QUERIES) { + if enabled { + self.gpu_profiler.enable_timers(); + } else { + self.gpu_profiler.disable_timers(); + } + } + if let Some(enabled) = flag_changed(self.debug_flags, flags, DebugFlags::GPU_SAMPLE_QUERIES) { + if enabled { + self.gpu_profiler.enable_samplers(); + } else { + self.gpu_profiler.disable_samplers(); + } + } + + self.debug_flags = flags; + } + + pub fn set_profiler_ui(&mut self, ui_str: &str) { + self.profiler.set_ui(ui_str); + } + + fn draw_frame_debug_items(&mut self, items: &[DebugItem]) { + if items.is_empty() { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + for item in items { + match item { + DebugItem::Rect { rect, outer_color, inner_color } => { + debug_renderer.add_quad( + rect.origin.x, + rect.origin.y, + rect.origin.x + rect.size.width, + rect.origin.y + rect.size.height, + (*inner_color).into(), + (*inner_color).into(), + ); + + debug_renderer.add_rect( + &rect.to_i32(), + (*outer_color).into(), + ); + } + DebugItem::Text { ref msg, position, color } => { + debug_renderer.add_text( + position.x, + position.y, + msg, + (*color).into(), + None, + ); + } + } + } + } + + fn draw_render_target_debug(&mut self, draw_target: &DrawTarget) { + if !self.debug_flags.contains(DebugFlags::RENDER_TARGET_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let textures = self.texture_resolver + .texture_cache_map + .values() + .filter(|texture| { texture.is_render_target() }) + .collect::<Vec<&Texture>>(); + + Self::do_debug_blit( + &mut self.device, + debug_renderer, + textures, + draw_target, + 0, + &|_| [0.0, 1.0, 0.0, 1.0], // Use green for all RTs. + ); + } + + fn draw_zoom_debug( + &mut self, + device_size: DeviceIntSize, + ) { + if !self.debug_flags.contains(DebugFlags::ZOOM_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let source_size = DeviceIntSize::new(64, 64); + let target_size = DeviceIntSize::new(1024, 1024); + + let source_origin = DeviceIntPoint::new( + (self.cursor_position.x - source_size.width / 2) + .min(device_size.width - source_size.width) + .max(0), + (self.cursor_position.y - source_size.height / 2) + .min(device_size.height - source_size.height) + .max(0), + ); + + let source_rect = DeviceIntRect::new( + source_origin, + source_size, + ); + + let target_rect = DeviceIntRect::new( + DeviceIntPoint::new( + device_size.width - target_size.width - 64, + device_size.height - target_size.height - 64, + ), + target_size, + ); + + let texture_rect = FramebufferIntRect::new( + FramebufferIntPoint::zero(), + source_rect.size.cast_unit(), + ); + + debug_renderer.add_rect( + &target_rect.inflate(1, 1), + debug_colors::RED.into(), + ); + + if self.zoom_debug_texture.is_none() { + let texture = self.device.create_texture( + ImageBufferKind::Texture2D, + ImageFormat::BGRA8, + source_rect.size.width, + source_rect.size.height, + TextureFilter::Nearest, + Some(RenderTargetInfo { has_depth: false }), + 1, + ); + + self.zoom_debug_texture = Some(texture); + } + + // Copy frame buffer into the zoom texture + let read_target = DrawTarget::new_default(device_size, self.device.surface_origin_is_top_left()); + self.device.blit_render_target( + read_target.into(), + read_target.to_framebuffer_rect(source_rect), + DrawTarget::from_texture( + self.zoom_debug_texture.as_ref().unwrap(), + 0, + false, + ), + texture_rect, + TextureFilter::Nearest, + ); + + // Draw the zoom texture back to the framebuffer + self.device.blit_render_target( + ReadTarget::from_texture( + self.zoom_debug_texture.as_ref().unwrap(), + 0, + ), + texture_rect, + read_target, + read_target.to_framebuffer_rect(target_rect), + TextureFilter::Nearest, + ); + } + + fn draw_texture_cache_debug(&mut self, draw_target: &DrawTarget) { + if !self.debug_flags.contains(DebugFlags::TEXTURE_CACHE_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let textures = + self.texture_resolver.texture_cache_map.values().collect::<Vec<&Texture>>(); + + fn select_color(texture: &Texture) -> [f32; 4] { + if texture.flags().contains(TextureFlags::IS_SHARED_TEXTURE_CACHE) { + [1.0, 0.5, 0.0, 1.0] // Orange for shared. + } else { + [1.0, 0.0, 1.0, 1.0] // Fuchsia for standalone. + } + } + + Self::do_debug_blit( + &mut self.device, + debug_renderer, + textures, + draw_target, + if self.debug_flags.contains(DebugFlags::RENDER_TARGET_DBG) { 544 } else { 0 }, + &select_color, + ); + } + + fn do_debug_blit( + device: &mut Device, + debug_renderer: &mut DebugRenderer, + mut textures: Vec<&Texture>, + draw_target: &DrawTarget, + bottom: i32, + select_color: &dyn Fn(&Texture) -> [f32; 4], + ) { + let mut spacing = 16; + let mut size = 512; + + let device_size = draw_target.dimensions(); + let fb_width = device_size.width; + let fb_height = device_size.height; + let surface_origin_is_top_left = draw_target.surface_origin_is_top_left(); + + let num_layers: i32 = textures.iter() + .map(|texture| texture.get_layer_count()) + .sum(); + + if num_layers * (size + spacing) > fb_width { + let factor = fb_width as f32 / (num_layers * (size + spacing)) as f32; + size = (size as f32 * factor) as i32; + spacing = (spacing as f32 * factor) as i32; + } + + let text_height = 14; // Visually approximated. + let text_margin = 1; + let tag_height = text_height + text_margin * 2; + let tag_y = fb_height - (bottom + spacing + tag_height); + let image_y = tag_y - size; + + // Sort the display by layer size (in bytes), so that left-to-right is + // largest-to-smallest. + // + // Note that the vec here is in increasing order, because the elements + // get drawn right-to-left. + textures.sort_by_key(|t| t.layer_size_in_bytes()); + + let mut i = 0; + for texture in textures.iter() { + let dimensions = texture.get_dimensions(); + let src_rect = FramebufferIntRect::new( + FramebufferIntPoint::zero(), + FramebufferIntSize::new(dimensions.width as i32, dimensions.height as i32), + ); + + let layer_count = texture.get_layer_count() as usize; + for layer in 0 .. layer_count { + let x = fb_width - (spacing + size) * (i as i32 + 1); + + // If we have more targets than fit on one row in screen, just early exit. + if x > fb_width { + return; + } + + // Draw the info tag. + let tag_rect = rect(x, tag_y, size, tag_height); + let tag_color = select_color(texture); + device.clear_target( + Some(tag_color), + None, + Some(draw_target.to_framebuffer_rect(tag_rect)), + ); + + // Draw the dimensions onto the tag. + let dim = texture.get_dimensions(); + let text_rect = tag_rect.inflate(-text_margin, -text_margin); + debug_renderer.add_text( + text_rect.min_x() as f32, + text_rect.max_y() as f32, // Top-relative. + &format!("{}x{}", dim.width, dim.height), + ColorU::new(0, 0, 0, 255), + Some(tag_rect.to_f32()) + ); + + // Blit the contents of the layer. + let dest_rect = draw_target.to_framebuffer_rect(rect(x, image_y, size, size)); + let read_target = ReadTarget::from_texture(texture, layer); + + if surface_origin_is_top_left { + device.blit_render_target( + read_target, + src_rect, + *draw_target, + dest_rect, + TextureFilter::Linear, + ); + } else { + // Invert y. + device.blit_render_target_invert_y( + read_target, + src_rect, + *draw_target, + dest_rect, + ); + } + i += 1; + } + } + } + + fn draw_epoch_debug(&mut self) { + if !self.debug_flags.contains(DebugFlags::EPOCHS) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let dy = debug_renderer.line_height(); + let x0: f32 = 30.0; + let y0: f32 = 30.0; + let mut y = y0; + let mut text_width = 0.0; + for ((pipeline, document_id), epoch) in &self.pipeline_info.epochs { + y += dy; + let w = debug_renderer.add_text( + x0, y, + &format!("({:?}, {:?}): {:?}", pipeline, document_id, epoch), + ColorU::new(255, 255, 0, 255), + None, + ).size.width; + text_width = f32::max(text_width, w); + } + + let margin = 10.0; + debug_renderer.add_quad( + x0 - margin, + y0 - margin, + x0 + text_width + margin, + y + margin, + ColorU::new(25, 25, 25, 200), + ColorU::new(51, 51, 51, 200), + ); + } + + fn draw_gpu_cache_debug(&mut self, device_size: DeviceIntSize) { + if !self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let (x_off, y_off) = (30f32, 30f32); + let height = self.gpu_cache_texture.get_height() + .min(device_size.height - (y_off as i32) * 2) as usize; + debug_renderer.add_quad( + x_off, + y_off, + x_off + MAX_VERTEX_TEXTURE_WIDTH as f32, + y_off + height as f32, + ColorU::new(80, 80, 80, 80), + ColorU::new(80, 80, 80, 80), + ); + + let upper = self.gpu_cache_debug_chunks.len().min(height); + for chunk in self.gpu_cache_debug_chunks[0..upper].iter().flatten() { + let color = ColorU::new(250, 0, 0, 200); + debug_renderer.add_quad( + x_off + chunk.address.u as f32, + y_off + chunk.address.v as f32, + x_off + chunk.address.u as f32 + chunk.size as f32, + y_off + chunk.address.v as f32 + 1.0, + color, + color, + ); + } + } + + /// Pass-through to `Device::read_pixels_into`, used by Gecko's WR bindings. + pub fn read_pixels_into(&mut self, rect: FramebufferIntRect, format: ImageFormat, output: &mut [u8]) { + self.device.read_pixels_into(rect, format, output); + } + + pub fn read_pixels_rgba8(&mut self, rect: FramebufferIntRect) -> Vec<u8> { + let mut pixels = vec![0; (rect.size.width * rect.size.height * 4) as usize]; + self.device.read_pixels_into(rect, ImageFormat::RGBA8, &mut pixels); + pixels + } + + // De-initialize the Renderer safely, assuming the GL is still alive and active. + pub fn deinit(mut self) { + //Note: this is a fake frame, only needed because texture deletion is require to happen inside a frame + self.device.begin_frame(); + // If we are using a native compositor, ensure that any remaining native + // surfaces are freed. + if let CompositorConfig::Native { mut compositor, .. } = self.compositor_config { + for id in self.allocated_native_surfaces.drain() { + compositor.destroy_surface(id); + } + // Destroy the debug overlay surface, if currently allocated. + if self.debug_overlay_state.current_size.is_some() { + compositor.destroy_surface(NativeSurfaceId::DEBUG_OVERLAY); + } + compositor.deinit(); + } + self.gpu_cache_texture.deinit(&mut