diff options
Diffstat (limited to 'image/imgFrame.cpp')
-rw-r--r-- | image/imgFrame.cpp | 963 |
1 files changed, 963 insertions, 0 deletions
diff --git a/image/imgFrame.cpp b/image/imgFrame.cpp new file mode 100644 index 0000000000..53cad378c7 --- /dev/null +++ b/image/imgFrame.cpp @@ -0,0 +1,963 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "imgFrame.h" +#include "ImageRegion.h" +#include "ShutdownTracker.h" +#include "SurfaceCache.h" + +#include "prenv.h" + +#include "gfx2DGlue.h" +#include "gfxContext.h" +#include "gfxPlatform.h" + +#include "gfxUtils.h" + +#include "GeckoProfiler.h" +#include "MainThreadUtils.h" +#include "mozilla/CheckedInt.h" +#include "mozilla/gfx/gfxVars.h" +#include "mozilla/gfx/Tools.h" +#include "mozilla/gfx/SourceSurfaceRawData.h" +#include "mozilla/layers/SourceSurfaceSharedData.h" +#include "mozilla/layers/SourceSurfaceVolatileData.h" +#include "mozilla/Likely.h" +#include "mozilla/MemoryReporting.h" +#include "mozilla/StaticPrefs_browser.h" +#include "mozilla/StaticPrefs_image.h" +#include "nsMargin.h" +#include "nsRefreshDriver.h" +#include "nsThreadUtils.h" + +#include <algorithm> // for min, max + +namespace mozilla { + +using namespace gfx; + +namespace image { + +/** + * This class is identical to SourceSurfaceSharedData but returns a different + * type so that SharedSurfacesChild is aware imagelib wants to recycle this + * surface for future animation frames. + */ +class RecyclingSourceSurfaceSharedData final : public SourceSurfaceSharedData { + public: + MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(RecyclingSourceSurfaceSharedData, + override) + + SurfaceType GetType() const override { + return SurfaceType::DATA_RECYCLING_SHARED; + } +}; + +static int32_t VolatileSurfaceStride(const IntSize& size, + SurfaceFormat format) { + // Stride must be a multiple of four or cairo will complain. + return (size.width * BytesPerPixel(format) + 0x3) & ~0x3; +} + +static already_AddRefed<DataSourceSurface> CreateLockedSurface( + DataSourceSurface* aSurface, const IntSize& size, SurfaceFormat format) { + switch (aSurface->GetType()) { + case SurfaceType::DATA_SHARED: + case SurfaceType::DATA_RECYCLING_SHARED: + case SurfaceType::DATA_ALIGNED: { + // Shared memory is never released until the surface itself is released. + // Similar for aligned/heap surfaces. + RefPtr<DataSourceSurface> surf(aSurface); + return surf.forget(); + } + default: { + // Volatile memory requires us to map it first, and it is fallible. + DataSourceSurface::ScopedMap smap(aSurface, + DataSourceSurface::READ_WRITE); + if (smap.IsMapped()) { + return MakeAndAddRef<SourceSurfaceMappedData>(std::move(smap), size, + format); + } + break; + } + } + + return nullptr; +} + +static bool ShouldUseHeap(const IntSize& aSize, int32_t aStride, + bool aIsAnimated) { + // On some platforms (i.e. Android), a volatile buffer actually keeps a file + // handle active. We would like to avoid too many since we could easily + // exhaust the pool. However, other platforms we do not have the file handle + // problem, and additionally we may avoid a superfluous memset since the + // volatile memory starts out as zero-filled. Hence the knobs below. + + // For as long as an animated image is retained, its frames will never be + // released to let the OS purge volatile buffers. + if (aIsAnimated && StaticPrefs::image_mem_animated_use_heap()) { + return true; + } + + // Lets us avoid too many small images consuming all of the handles. The + // actual allocation checks for overflow. + int32_t bufferSize = (aStride * aSize.height) / 1024; + return bufferSize < StaticPrefs::image_mem_volatile_min_threshold_kb(); +} + +static already_AddRefed<DataSourceSurface> AllocateBufferForImage( + const IntSize& size, SurfaceFormat format, bool aShouldRecycle = false, + bool aIsAnimated = false) { + int32_t stride = VolatileSurfaceStride(size, format); + + if (gfxVars::GetUseWebRenderOrDefault() && StaticPrefs::image_mem_shared()) { + RefPtr<SourceSurfaceSharedData> newSurf; + if (aShouldRecycle) { + newSurf = new RecyclingSourceSurfaceSharedData(); + } else { + newSurf = new SourceSurfaceSharedData(); + } + if (newSurf->Init(size, stride, format)) { + return