diff options
Diffstat (limited to 'intl/icu/source/tools/makeconv/genmbcs.cpp')
-rw-r--r-- | intl/icu/source/tools/makeconv/genmbcs.cpp | 1575 |
1 files changed, 1575 insertions, 0 deletions
diff --git a/intl/icu/source/tools/makeconv/genmbcs.cpp b/intl/icu/source/tools/makeconv/genmbcs.cpp new file mode 100644 index 0000000000..79f185fe0e --- /dev/null +++ b/intl/icu/source/tools/makeconv/genmbcs.cpp @@ -0,0 +1,1575 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +******************************************************************************* +* +* Copyright (C) 2000-2016, International Business Machines +* Corporation and others. All Rights Reserved. +* +******************************************************************************* +* file name: genmbcs.cpp +* encoding: UTF-8 +* tab size: 8 (not used) +* indentation:4 +* +* created on: 2000jul06 +* created by: Markus W. Scherer +*/ + +#include <stdio.h> +#include "unicode/utypes.h" +#include "cstring.h" +#include "cmemory.h" +#include "unewdata.h" +#include "ucnv_cnv.h" +#include "ucnvmbcs.h" +#include "ucm.h" +#include "makeconv.h" +#include "genmbcs.h" + +/* + * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files. + * Reduce tests for maxCharLength. + */ + +struct MBCSData { + NewConverter newConverter; + + UCMFile *ucm; + + /* toUnicode (state table in ucm->states) */ + _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT]; + int32_t countToUFallbacks; + uint16_t *unicodeCodeUnits; + + /* fromUnicode */ + uint16_t stage1[MBCS_STAGE_1_SIZE]; + uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */ + uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */ + uint8_t *fromUBytes; + uint32_t stage2Top, stage3Top; + + /* fromUTF8 */ + uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */ + + /* + * Maximum UTF-8-friendly code point. + * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100. + * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff. + */ + uint16_t utf8Max; + + UBool utf8Friendly; + UBool omitFromU; +}; + +/* prototypes */ +U_CDECL_BEGIN +static void +MBCSClose(NewConverter *cnvData); + +static UBool +MBCSStartMappings(MBCSData *mbcsData); + +static UBool +MBCSAddToUnicode(MBCSData *mbcsData, + const uint8_t *bytes, int32_t length, + UChar32 c, + int8_t flag); + +static UBool +MBCSIsValid(NewConverter *cnvData, + const uint8_t *bytes, int32_t length); + +static UBool +MBCSSingleAddFromUnicode(MBCSData *mbcsData, + const uint8_t *bytes, int32_t length, + UChar32 c, + int8_t flag); + +static UBool +MBCSAddFromUnicode(MBCSData *mbcsData, + const uint8_t *bytes, int32_t length, + UChar32 c, + int8_t flag); + +static void +MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData); + +static UBool +MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); + +static uint32_t +MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, + UNewDataMemory *pData, int32_t tableType); +U_CDECL_END + +/* helper ------------------------------------------------------------------- */ + +static inline char +hexDigit(uint8_t digit) { + return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); +} + +static inline char * +printBytes(char *buffer, const uint8_t *bytes, int32_t length) { + char *s=buffer; + while(length>0) { + *s++=hexDigit((uint8_t)(*bytes>>4)); + *s++=hexDigit((uint8_t)(*bytes&0xf)); + ++bytes; + --length; + } + + *s=0; + return buffer; +} + +/* implementation ----------------------------------------------------------- */ + +static MBCSData gDummy; + + +U_CFUNC const MBCSData * +MBCSGetDummy() { + uprv_memset(&gDummy, 0, sizeof(MBCSData)); + + /* + * Set "pessimistic" values which may sometimes move too many + * mappings to the extension table (but never too few). + * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the + * largest set of mappings. + * Assume maxCharLength>1. + */ + gDummy.utf8Friendly=TRUE; + if(SMALL) { + gDummy.utf8Max=0xffff; + gDummy.omitFromU=TRUE; + } else { + gDummy.utf8Max=MBCS_UTF8_MAX; + } + return &gDummy; +} + +static void +MBCSInit(MBCSData *mbcsData, UCMFile *ucm) { + uprv_memset(mbcsData, 0, sizeof(MBCSData)); + + mbcsData->ucm=ucm; /* aliased, not owned */ + + mbcsData->newConverter.close=MBCSClose; + mbcsData->newConverter.isValid=MBCSIsValid; + mbcsData->newConverter.addTable=MBCSAddTable; + mbcsData->newConverter.write=MBCSWrite; +} + +U_CFUNC NewConverter * +MBCSOpen(UCMFile *ucm) { + MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData)); + if(mbcsData==NULL) { + printf("out of memory\n"); + exit(U_MEMORY_ALLOCATION_ERROR); + } + + MBCSInit(mbcsData, ucm); + return &mbcsData->newConverter; +} + +static void +MBCSDestruct(MBCSData *mbcsData) { + uprv_free(mbcsData->unicodeCodeUnits); + uprv_free(mbcsData->fromUBytes); +} + +U_CDECL_BEGIN +static void +MBCSClose(NewConverter *cnvData) { + MBCSData *mbcsData=(MBCSData *)cnvData; + if(mbcsData!