self.device); + if let Some(dither_matrix_texture) = self.dither_matrix_texture { + self.device.delete_texture(dither_matrix_texture); + } + if let Some(zoom_debug_texture) = self.zoom_debug_texture { + self.device.delete_texture(zoom_debug_texture); + } + for textures in self.vertex_data_textures.drain(..) { + textures.deinit(&mut self.device); + } + self.texture_upload_pbo_pool.deinit(&mut self.device); + self.texture_resolver.deinit(&mut self.device); + self.vaos.deinit(&mut self.device); + self.debug.deinit(&mut self.device); + + if let Ok(shaders) = Rc::try_unwrap(self.shaders) { + shaders.into_inner().deinit(&mut self.device); + } + + if let Some(async_screenshots) = self.async_screenshots.take() { + async_screenshots.deinit(&mut self.device); + } + + if let Some(async_frame_recorder) = self.async_frame_recorder.take() { + async_frame_recorder.deinit(&mut self.device); + } + + #[cfg(feature = "capture")] + self.device.delete_fbo(self.read_fbo); + #[cfg(feature = "replay")] + for (_, ext) in self.owned_external_images { + self.device.delete_external_texture(ext); + } + self.device.end_frame(); + } + + fn size_of<T>(&self, ptr: *const T) -> usize { + let ops = self.size_of_ops.as_ref().unwrap(); + unsafe { ops.malloc_size_of(ptr) } + } + + /// Collects a memory report. + pub fn report_memory(&self) -> MemoryReport { + let mut report = MemoryReport::default(); + + // GPU cache CPU memory. + self.gpu_cache_texture.report_memory_to(&mut report, self.size_of_ops.as_ref().unwrap()); + + // Render task CPU memory. + for (_id, doc) in &self.active_documents { + report.render_tasks += self.size_of(doc.frame.render_tasks.tasks.as_ptr()); + report.render_tasks += self.size_of(doc.frame.render_tasks.task_data.as_ptr()); + } + + // Vertex data GPU memory. + for textures in &self.vertex_data_textures { + report.vertex_data_textures += textures.size_in_bytes(); + } + + // Texture cache and render target GPU memory. + report += self.texture_resolver.report_memory(); + + // Texture upload PBO memory. + report += self.texture_upload_pbo_pool.report_memory(); + + // Textures held internally within the device layer. + report += self.device.report_memory(); + + report + } + + // Sets the blend mode. Blend is unconditionally set if the "show overdraw" debugging mode is + // enabled. + fn set_blend(&mut self, mut blend: bool, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + blend = true + } + self.device.set_blend(blend) + } + + fn set_blend_mode_multiply(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_multiply(); + } + } + + fn set_blend_mode_premultiplied_alpha(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_premultiplied_alpha(); + } + } + + fn set_blend_mode_subpixel_with_bg_color_pass1(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_subpixel_with_bg_color_pass1(); + } + } + + fn set_blend_mode_subpixel_with_bg_color_pass2(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_subpixel_with_bg_color_pass2(); + } + } + + /// Clears all the layers of a texture with a given color. + fn clear_texture(&mut self, texture: &Texture, color: [f32; 4]) { + for i in 0..texture.get_layer_count() { + self.device.bind_draw_target(DrawTarget::from_texture( + &texture, + i as usize, + false, + )); + self.device.clear_target(Some(color), None, None); + } + } +} + +pub trait ThreadListener { + fn thread_started(&self, thread_name: &str); + fn thread_stopped(&self, thread_name: &str); +} + +/// Allows callers to hook in at certain points of the async scene build. These +/// functions are all called from the scene builder thread. +pub trait SceneBuilderHooks { + /// This is called exactly once, when the scene builder thread is started + /// and before it processes anything. + fn register(&self); + /// This is called before each scene build starts. + fn pre_scene_build(&self); + /// This is called before each scene swap occurs. + fn pre_scene_swap(&self, scenebuild_time: u64); + /// This is called after each scene swap occurs. The PipelineInfo contains + /// the updated epochs and pipelines removed in the new scene compared to + /// the old scene. + fn post_scene_swap(&self, document_id: &Vec<DocumentId>, info: PipelineInfo, sceneswap_time: u64); + /// This is called after a resource update operation on the scene builder + /// thread, in the case where resource updates were applied without a scene + /// build. + fn post_resource_update(&self, document_ids: &Vec<DocumentId>); + /// This is called after a scene build completes without any changes being + /// made. We guarantee that each pre_scene_build call will be matched with + /// exactly one of post_scene_swap, post_resource_update or + /// post_empty_scene_build. + fn post_empty_scene_build(&self); + /// This is a generic callback which provides an opportunity to run code + /// on the scene builder thread. This is called as part of the main message + /// loop