newSurf.forget(); + } + } else if (ShouldUseHeap(size, stride, aIsAnimated)) { + RefPtr<SourceSurfaceAlignedRawData> newSurf = + new SourceSurfaceAlignedRawData(); + if (newSurf->Init(size, format, false, 0, stride)) { + return newSurf.forget(); + } + } else { + RefPtr<SourceSurfaceVolatileData> newSurf = new SourceSurfaceVolatileData(); + if (newSurf->Init(size, stride, format)) { + return newSurf.forget(); + } + } + return nullptr; +} + +static bool GreenSurface(DataSourceSurface* aSurface, const IntSize& aSize, + SurfaceFormat aFormat) { + int32_t stride = aSurface->Stride(); + uint32_t* surfaceData = reinterpret_cast<uint32_t*>(aSurface->GetData()); + uint32_t surfaceDataLength = (stride * aSize.height) / sizeof(uint32_t); + + // Start by assuming that GG is in the second byte and + // AA is in the final byte -- the most common case. + uint32_t color = mozilla::NativeEndian::swapFromBigEndian(0x00FF00FF); + + // We are only going to handle this type of test under + // certain circumstances. + MOZ_ASSERT(surfaceData); + MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 || + aFormat == SurfaceFormat::B8G8R8X8 || + aFormat == SurfaceFormat::R8G8B8A8 || + aFormat == SurfaceFormat::R8G8B8X8 || + aFormat == SurfaceFormat::A8R8G8B8 || + aFormat == SurfaceFormat::X8R8G8B8); + MOZ_ASSERT((stride * aSize.height) % sizeof(uint32_t)); + + if (aFormat == SurfaceFormat::A8R8G8B8 || + aFormat == SurfaceFormat::X8R8G8B8) { + color = mozilla::NativeEndian::swapFromBigEndian(0xFF00FF00); + } + + for (uint32_t i = 0; i < surfaceDataLength; i++) { + surfaceData[i] = color; + } + + return true; +} + +static bool ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize, + SurfaceFormat aFormat) { + int32_t stride = aSurface->Stride(); + uint8_t* data = aSurface->GetData(); + MOZ_ASSERT(data); + + if (aFormat == SurfaceFormat::OS_RGBX) { + // Skia doesn't support RGBX surfaces, so ensure the alpha value is set + // to opaque white. While it would be nice to only do this for Skia, + // imgFrame can run off main thread and past shutdown where + // we might not have gfxPlatform, so just memset every time instead. + memset(data, 0xFF, stride * aSize.height); + } else if (aSurface->OnHeap()) { + // We only need to memset it if the buffer was allocated on the heap. + // Otherwise, it's allocated via mmap and refers to a zeroed page and will + // be COW once it's written to. + memset(data, 0, stride * aSize.height); + } + + return true; +} + +imgFrame::imgFrame() + : mMonitor("imgFrame"), + mDecoded(0, 0, 0, 0), + mLockCount(0), + mAborted(false), + mFinished(false), + mOptimizable(false), + mShouldRecycle(false), + mTimeout(FrameTimeout::FromRawMilliseconds(100)), + mDisposalMethod(DisposalMethod::NOT_SPECIFIED), + mBlendMethod(BlendMethod::OVER), + mFormat(SurfaceFormat::UNKNOWN), + mNonPremult(false) {} + +imgFrame::~imgFrame() { +#ifdef DEBUG + MonitorAutoLock lock(mMonitor); + MOZ_ASSERT(mAborted || AreAllPixelsWritten()); + MOZ_ASSERT(mAborted || mFinished); +#endif +} + +nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize, + SurfaceFormat aFormat, bool aNonPremult, + const Maybe<AnimationParams>& aAnimParams, + bool aShouldRecycle) { + // Assert for properties that should be verified by decoders, + // warn for properties related to bad content. + if (!SurfaceCache::IsLegalSize(aImageSize)) { + NS_WARNING("Should have legal image size"); + mAborted = true; + return NS_ERROR_FAILURE; + } + + mImageSize = aImageSize; + + // May be updated shortly after InitForDecoder by BlendAnimationFilter + // because it needs to take into consideration the previous frames to + // properly calculate. We start with the whole frame as dirty. + mDirtyRect = GetRect(); + + if (aAnimParams) { + mBlendRect = aAnimParams->mBlendRect; + mTimeout = aAnimParams->mTimeout; + mBlendMethod = aAnimParams->mBlendMethod; + mDisposalMethod = aAnimParams->mDisposalMethod; + } else { + mBlendRect = GetRect(); + } + + if (aShouldRecycle) { + // If we are recycling then we should always use BGRA for the underlying + // surface because if we use BGRX, the next frame composited into the + // surface could be BGRA and cause rendering