=NULL) { + MBCSDestruct(mbcsData); + uprv_free(mbcsData); + } +} +U_CDECL_END + +static UBool +MBCSStartMappings(MBCSData *mbcsData) { + int32_t i, sum, maxCharLength, + stage2NullLength, stage2AllocLength, + stage3NullLength, stage3AllocLength; + + /* toUnicode */ + + /* allocate the code unit array and prefill it with "unassigned" values */ + sum=mbcsData->ucm->states.countToUCodeUnits; + if(VERBOSE) { + printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum); + } + + if(sum>0) { + mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t)); + if(mbcsData->unicodeCodeUnits==NULL) { + fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n", + (long)sum); + return FALSE; + } + for(i=0; i<sum; ++i) { + mbcsData->unicodeCodeUnits[i]=0xfffe; + } + } + + /* fromUnicode */ + maxCharLength=mbcsData->ucm->states.maxCharLength; + + /* allocate the codepage mappings and preset the first 16 characters to 0 */ + if(maxCharLength==1) { + /* allocate 64k 16-bit results for single-byte codepages */ + sum=0x20000; + } else { + /* allocate 1M * maxCharLength bytes for at most 1M mappings */ + sum=0x100000*maxCharLength; + } + mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum); + if(mbcsData->fromUBytes==NULL) { + fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum); + return FALSE; + } + uprv_memset(mbcsData->fromUBytes, 0, sum); + + /* + * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time. + * See ucnvmbcs.h for details. + * + * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which + * assumes that the initial stage 2/3 blocks are the all-unassigned ones. + * Therefore, we refine the data structure while maintaining this placement + * even though it would be convenient to allocate the ASCII block at the + * beginning of stage 3, for example. + * + * UTF-8-friendly fromUnicode tries work from sorted tables and are built + * pre-compacted, overlapping adjacent stage 2/3 blocks. + * This is necessary because the block allocation and compaction changes + * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional + * stage table uses direct indexes into stage 3, without a multiplier and + * thus with a smaller reach. + * + * Non-UTF-8-friendly fromUnicode tries work from unsorted tables + * (because implicit precision is used), and are compacted + * in post-processing. + * + * Preallocation for UTF-8-friendly fromUnicode tries: + * + * Stage 3: + * 64-entry all-unassigned first block followed by ASCII (128 entries). + * + * Stage 2: + * 64-entry all-unassigned first block followed by preallocated + * 64-block for ASCII. + */ + + /* Preallocate ASCII as a linear 128-entry stage 3 block. */ + stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE; + stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE; + + stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE; + stage3AllocLength=128; /* ASCII U+0000..U+007f */ + + /* Initialize stage 1 for the preallocated blocks. */ + sum=stage2NullLength; + for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) { + mbcsData->stage1[i]=sum; + sum+=MBCS_STAGE_2_BLOCK_SIZE; + } + mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */ + + /* + * Stage 2 indexes count 16-blocks in stage 3 as follows: + * SBCS: directly, indexes increment by 16 + * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1 + * MBCS UTF-8: directly, indexes increment by 16 + */ + if(maxCharLength==1) { + sum=stage3NullLength; + for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { + mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum; + sum+=MBCS_STAGE_3_BLOCK_SIZE; + } + } else { + sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY; + for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { + mbcsData->stage2[mbcsData->stage1[0]+i]=sum; + sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY; + } + } + + sum=stage3NullLength; + for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) { + mbcsData->stageUTF8[i]=sum; + sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE; + } + + /* + * Allocate a 64-entry all-unassigned first stage 3 block, + * for UTF-8-friendly lookup with a trail byte, + * plus 128 entries for ASCII. + */ + mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */ + + return TRUE; +} + +/* return TRUE for success */ +static UBool +setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) { + int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); + if(i>=0) { + /* if