of the scene builder thread, but outside of any specific message + /// handler. + fn poke(&self); + /// This is called exactly once, when the scene builder thread is about to + /// terminate. + fn deregister(&self); +} + +/// Allows callers to hook into the main render_backend loop and provide +/// additional frame ops for generate_frame transactions. These functions +/// are all called from the render backend thread. +pub trait AsyncPropertySampler { + /// This is called exactly once, when the render backend thread is started + /// and before it processes anything. + fn register(&self); + /// This is called for each transaction with the generate_frame flag set + /// (i.e. that will trigger a render). The list of frame messages returned + /// are processed as though they were part of the original transaction. + fn sample(&self, document_id: DocumentId, generated_frame_id: Option<u64>) -> Vec<FrameMsg>; + /// This is called exactly once, when the render backend thread is about to + /// terminate. + fn deregister(&self); +} + +bitflags! { + /// Flags that control how shaders are pre-cached, if at all. + #[derive(Default)] + pub struct ShaderPrecacheFlags: u32 { + /// Needed for const initialization + const EMPTY = 0; + + /// Only start async compile + const ASYNC_COMPILE = 1 << 2; + + /// Do a full compile/link during startup + const FULL_COMPILE = 1 << 3; + } +} + +pub struct RendererOptions { + pub device_pixel_ratio: f32, + pub resource_override_path: Option<PathBuf>, + /// Whether to use shaders that have been optimized at build time. + pub use_optimized_shaders: bool, + pub enable_aa: bool, + pub enable_dithering: bool, + pub max_recorded_profiles: usize, + pub precache_flags: ShaderPrecacheFlags, + /// Enable sub-pixel anti-aliasing if a fast implementation is available. + pub enable_subpixel_aa: bool, + /// Enable sub-pixel anti-aliasing if it requires a slow implementation. + pub force_subpixel_aa: bool, + pub clear_color: Option<ColorF>, + pub enable_clear_scissor: bool, + pub max_texture_size: Option<i32>, + pub upload_method: UploadMethod, + /// The default size in bytes for PBOs used to upload texture data. + pub upload_pbo_default_size: usize, + pub workers: Option<Arc<ThreadPool>>, + pub enable_multithreading: bool, + pub blob_image_handler: Option<Box<dyn BlobImageHandler>>, + pub crash_annotator: Option<Box<dyn CrashAnnotator>>, + pub thread_listener: Option<Box<dyn ThreadListener + Send + Sync>>, + pub size_of_op: Option<VoidPtrToSizeFn>, + pub enclosing_size_of_op: Option<VoidPtrToSizeFn>, + pub cached_programs: Option<Rc<ProgramCache>>, + pub debug_flags: DebugFlags, + pub renderer_id: Option<u64>, + pub scene_builder_hooks: Option<Box<dyn SceneBuilderHooks + Send>>, + pub sampler: Option<Box<dyn AsyncPropertySampler + Send>>, + pub chase_primitive: ChasePrimitive, + pub support_low_priority_transactions: bool, + pub namespace_alloc_by_client: bool, + pub testing: bool, + /// Set to true if this GPU supports hardware fast clears as a performance + /// optimization. Likely requires benchmarking on various GPUs to see if + /// it is a performance win. The default is false, which tends to be best + /// performance on lower end / integrated GPUs. + pub gpu_supports_fast_clears: bool, + pub allow_dual_source_blending: bool, + pub allow_advanced_blend_equation: bool, + /// If true, allow textures to be initialized with glTexStorage. + /// This affects VRAM consumption and data upload paths. + pub allow_texture_storage_support: bool, + /// If true, we allow the data uploaded in a different format from the + /// one expected by the driver, pretending the format is matching, and + /// swizzling the components on all the shader sampling. + pub allow_texture_swizzling: bool, + /// Use `ps_clear` shader with batched quad rendering to clear the rects + /// in texture cache and picture cache tasks. + /// This helps to work around some Intel drivers + /// that incorrectly synchronize clears to following draws. + pub clear_caches_with_quads: bool, + /// Start the debug server for this renderer. + pub start_debug_server: bool, + /// Output the source of the shader with the given name. + pub dump_shader_source: Option<String>, + pub surface_origin_is_top_left: bool, + /// The configuration options defining how WR composites the final scene. + pub compositor_config: CompositorConfig, + pub enable_gpu_markers: bool, + /// If true, panic whenever a GL error occurs. This has a significant + /// performance impact, so only use when debugging specific problems! + pub panic_on_gl_error: bool, + pub picture_tile_size: Option<DeviceIntSize>, + pub texture_cache_config: TextureCacheConfig, + /// If true, we'll use instanced vertex attributes. Each instace is a quad. + /// If false, we'll duplicate the instance attributes per vertex and issue + /// regular indexed draws instead. + pub enable_instancing: bool, +} + +impl RendererOptions { + /// Number of batches to look back in history for