problems. + MOZ_ASSERT(aAnimParams); + mFormat = SurfaceFormat::OS_RGBA; + } else { + mFormat = aFormat; + } + + mNonPremult = aNonPremult; + mShouldRecycle = aShouldRecycle; + + MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?"); + + bool postFirstFrame = aAnimParams && aAnimParams->mFrameNum > 0; + mRawSurface = AllocateBufferForImage(mImageSize, mFormat, mShouldRecycle, + postFirstFrame); + if (!mRawSurface) { + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + if (StaticPrefs::browser_measurement_render_anims_and_video_solid() && + aAnimParams) { + mBlankRawSurface = AllocateBufferForImage(mImageSize, mFormat); + if (!mBlankRawSurface) { + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + } + + mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat); + if (!mLockedSurface) { + NS_WARNING("Failed to create LockedSurface"); + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + if (mBlankRawSurface) { + mBlankLockedSurface = + CreateLockedSurface(mBlankRawSurface, mImageSize, mFormat); + if (!mBlankLockedSurface) { + NS_WARNING("Failed to create BlankLockedSurface"); + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + } + + if (!ClearSurface(mRawSurface, mImageSize, mFormat)) { + NS_WARNING("Could not clear allocated buffer"); + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + if (mBlankRawSurface) { + if (!GreenSurface(mBlankRawSurface, mImageSize, mFormat)) { + NS_WARNING("Could not clear allocated blank buffer"); + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + } + + return NS_OK; +} + +nsresult imgFrame::InitForDecoderRecycle(const AnimationParams& aAnimParams) { + // We want to recycle this frame, but there is no guarantee that consumers are + // done with it in a timely manner. Let's ensure they are done with it first. + MonitorAutoLock lock(mMonitor); + + MOZ_ASSERT(mLockCount > 0); + MOZ_ASSERT(mLockedSurface); + + if (!mShouldRecycle) { + // This frame either was never marked as recyclable, or the flag was cleared + // for a caller which does not support recycling. + return NS_ERROR_NOT_AVAILABLE; + } + + // Ensure we account for all internal references to the surface. + MozRefCountType internalRefs = 1; + if (mRawSurface == mLockedSurface) { + ++internalRefs; + } + if (mOptSurface == mLockedSurface) { + ++internalRefs; + } + + if (mLockedSurface->refCount() > internalRefs) { + if (NS_IsMainThread()) { + // We should never be both decoding and recycling on the main thread. Sync + // decoding can only be used to produce the first set of frames. Those + // either never use recycling because advancing was blocked (main thread + // is busy) or we were auto-advancing (to seek to a frame) and the frames + // were never accessed (and thus cannot have recycle locks). + MOZ_ASSERT_UNREACHABLE("Recycling/decoding on the main thread?"); + return NS_ERROR_NOT_AVAILABLE; + } + + // We don't want to wait forever to reclaim the frame because we have no + // idea why it is still held. It is possibly due to OMTP. Since we are off + // the main thread, and we generally have frames already buffered for the + // animation, we can afford to wait a short period of time to hopefully + // complete the transaction and reclaim the buffer. + // + // We choose to wait for, at most, the refresh driver interval, so that we + // won't skip more than one frame. If the frame is still in use due to + // outstanding transactions, we are already skipping frames. If the frame + // is still in use for some other purpose, it won't be returned to the pool + // and its owner can hold onto it forever without additional impact here. + int32_t refreshInterval = + std::max(std::min(nsRefreshDriver::DefaultInterval(), 20), 4); + TimeDuration waitInterval = + TimeDuration::FromMilliseconds(refreshInterval >> 2); + TimeStamp timeout = + TimeStamp::Now() + TimeDuration::FromMilliseconds(refreshInterval); + while (true) { + mMonitor.Wait(waitInterval); + if (mLockedSurface->refCount() <= internalRefs) { + break; + } + + if (timeout <= TimeStamp::Now()) { + // We couldn't secure the frame for recycling. It will allocate a new + // frame instead. + return NS_ERROR_NOT_AVAILABLE; + } + } + } + + mBlendRect = aAnimParams.mBlendRect; + mTimeout = aAnimParams.mTimeout; + mBlendMethod = aAnimParams.mBlendMethod; + mDisposalMethod = aAnimParams.mDisposalMethod; + mDirtyRect = GetRect(); + + return NS_OK; +} + +nsresult imgFrame::InitWithDrawable(gfxDrawable* aDrawable, + const nsIntSize& aSize, + const SurfaceFormat aFormat, + SamplingFilter aSamplingFilter, + uint32_t aImageFlags, + gfx::BackendType aBackend) { + // Assert for properties that should be verified by decoders, + // warn for properties related to bad content. + if (!SurfaceCache::IsLegalSize(aSize)) { + NS_WARNING("Should have legal image size"); + mAborted = true; + return NS_ERROR_FAILURE; + } + + mImageSize = aSize; + mFormat = aFormat; + + RefPtr<DrawTarget> target; + + bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend); + if (canUseDataSurface) { + // It's safe to use data surfaces for content on this platform, so we can + // get away with using volatile buffers. + MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?"); + + mRawSurface = AllocateBufferForImage(mImageSize, mFormat); + if (!mRawSurface) { + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat); + if (!mLockedSurface) { + NS_WARNING("Failed to create LockedSurface"); + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + if (!ClearSurface(mRawSurface, mImageSize, mFormat)) { + NS_WARNING("Could not clear allocated buffer"); + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + target = gfxPlatform::CreateDrawTargetForData( + mLockedSurface->GetData(), mImageSize, mLockedSurface->Stride(), + mFormat); + } else { + // We can't use data surfaces for content, so we'll create an offscreen + // surface instead. This means if someone later calls RawAccessRef(), we + // may have to do an expensive readback, but we warned callers about that in + // the documentation for this method. + MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?"); + + if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) { + target = gfxPlatform::GetPlatform()->CreateDrawTargetForBackend( + aBackend, mImageSize, mFormat); + } else { + target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget( + mImageSize, mFormat); + } + } + + if (!target || !target->IsValid()) { + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + // Draw using the drawable the caller provided. + RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(target); + MOZ_ASSERT(ctx); // Already checked the draw target above. + gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mImageSize), + ImageRegion::Create(ThebesRect(GetRect())), + mFormat, aSamplingFilter, aImageFlags); + + if (canUseDataSurface && !mLockedSurface) { + NS_WARNING("Failed to create VolatileDataSourceSurface"); + mAborted = true; + return NS_ERROR_OUT_OF_MEMORY; + } + + if (!canUseDataSurface) { + // We used an offscreen surface, which is an "optimized" surface from + // imgFrame's perspective. + mOptSurface = target->Snapshot(); + } else { + FinalizeSurface(); + } + + // If we reach this point, we should regard ourselves as complete. + mDecoded = GetRect(); + mFinished = true; + +#ifdef DEBUG + MonitorAutoLock lock(mMonitor); + MOZ_ASSERT(AreAllPixelsWritten()); +#endif + + return NS_OK; +} + +nsresult imgFrame::Optimize(DrawTarget* aTarget) { + MOZ_ASSERT(NS_IsMainThread()); + mMonitor.AssertCurrentThreadOwns(); + + if (mLockCount > 0 || !mOptimizable) { + // Don't optimize right now. + return NS_OK; + } + + // Check whether image optimization is disabled -- not thread safe! + static bool gDisableOptimize = false; + static bool hasCheckedOptimize = false; + if (!hasCheckedOptimize) { + if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) { + gDisableOptimize = true; + } + hasCheckedOptimize = true; + } + + // Don't optimize during shutdown because gfxPlatform may not be available. + if (ShutdownTracker::ShutdownHasStarted()) { + return NS_OK; + } + + if (gDisableOptimize) { + return NS_OK; + } + + if (mOptSurface) { + return NS_OK; + } + + // XXX(seth): It's currently unclear if there's any reason why we can't + // optimize non-premult surfaces. We should look into removing this. + if (mNonPremult) { + return NS_OK; + } + if (!gfxVars::UseWebRender()) { + mOptSurface = aTarget->OptimizeSourceSurface(mLockedSurface); + } else { + mOptSurface = gfxPlatform::GetPlatform() + ->ScreenReferenceDrawTarget() + ->OptimizeSourceSurface(mLockedSurface); + } + if (mOptSurface == mLockedSurface) { + mOptSurface = nullptr; + } + + if (mOptSurface) { + // There's no reason to keep our original surface around if we have an + // optimized surface. Release our reference to it. This will leave + // |mLockedSurface| as the only thing keeping it alive, so it'll get freed + // below. + mRawSurface = nullptr; + } + + // Release all strong references to the surface's memory. If the underlying + // surface is volatile, this will allow the operating system to free the + // memory if it needs to. + mLockedSurface = nullptr; + mOptimizable = false; + + return NS_OK; +} + +DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); } + +RawAccessFrameRef imgFrame::RawAccessRef(bool aOnlyFinished /*= false*/) { + return RawAccessFrameRef(this, aOnlyFinished); +} + +void imgFrame::SetRawAccessOnly() { + AssertImageDataLocked(); + + // Lock our data and throw away the key. + LockImageData(false); +} + +imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing( + bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion, + SourceSurface* aSurface) { + MOZ_ASSERT(NS_IsMainThread()); + mMonitor.AssertCurrentThreadOwns(); + + if (!aDoPartialDecode) { + return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize), + mFormat); + } + + gfxRect available = + gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height()); + + if (aDoTile) { + // Create a temporary surface. + // Give this surface an alpha channel because there are + // transparent pixels in the padding or undecoded area + RefPtr<DrawTarget> target = + gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget( + mImageSize, SurfaceFormat::OS_RGBA); + if (!target) { + return SurfaceWithFormat(); + } + + SurfacePattern pattern(aSurface, aRegion.GetExtendMode(), + Matrix::Translation(mDecoded.X(), mDecoded.Y())); + target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern); + + RefPtr<SourceSurface> newsurf = target->Snapshot(); + return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize), + target->GetFormat()); + } + + // Not tiling, and we have a surface, so we can account for + // a partial decode just by twiddling parameters. + aRegion = aRegion.Intersect(available); + IntSize availableSize(mDecoded.Width(), mDecoded.Height()); + + return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize), + mFormat); +} + +bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion, + SamplingFilter aSamplingFilter, uint32_t aImageFlags, + float aOpacity) { + AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS); + + MOZ_ASSERT(NS_IsMainThread()); + NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!"); + NS_ASSERTION(!aRegion.IsRestricted() || + !aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(), + "We must be allowed to sample *some* source pixels!"); + + // Perform the draw and freeing of the surface outside the lock. We want to + // avoid contention with the decoder if we can. The surface may also attempt + // to relock the monitor if it is freed (e.g. RecyclingSourceSurface). + RefPtr<SourceSurface> surf; + SurfaceWithFormat surfaceResult; + ImageRegion region(aRegion); + gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height); + + { + MonitorAutoLock lock(mMonitor); + + // Possibly convert this image into a GPU texture, this may also cause our + // mLockedSurface to be released and the OS to release the underlying + // memory. + Optimize(aContext->GetDrawTarget()); + + bool doPartialDecode = !AreAllPixelsWritten(); + + // Most draw targets will just use the surface only during DrawPixelSnapped + // but captures/recordings will retain a reference outside this stack + // context. While in theory a decoder thread could be trying to recycle this + // frame at this very moment, in practice the only way we can get here is if + // this frame is the current frame of the animation. Since we can only + // advance on the main thread, we know nothing else will try to use it. + DrawTarget* drawTarget = aContext->GetDrawTarget(); + bool recording = drawTarget->GetBackendType() == BackendType::RECORDING; + RefPtr<SourceSurface> surf = GetSourceSurfaceInternal(); + if (!surf) { + return false; + } + + bool doTile = !imageRect.Contains(aRegion.Rect()) && + !