adding the current + /// transparent instance into. + const BATCH_LOOKBACK_COUNT: usize = 10; + + /// Since we are re-initializing the instance buffers on every draw call, + /// the driver has to internally manage PBOs in flight. + /// It's typically done by bucketing up to a specific limit, and then + /// just individually managing the largest buffers. + /// Having a limit here allows the drivers to more easily manage + /// the PBOs for us. + const MAX_INSTANCE_BUFFER_SIZE: usize = 0x20000; // actual threshold in macOS GL drivers +} + +impl Default for RendererOptions { + fn default() -> Self { + RendererOptions { + device_pixel_ratio: 1.0, + resource_override_path: None, + use_optimized_shaders: false, + enable_aa: true, + enable_dithering: false, + debug_flags: DebugFlags::empty(), + max_recorded_profiles: 0, + precache_flags: ShaderPrecacheFlags::empty(), + enable_subpixel_aa: false, + force_subpixel_aa: false, + clear_color: Some(ColorF::new(1.0, 1.0, 1.0, 1.0)), + enable_clear_scissor: true, + max_texture_size: None, + // This is best as `Immediate` on Angle, or `Pixelbuffer(Dynamic)` on GL, + // but we are unable to make this decision here, so picking the reasonable medium. + upload_method: UploadMethod::PixelBuffer(ONE_TIME_USAGE_HINT), + upload_pbo_default_size: 512 * 512 * 4, + workers: None, + enable_multithreading: true, + blob_image_handler: None, + crash_annotator: None, + thread_listener: None, + size_of_op: None, + enclosing_size_of_op: None, + renderer_id: None, + cached_programs: None, + scene_builder_hooks: None, + sampler: None, + chase_primitive: ChasePrimitive::Nothing, + support_low_priority_transactions: false, + namespace_alloc_by_client: false, + testing: false, + gpu_supports_fast_clears: false, + allow_dual_source_blending: true, + allow_advanced_blend_equation: false, + allow_texture_storage_support: true, + allow_texture_swizzling: true, + clear_caches_with_quads: true, + // For backwards compatibility we set this to true by default, so + // that if the debugger feature is enabled, the debug server will + // be started automatically. Users can explicitly disable this as + // needed. + start_debug_server: true, + dump_shader_source: None, + surface_origin_is_top_left: false, + compositor_config: CompositorConfig::default(), + enable_gpu_markers: true, + panic_on_gl_error: false, + picture_tile_size: None, + texture_cache_config: TextureCacheConfig::DEFAULT, + // Disabling instancing means more vertex data to upload and potentially + // process by the vertex shaders. + enable_instancing: true, + } + } +} + +pub trait DebugServer { + fn send(&mut self, _message: String); +} + +struct NoopDebugServer; + +impl NoopDebugServer { + fn new(_: Sender<ApiMsg>) -> Self { + NoopDebugServer + } +} + +impl DebugServer for NoopDebugServer { + fn send(&mut self, _: String) {} +} + +#[cfg(feature = "debugger")] +fn new_debug_server(enable: bool, api_tx: Sender<ApiMsg>) -> Box<dyn DebugServer> { + if enable { + Box::new(debug_server::DebugServerImpl::new(api_tx)) + } else { + Box::new(NoopDebugServer::new(api_tx)) + } +} + +#[cfg(not(feature = "debugger"))] +fn new_debug_server(_enable: bool, api_tx: Sender<ApiMsg>) -> Box<dyn DebugServer> { + Box::new(NoopDebugServer::new(api_tx)) +} + +/// Some basic statistics about the rendered scene, used in Gecko, as +/// well as in wrench reftests to ensure that tests are batching and/or +/// allocating on render targets as we expect them to. +#[repr(C)] +#[derive(Debug, Default)] +pub struct RendererStats { + pub total_draw_calls: usize, + pub alpha_target_count: usize, + pub color_target_count: usize, + pub texture_upload_mb: f64, + pub resource_upload_time: f64, + pub gpu_cache_upload_time: f64, +} + +/// Return type from render(), which contains some repr(C) statistics as well as +/// some non-repr(C) data. +#[derive(Debug, Default)] +pub struct RenderResults { + /// Statistics about the frame that was rendered. + pub stats: RendererStats, + + /// A list of the device dirty rects that were updated + /// this frame. + /// TODO(gw): This is an initial interface, likely to change in future. + /// TODO(gw): The dirty rects here are currently only useful when scrolling + /// is not occurring. They are still correct in the case of + /// scrolling, but will be very large (until we expose proper + /// OS compositor support where the dirty rects apply to a + /// specific picture cache slice / OS compositor surface). + pub dirty_rects: Vec<DeviceIntRect>, + + /// Information about the state of picture cache tiles. This is only + /// allocated and stored if config.testing is true (such as wrench) + pub picture_cache_debug: PictureCacheDebugInfo, +} + +#[cfg(any(feature = "capture", feature = "replay"))] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +struct PlainTexture { + data: String, + size: (DeviceIntSize, i32), + format: ImageFormat, + filter: TextureFilter, + has_depth: bool, + is_array: bool, +} + + +#[cfg(any(feature = "capture", feature = "replay"))] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +struct PlainRenderer { + device_size: Option<DeviceIntSize>, + gpu_cache: PlainTexture, + gpu_cache_frame_id: FrameId, + textures: FastHashMap<CacheTextureId, PlainTexture>, +} + +#[cfg(any(feature = "capture", feature = "replay"))] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +struct PlainExternalResources { + images: Vec<ExternalCaptureImage> +} + +#[cfg(feature = "replay")] +enum CapturedExternalImageData { + NativeTexture(gl::GLuint), + Buffer(Arc<Vec<u8>>), +} + +#[cfg(feature = "replay")] +struct DummyExternalImageHandler { + data: FastHashMap<(ExternalImageId, u8), (CapturedExternalImageData, TexelRect)>, +} + +#[cfg(feature = "replay")] +impl ExternalImageHandler for DummyExternalImageHandler { + fn lock(&mut self, key: ExternalImageId, channel_index: u8, _rendering: ImageRendering) -> ExternalImage { + let (ref captured_data, ref uv) = self.data[&(key, channel_index)]; + ExternalImage { + uv: *uv, + source: match *captured_data { + CapturedExternalImageData::NativeTexture(tid) => ExternalImageSource::NativeTexture(tid), + CapturedExternalImageData::Buffer(ref arc) => ExternalImageSource::RawData(&*arc), + } + } + } + fn unlock(&mut self, _key: ExternalImageId, _channel_index: u8) {} +} + +#[derive(Default)] +pub struct PipelineInfo { + pub epochs: FastHashMap<(PipelineId, DocumentId), Epoch>, + pub removed_pipelines: Vec<(PipelineId, DocumentId)>, +} + +impl Renderer { + #[cfg(feature = "capture")] + fn save_texture( + texture: &Texture, name: &str, root: &PathBuf, device: &mut Device + ) -> PlainTexture { + use std::fs; + use std::io::Write; + + let short_path = format!("textures/{}.raw", name); + + let bytes_per_pixel = texture.get_format().bytes_per_pixel(); + let read_format = texture.get_format(); + let rect_size = texture.get_dimensions(); + + let mut file = fs::File::create(root.join(&short_path)) + .expect(&format!("Unable to create {}", short_path)); + let bytes_per_layer = (rect_size.width * rect_size.height * bytes_per_pixel) as usize; + let mut data = vec![0; bytes_per_layer]; + + //TODO: instead of reading from an FBO with `read_pixels*`, we could + // read from textures directly with `get_tex_image*`. + + for layer_id in 0 .. texture.get_layer_count() { + let rect = device_size_as_framebuffer_size(rect_size).into(); + + device.attach_read_texture(texture, layer_id); + #[cfg(feature = "png")] + { + let mut png_data; + let (data_ref, format) = match texture.get_format() { + ImageFormat::RGBAF32 => { + png_data = vec![0; (rect_size.width * rect_size.height * 4) as usize]; + device.read_pixels_into(rect, ImageFormat::RGBA8, &mut png_data); + (&png_data, ImageFormat::RGBA8) + } + fm => (&data, fm), + }; + CaptureConfig::save_png( + root.join(format!("textures/{}-{}.png", name, layer_id)), + rect_size, format, + None, + data_ref, + ); + } + device.read_pixels_into(rect, read_format, &mut data); + file.write_all(&data) + .unwrap(); + } + + PlainTexture { + data: short_path, + size: (rect_size, texture.get_layer_count()), + format: texture.get_format(), + filter: texture.get_filter(), + has_depth: texture.supports_depth(), + is_array: texture.is_array(), + } + } + + #[cfg(feature = "replay")] + fn load_texture( + target: ImageBufferKind, + plain: &PlainTexture, + rt_info: Option<RenderTargetInfo>, + root: &PathBuf, + device: &mut Device + ) -> (Texture, Vec<u8>) + { + use std::fs::File; + use std::io::Read; + + let mut texels = Vec::new(); + File::open(root.join(&plain.data)) + .expect(&format!("Unable to open texture at {}", plain.data)) + .read_to_end(&mut texels) + .unwrap(); + + let texture = device.create_texture( + target, + plain.format, + plain.size.0.width, + plain.size.0.height, + plain.filter, + rt_info, + plain.size.1, + ); + device.upload_texture_immediate(&texture, &texels); + + (texture, texels) + } + + #[cfg(feature = "capture")] + fn save_capture( + &mut self, + config: CaptureConfig, + deferred_images: Vec<ExternalCaptureImage>, + ) { + use std::fs; + use std::io::Write; + use api::ExternalImageData; + use crate::render_api::CaptureBits; + + let root = config.resource_root(); + + self.device.begin_frame(); + let _gm = self.gpu_profiler.start_marker("read GPU data"); + self.device.bind_read_target_impl(self.read_fbo); + + if config.bits.contains(CaptureBits::EXTERNAL_RESOURCES) && !deferred_images.is_empty() { + info!("saving external images"); + let mut arc_map = FastHashMap::<*const u8, String>::default(); + let mut tex_map = FastHashMap::<u32, String>::default(); + let handler = self.external_image_handler + .as_mut() + .expect("Unable to lock the external image handler!"); + for def in &deferred_images { + info!("\t{}", def.short_path); + let ExternalImageData { id, channel_index, image_type } = def.external; + // The image rendering parameter is irrelevant because no filtering happens during capturing. + let ext_image = handler.lock(id, channel_index, ImageRendering::Auto); + let (data, short_path) = match ext_image.source { + ExternalImageSource::RawData(data) => { + let arc_id = arc_map.len() + 1; + match arc_map.entry(data.as_ptr()) { + Entry::Occupied(e) => { + (None, e.get().clone()) + } + Entry::Vacant(e) => { + let short_path = format!("externals/d{}.raw", arc_id); + (Some(data.to_vec()), e.insert(short_path).clone()) + } + } + } + ExternalImageSource::NativeTexture(gl_id) => { + let tex_id = tex_map.len() + 1; + match tex_map.entry(gl_id) { + Entry::Occupied(e) => { + (None, e.get().clone()) + } + Entry::Vacant(e) => { + let target = match image_type { + ExternalImageType::TextureHandle(target) => target, + ExternalImageType::Buffer => unreachable!(), + }; + info!("\t\tnative texture of target {:?}", target); + let layer_index = 0; //TODO: what about layered textures? + self.device.attach_read_texture_external(gl_id, target, layer_index); + let data = self.device.read_pixels(&def.descriptor); + let short_path = format!("externals/t{}.raw", tex_id); + (Some(data), e.insert(short_path).clone()) + } + } + } + ExternalImageSource::Invalid => { + info!("\t\tinvalid source!"); + (None, String::new()) + } + }; + if let Some(bytes) = data { + fs::File::create(root.join(&short_path)) + .expect(&format!("Unable to create {}", short_path)) + .write_all(&bytes) + .unwrap(); + #[cfg(feature = "png")] + CaptureConfig::save_png( + root.join(&short_path).with_extension("png"), + def.descriptor.size, + def.descriptor.format, + def.descriptor.stride, + &bytes, + ); + } + let plain = PlainExternalImage { + data: short_path, + external: def.external, + uv: ext_image.uv, + }; + config.serialize_for_resource(&plain, &def.short_path); + } + for def in &deferred_images { + handler.unlock(def.external.id, def.external.channel_index); + } + let plain_external = PlainExternalResources { + images: deferred_images, + }; + config.serialize_for_resource(&plain_external, "external_resources"); + } + + if config.bits.contains(CaptureBits::FRAME) { + let path_textures = root.join("textures"); + if !path_textures.is_dir() { + fs::create_dir(&path_textures).unwrap(); + } + + info!("saving GPU cache"); + self.update_gpu_cache(); // flush pending updates + let mut plain_self = PlainRenderer { + device_size: self.device_size, + gpu_cache: Self::save_texture( + self.gpu_cache_texture.get_texture(), + "gpu", &root, &mut self.device, + ), + gpu_cache_frame_id: self.gpu_cache_frame_id, + textures: FastHashMap::default(), + }; + + info!("saving cached textures"); + for (id, texture) in &self.texture_resolver.texture_cache_map { + let file_name = format!("cache-{}", plain_self.textures.len() + 1); + info!("\t{}", file_name); + let plain = Self::save_texture(texture, &file_name, &root, &mut self.device); + plain_self.textures.insert(*id, plain); + } + + config.serialize_for_resource(&plain_self, "renderer"); + } + + self.device.reset_read_target(); + self.device.end_frame(); + + let mut stats_file = fs::File::create(config.root.join("profiler-stats.txt")) + .expect(&format!("Unable to create profiler-stats.txt")); + if self.debug_flags.intersects(DebugFlags::PROFILER_DBG | DebugFlags::PROFILER_CAPTURE) { + self.profiler.dump_stats(&mut stats_file).unwrap(); + } else { + writeln!(stats_file, "Turn on PROFILER_DBG or PROFILER_CAPTURE to get stats here!").unwrap(); + } + + info!("done."); + } + + #[cfg(feature = "replay")] + fn load_capture( + &mut self, + config: CaptureConfig, + plain_externals: Vec<PlainExternalImage>, + ) { + use std::{fs::File, io::Read}; + + info!("loading external buffer-backed images"); + assert!(self.texture_resolver.external_images.is_empty()); + let mut raw_map = FastHashMap::<String, Arc<Vec<u8>>>::default(); + let mut image_handler = DummyExternalImageHandler { + data: FastHashMap::default(), + }; + + let root = config.resource_root(); + + // Note: this is a `SCENE` level population of the external image handlers + // It would put both external buffers and texture into the map. + // But latter are going to be overwritten later in this function + // if we are in the `FRAME` level. + for plain_ext in plain_externals { + let data = match raw_map.entry(plain_ext.data) { + Entry::Occupied(e) => e.get().clone(), + Entry::Vacant(e) => { + let mut buffer = Vec::new(); + File::open(root.join(e.key())) + .expect(&format!("Unable to open {}", e.key())) + .read_to_end(&mut buffer) + .unwrap(); + e.insert(Arc::new(buffer)).clone() + } + }; + let ext = plain_ext.external; + let value = (CapturedExternalImageData::Buffer(data), plain_ext.uv); + image_handler.data.insert((ext.id, ext.channel_index), value); + } + + if let Some(external_resources) = config.deserialize_for_resource::<PlainExternalResources, _>("external_resources") { + info!