(aImageFlags & imgIContainer::FLAG_CLAMP); + + surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf); + + // If we are recording, then we cannot recycle the surface. The blob + // rasterizer is not properly synchronized for recycling in the compositor + // process. The easiest thing to do is just mark the frames it consumes as + // non-recyclable. + if (recording && surfaceResult.IsValid()) { + mShouldRecycle = false; + } + } + + if (surfaceResult.IsValid()) { + gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable, + imageRect.Size(), region, surfaceResult.mFormat, + aSamplingFilter, aImageFlags, aOpacity); + } + + return true; +} + +nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) { + MonitorAutoLock lock(mMonitor); + return ImageUpdatedInternal(aUpdateRect); +} + +nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) { + mMonitor.AssertCurrentThreadOwns(); + + // Clamp to the frame rect to ensure that decoder bugs don't result in a + // decoded rect that extends outside the bounds of the frame rect. + IntRect updateRect = aUpdateRect.Intersect(GetRect()); + if (updateRect.IsEmpty()) { + return NS_OK; + } + + mDecoded.UnionRect(mDecoded, updateRect); + + // Update our invalidation counters for any consumers watching for changes + // in the surface. + if (mRawSurface) { + mRawSurface->Invalidate(updateRect); + } + if (mLockedSurface && mRawSurface != mLockedSurface) { + mLockedSurface->Invalidate(updateRect); + } + return NS_OK; +} + +void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */, + bool aFinalize /* = true */) { + MonitorAutoLock lock(mMonitor); + MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); + + IntRect frameRect(GetRect()); + if (!mDecoded.IsEqualEdges(frameRect)) { + // The decoder should have produced rows starting from either the bottom or + // the top of the image. We need to calculate the region for which we have + // not yet invalidated. + IntRect delta(0, 0, frameRect.width, 0); + if (mDecoded.y == 0) { + delta.y = mDecoded.height; + delta.height = frameRect.height - mDecoded.height; + } else if (mDecoded.y + mDecoded.height == frameRect.height) { + delta.height = frameRect.height - mDecoded.y; + } else { + MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!"); + delta = frameRect; + } + + ImageUpdatedInternal(delta); + } + + MOZ_ASSERT(mDecoded.IsEqualEdges(frameRect)); + + if (aFinalize) { + FinalizeSurfaceInternal(); + } + + mFinished = true; + + // The image is now complete, wake up anyone who's waiting. + mMonitor.NotifyAll(); +} + +uint32_t imgFrame::GetImageBytesPerRow() const { + mMonitor.AssertCurrentThreadOwns(); + + if (mRawSurface) { + return mImageSize.width * BytesPerPixel(mFormat); + } + + return 0; +} + +uint32_t imgFrame::GetImageDataLength() const { + return GetImageBytesPerRow() * mImageSize.height; +} + +void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const { + MonitorAutoLock lock(mMonitor); + GetImageDataInternal(aData, aLength); +} + +void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const { + mMonitor.AssertCurrentThreadOwns(); + MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); + MOZ_ASSERT(mLockedSurface); + + if (mLockedSurface) { + // TODO: This is okay for now because we only realloc shared surfaces on + // the main thread after decoding has finished, but if animations want to + // read frame data off the main thread, we will need to reconsider this. + *aData = mLockedSurface->GetData(); + MOZ_ASSERT( + *aData, + "mLockedSurface is non-null, but GetData is null in GetImageData"); + } else { + *aData = nullptr; + } + + *aLength = GetImageDataLength(); +} + +uint8_t* imgFrame::GetImageData() const { + uint8_t* data; + uint32_t length; + GetImageData(&data, &length); + return data; +} + +uint8_t* imgFrame::LockImageData(bool aOnlyFinished) { + MonitorAutoLock lock(mMonitor); + + MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks"); + if (mLockCount < 0 || (aOnlyFinished && !mFinished)) { + return nullptr; + } + + uint8_t* data; + if (mLockedSurface) { + data = mLockedSurface->GetData(); + } else { + data = nullptr; + } + + // If the raw data is still available, we should get a valid pointer for it. + if (!data) { + MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame"); + return nullptr; + } + + ++mLockCount; + return data; +} + +void imgFrame::AssertImageDataLocked() const { +#ifdef DEBUG + MonitorAutoLock lock(mMonitor); + MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); +#endif +} + +nsresult imgFrame::UnlockImageData() { + MonitorAutoLock lock(mMonitor); + + MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!"); + if (mLockCount <= 0) { + return NS_ERROR_FAILURE; + } + + MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted, + "Should have Finish()'d or aborted before unlocking"); + + mLockCount--; + + return NS_OK; +} + +void imgFrame::SetOptimizable() { + AssertImageDataLocked(); + MonitorAutoLock lock(mMonitor); + mOptimizable = true; +} + +void imgFrame::FinalizeSurface() { + MonitorAutoLock lock(mMonitor); + FinalizeSurfaceInternal(); +} + +void imgFrame::FinalizeSurfaceInternal() { + mMonitor.AssertCurrentThreadOwns(); + + // Not all images will have mRawSurface to finalize (i.e. paletted images). + if (mShouldRecycle || !mRawSurface || + mRawSurface->GetType() != SurfaceType::DATA_SHARED) { + return; + } + + auto* sharedSurf = static_cast<SourceSurfaceSharedData*>(mRawSurface.get()); + sharedSurf->Finalize(); +} + +already_AddRefed<SourceSurface> imgFrame::GetSourceSurface() { + MonitorAutoLock lock(mMonitor); + return GetSourceSurfaceInternal(); +} + +already_AddRefed<SourceSurface> imgFrame::GetSourceSurfaceInternal() { + mMonitor.AssertCurrentThreadOwns(); + + if (mOptSurface) { + if (mOptSurface->IsValid()) { + RefPtr<SourceSurface> surf(mOptSurface); + return surf.forget(); + } + mOptSurface = nullptr; + } + + if (mBlankLockedSurface) { + // We are going to return the blank surface because of the flags. + // We are including comments here that are copied from below + // just so that we are on the same page! + RefPtr<SourceSurface> surf(mBlankLockedSurface); + return surf.forget(); + } + + if (mLockedSurface) { + RefPtr<SourceSurface> surf(mLockedSurface); + return surf.forget(); + } + + MOZ_ASSERT(!mShouldRecycle, "Should recycle but no locked surface!"); + + if (!mRawSurface) { + return nullptr; + } + + return CreateLockedSurface(mRawSurface, mImageSize, mFormat); +} + +void imgFrame::Abort() { + MonitorAutoLock lock(mMonitor); + + mAborted = true; + + // Wake up anyone who's waiting. + mMonitor.NotifyAll(); +} + +bool imgFrame::IsAborted() const { + MonitorAutoLock lock(mMonitor); + return mAborted; +} + +bool imgFrame::IsFinished() const { + MonitorAutoLock lock(mMonitor); + return mFinished; +} + +void imgFrame::WaitUntilFinished() const { + MonitorAutoLock lock(mMonitor); + + while (true) { + // Return if we're aborted or complete. + if (mAborted || mFinished) { + return; + } + + // Not complete yet, so we'll have to wait. + mMonitor.Wait(); + } +} + +bool imgFrame::AreAllPixelsWritten() const { + mMonitor.AssertCurrentThreadOwns(); + return mDecoded.IsEqualInterior(GetRect()); +} + +void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf, + const AddSizeOfCb& aCallback) const { + MonitorAutoLock lock(mMonitor); + + AddSizeOfCbData metadata; + + metadata.mFinished = mFinished; + if (mLockedSurface) { + // The locked surface should only be present if we have mRawSurface. Hence + // we only need to get its allocation size to avoid double counting. + metadata.mHeapBytes += aMallocSizeOf(mLockedSurface); + metadata.AddType(mLockedSurface->GetType()); + } + if (mOptSurface) { + metadata.mHeapBytes += aMallocSizeOf(mOptSurface); + + SourceSurface::SizeOfInfo info; + mOptSurface->SizeOfExcludingThis(aMallocSizeOf, info); + metadata.Accumulate(info); + } + if (mRawSurface) { + metadata.mHeapBytes += aMallocSizeOf(mRawSurface); + + SourceSurface::SizeOfInfo info; + mRawSurface->SizeOfExcludingThis(aMallocSizeOf, info); + metadata.Accumulate(info); + } + + aCallback(metadata); +} + +} // namespace image +} // namespace mozilla |