("loading external texture-backed images"); + let mut native_map = FastHashMap::<String, gl::GLuint>::default(); + for ExternalCaptureImage { short_path, external, descriptor } in external_resources.images { + let target = match external.image_type { + ExternalImageType::TextureHandle(target) => target, + ExternalImageType::Buffer => continue, + }; + let plain_ext = config.deserialize_for_resource::<PlainExternalImage, _>(&short_path) + .expect(&format!("Unable to read {}.ron", short_path)); + let key = (external.id, external.channel_index); + + let tid = match native_map.entry(plain_ext.data) { + Entry::Occupied(e) => e.get().clone(), + Entry::Vacant(e) => { + //TODO: provide a way to query both the layer count and the filter from external images + let (layer_count, filter) = (1, TextureFilter::Linear); + let plain_tex = PlainTexture { + data: e.key().clone(), + size: (descriptor.size, layer_count), + format: descriptor.format, + filter, + has_depth: false, + is_array: false, + }; + let t = Self::load_texture( + target, + &plain_tex, + None, + &root, + &mut self.device + ); + let extex = t.0.into_external(); + self.owned_external_images.insert(key, extex.clone()); + e.insert(extex.internal_id()).clone() + } + }; + + let value = (CapturedExternalImageData::NativeTexture(tid), plain_ext.uv); + image_handler.data.insert(key, value); + } + } + + self.device.begin_frame(); + self.gpu_cache_texture.remove_texture(&mut self.device); + + if let Some(renderer) = config.deserialize_for_resource::<PlainRenderer, _>("renderer") { + info!("loading cached textures"); + self.device_size = renderer.device_size; + + for (_id, texture) in self.texture_resolver.texture_cache_map.drain() { + self.device.delete_texture(texture); + } + for (id, texture) in renderer.textures { + info!("\t{}", texture.data); + let target = if texture.is_array { + ImageBufferKind::Texture2DArray + } else { + ImageBufferKind::Texture2D + }; + let t = Self::load_texture( + target, + &texture, + Some(RenderTargetInfo { has_depth: texture.has_depth }), + &root, + &mut self.device + ); + self.texture_resolver.texture_cache_map.insert(id, t.0); + } + + info!("loading gpu cache"); + let (t, gpu_cache_data) = Self::load_texture( + ImageBufferKind::Texture2D, + &renderer.gpu_cache, + Some(RenderTargetInfo { has_depth: false }), + &root, + &mut self.device, + ); + self.gpu_cache_texture.load_from_data(t, gpu_cache_data); + self.gpu_cache_frame_id = renderer.gpu_cache_frame_id; + } else { + info!("loading cached textures"); + self.device.begin_frame(); + for (_id, texture) in self.texture_resolver.texture_cache_map.drain() { + self.device.delete_texture(texture); + } + } + self.device.end_frame(); + + self.external_image_handler = Some(Box::new(image_handler) as Box<_>); + info!("done."); + } +} + +#[derive(Clone, Copy, PartialEq)] +enum FramebufferKind { + Main, + Other, +} + +fn should_skip_batch(kind: &BatchKind, flags: DebugFlags) -> bool { + match kind { + BatchKind::TextRun(_) => { + flags.contains(DebugFlags::DISABLE_TEXT_PRIMS) + } + BatchKind::Brush(BrushBatchKind::ConicGradient) | + BatchKind::Brush(BrushBatchKind::RadialGradient) | + BatchKind::Brush(BrushBatchKind::LinearGradient) => { + flags.contains(DebugFlags::DISABLE_GRADIENT_PRIMS) + } + _ => false, + } +} + +impl CompositeState { + /// Use the client provided native compositor interface to add all picture + /// cache tiles to the OS compositor + fn composite_native( + &self, + dirty_rects: &[DeviceIntRect], + compositor: &mut dyn Compositor, + ) { + // Add each surface to the visual tree. z-order is implicit based on + // order added. Offset and clip rect apply to all tiles within this + // surface. + for surface in &self.descriptor.surfaces { + compositor.add_surface( + surface.surface_id.expect("bug: no native surface allocated"), + surface.transform, + surface.clip_rect.to_i32(), + surface.image_rendering, + ); + } + compositor.start_compositing(dirty_rects, &[]); + } +} + +mod tests { + #[test] + fn test_buffer_damage_tracker() { + use super::BufferDamageTracker; + use api::units::{DevicePoint, DeviceRect, DeviceSize}; + + let mut tracker = BufferDamageTracker::default(); + assert_eq!(tracker.get_damage_rect(0), None); + assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(2), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(3), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(4), None); + + let damage1 = DeviceRect::new(DevicePoint::new(10.0, 10.0), DeviceSize::new(10.0, 10.0)); + let damage2 = DeviceRect::new(DevicePoint::new(20.0, 20.0), DeviceSize::new(10.0, 10.0)); + let combined = damage1.union(&damage2); + + tracker.push_dirty_rect(&damage1); + assert_eq!(tracker.get_damage_rect(0), None); + assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(2), Some(damage1)); + assert_eq!(tracker.get_damage_rect(3), Some(damage1)); + assert_eq!(tracker.get_damage_rect(4), None); + + tracker.push_dirty_rect(&damage2); + assert_eq!(tracker.get_damage_rect(0), None); + assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(2), Some(damage2)); + assert_eq!(tracker.get_damage_rect(3), Some(combined)); + assert_eq!(tracker.get_damage_rect(4), None); + } +} |