there is already a fallback for this offset, then overwrite it */ + mbcsData->toUFallbacks[i].codePoint=c; + return TRUE; + } else { + /* if there is no fallback for this offset, then add one */ + i=mbcsData->countToUFallbacks; + if(i>=MBCS_MAX_FALLBACK_COUNT) { + fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c); + return FALSE; + } else { + mbcsData->toUFallbacks[i].offset=offset; + mbcsData->toUFallbacks[i].codePoint=c; + mbcsData->countToUFallbacks=i+1; + return TRUE; + } + } +} + +/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */ +static int32_t +removeFallback(MBCSData *mbcsData, uint32_t offset) { + int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); + if(i>=0) { + _MBCSToUFallback *toUFallbacks; + int32_t limit, old; + + toUFallbacks=mbcsData->toUFallbacks; + limit=mbcsData->countToUFallbacks; + old=(int32_t)toUFallbacks[i].codePoint; + + /* copy the last fallback entry here to keep the list contiguous */ + toUFallbacks[i].offset=toUFallbacks[limit-1].offset; + toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint; + mbcsData->countToUFallbacks=limit-1; + return old; + } else { + return -1; + } +} + +/* + * isFallback is almost a boolean: + * 1 (TRUE) this is a fallback mapping + * 0 (FALSE) this is a precise mapping + * -1 the precision of this mapping is not specified + */ +static UBool +MBCSAddToUnicode(MBCSData *mbcsData, + const uint8_t *bytes, int32_t length, + UChar32 c, + int8_t flag) { + char buffer[10]; + uint32_t offset=0; + int32_t i=0, entry, old; + uint8_t state=0; + + if(mbcsData->ucm->states.countStates==0) { + fprintf(stderr, "error: there is no state information!\n"); + return FALSE; + } + + /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */ + if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) { + state=1; + } + + /* + * Walk down the state table like in conversion, + * much like getNextUChar(). + * We assume that c<=0x10ffff. + */ + for(i=0;;) { + entry=mbcsData->ucm->states.stateTable[state][bytes[i++]]; + if(MBCS_ENTRY_IS_TRANSITION(entry)) { + if(i==length) { + fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n", + (short)state, printBytes(buffer, bytes, length), (int)c); + return FALSE; + } + state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); + offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); + } else { + if(i<length) { + fprintf(stderr, "error: byte sequence too long by %d bytes, final state %u: 0x%s (U+%x)\n", + (int)(length-i), state, printBytes(buffer, bytes, length), (int)c); + return FALSE; + } + switch(MBCS_ENTRY_FINAL_ACTION(entry)) { + case MBCS_STATE_ILLEGAL: + fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n", + (int)c, printBytes(buffer, bytes, length)); + return FALSE; + case MBCS_STATE_CHANGE_ONLY: + fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n", + (int)c, printBytes(buffer, bytes, length)); + return FALSE; + case MBCS_STATE_UNASSIGNED: + fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n", + (int)c, printBytes(buffer, bytes, length)); + return FALSE; + case MBCS_STATE_FALLBACK_DIRECT_16: + case MBCS_STATE_VALID_DIRECT_16: + case MBCS_STATE_FALLBACK_DIRECT_20: + case MBCS_STATE_VALID_DIRECT_20: + if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) { + /* the "direct" action's value is not "valid-direct-16-unassigned" any more */ + if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) { + old=MBCS_ENTRY_FINAL_VALUE(entry); + } else { + old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); + } + if(flag>=0) { + fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", + (int)c, printBytes(buffer, bytes, length), (int)old); + return FALSE; + } else if(VERBOSE) { + fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", + (int)c, printBytes(buffer, bytes, length), (int)old); + } + /* + * Continue after the above warning + * if the precision of the mapping is unspecified. + */ + } + /* reassign the correct action code */ + entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0))); + + /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */ + if(c<=0xffff) { + entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c); + } else { + entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000); + } + mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry; + break; + case MBCS_STATE_VALID_16: + /* bits 26..16 are not used, 0 */ + /* bits 15..7 contain the final offset delta to one 16-bit code unit */ + offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); + /* check that this byte sequence is still unassigned */ + if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) { + if(flag>=0) { + fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", + (int)c, printBytes(buffer, bytes, length), (int)old); + return FALSE; + } else if(VERBOSE) { + fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", + (int)c, printBytes(buffer, bytes, length), (int)old); + } + } + if(c>=0x10000) { + fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n", + (int)c, printBytes(buffer, bytes, length)); + return FALSE; + } + if(flag>0) { + /* assign only if there is no precise mapping */ + if(mbcsData->unicodeCodeUnits[offset]==0xfffe) { + return setFallback(mbcsData, offset, c); + } + } else { + mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; + } + break; + case MBCS_STATE_VALID_16_PAIR: + /* bits 26..16 are not used, 0 */ + /* bits 15..7 contain the final offset delta to two 16-bit code units */ + offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); + /* check that this byte sequence is still unassigned */ + old=mbcsData->unicodeCodeUnits[offset]; + if(old<0xfffe) { + int32_t real; + if(old<0xd800) { + real=old; + } else if(old<=0xdfff) { + real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff); + } else /* old<=0xe001 */ { + real=mbcsData->unicodeCodeUnits[offset+1]; + } + if(flag>=0) { + fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", + (int)c, printBytes(buffer, bytes, length), (int)real); + return FALSE; + } else if(VERBOSE) { + fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", + (int)c, printBytes(buffer, bytes, length), (int)real); + } + } + if(flag>0) { + /* assign only if there is no precise mapping */ + if(old<=0xdbff || old==0xe000) { + /* do nothing */ + } else if(c<=0xffff) { + /* set a BMP fallback code point as a pair with 0xe001 */ + mbcsData->unicodeCodeUnits[offset++]=0xe001; + mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; + } else { + /* set a fallback surrogate pair with two second surrogates */ + mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10)); + mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); + } + } else { + if(c<0xd800) { + /* set a BMP code point */ + mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; + } else if(c<=0xffff) { + /* set a BMP code point above 0xd800 as a pair with 0xe000 */ + mbcsData->unicodeCodeUnits[offset++]=0xe000; + mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; + } else { + /* set a surrogate pair */ + mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10)); + mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); + } + } + break; + default: + /* reserved, must never occur */ + fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n", + (int)entry, printBytes(buffer, bytes, length), (int)c); + return FALSE; + } + + return TRUE; + } + } +} + +U_CDECL_BEGIN +/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */ +static UBool +MBCSIsValid(NewConverter *cnvData, + const uint8_t *bytes, int32_t length) { + MBCSData *mbcsData=(MBCSData *)cnvData; + + return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length)); +} +U_CDECL_END +static UBool +MBCSSingleAddFromUnicode(MBCSData *mbcsData, + const uint8_t *bytes, int32_t /*length*/, + UChar32 c, + int8_t flag) { + uint16_t *stage3, *p; + uint32_t idx; + uint16_t old; + uint8_t b; + + uint32_t blockSize, newTop, i, nextOffset, newBlock, min; + + /* ignore |2 SUB mappings */ + if(flag==2) { + return TRUE; + } + + /* + * Walk down the triple-stage compact array ("trie") and + * allocate parts as necessary. + * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings. + * We assume that length<=maxCharLength and that c<=0x10ffff. + */ + stage3=(uint16_t *)mbcsData->fromUBytes; + b=*bytes; + + /* inspect stage 1 */ + idx=c>>MBCS_STAGE_1_SHIFT; + if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { + nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); + } else { + nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; + } + if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { + /* allocate another block in stage 2 */ + newBlock=mbcsData->stage2Top; + if(mbcsData->utf8Friendly) { + min=newBlock-nextOffset; /* minimum block start with overlap */ + while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) { + --newBlock; + } + } + newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; + + if(newTop>MBCS_MAX_STAGE_2_TOP) { + fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b); + return FALSE; + } + + /* + * each stage 2 block contains 64 16-bit words: + * 6 code point bits 9..4 with 1 stage 3 index + */ + mbcsData->stage1[idx]=(uint16_t)newBlock; + mbcsData->stage2Top=newTop; + } + + /* inspect stage 2 */ + idx=mbcsData->stage1[idx]+nextOffset; + if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { + /* allocate 64-entry blocks for UTF-8-friendly lookup */ + blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE; + nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; + } else { + blockSize=MBCS_STAGE_3_BLOCK_SIZE; + nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; + } + if(mbcsData->stage2Single[idx]==0) { + /* allocate another block in stage 3 */ + newBlock=mbcsData->stage3Top; + if(mbcsData->utf8Friendly) { + min=newBlock-nextOffset; /* minimum block start with overlap */ + while(min<newBlock && stage3[newBlock-1]==0) { + --newBlock; + } + } + newTop=newBlock+blockSize; + + if(newTop>MBCS_STAGE_3_SBCS_SIZE) { + fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b); + return FALSE; + } + /* each block has 16 uint16_t entries */ + i=idx; + while(newBlock<newTop) { + mbcsData->stage2Single[i++]=(uint16_t)newBlock; + newBlock+=MBCS_STAGE_3_BLOCK_SIZE; + } + mbcsData->stage3Top=newTop; /* ==newBlock */ + } + + /* write the codepage entry into stage 3 and get the previous entry */ + p=stage3+mbcsData->stage2Single[idx]+nextOffset; + old=*p; + if(flag<=0) { + *p=(uint16_t)(0xf00|b); + } else if(IS_PRIVATE_USE(c)) { + *p=(uint16_t)(0xc00|b); + } else { + *p=(uint16_t)(0x800|b); + } + + /* check that this Unicode code point was still unassigned */ + if(old>=0x100) { + if(flag>=0) { + fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", + (int)c, b, old&0xff); + return FALSE; + } else if(VERBOSE) { + fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", + (int)c, b, old&0xff); + } + /* continue after the above warning if the precision of the mapping is unspecified */ + } + + return TRUE; +} + +static UBool +MBCSAddFromUnicode(MBCSData *mbcsData, + const uint8_t *bytes, int32_t length, + UChar32 c, + int8_t flag) { + char buffer[10]; + const uint8_t *pb; + uint8_t *stage3, *p; + uint32_t idx, b, old, stage3Index; + int32_t maxCharLength; + + uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap; + + maxCharLength=mbcsData->ucm->states.maxCharLength; + + if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO && + (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf)) + ) { + fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n", + (int)c, printBytes(buffer, bytes, length)); + return FALSE; + } + + if(flag==1 && length==1 && *bytes==0) { + fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n", + (int)c, *bytes); + return FALSE; + } + + /* + * Walk down the triple-stage compact array ("trie") and + * allocate parts as necessary. + * Note that the first stage 2 and 3 blocks are reserved for + * all-unassigned mappings. + * We assume that length<=maxCharLength and that c<=0x10ffff. + */ + stage3=mbcsData->fromUBytes; + + /* inspect stage 1 */ + idx=c>>MBCS_STAGE_1_SHIFT; + if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { + nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); + } else { + nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; + } + if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { + /* allocate another block in stage 2 */ + newBlock=mbcsData->stage2Top; + if(mbcsData->utf8Friendly) { + min=newBlock-nextOffset; /* minimum block start with overlap */ + while(min<newBlock && mbcsData->stage2[newBlock-1]==0) { + --newBlock; + } + } + newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; + + if(newTop>MBCS_MAX_STAGE_2_TOP) { + fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n", + (int)c, printBytes(buffer, bytes, length)); + return FALSE; + } + + /* + * each stage 2 block contains 64 32-bit words: + * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index + */ + i=idx; + while(newBlock<newTop) { + mbcsData->stage1[i++]=(uint16_t)newBlock; + newBlock+=MBCS_STAGE_2_BLOCK_SIZE; + } + mbcsData->stage2Top=newTop; /* ==newBlock */ + } + + /* inspect stage 2 */ + idx=mbcsData->stage1[idx]+nextOffset; + if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { + /* allocate 64-entry blocks for UTF-8-friendly lookup */ + blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength; + nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; + } else { + blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; + nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; + } + if(mbcsData->stage2[idx]==0) { + /* allocate another block in stage 3 */ + newBlock=mbcsData->stage3Top; + if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) { + /* + * Overlap stage 3 blocks only in multiples of 16-entry blocks + * because of the indexing granularity in stage 2. + */ + maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength; + for(overlap=0; + overlap<maxOverlap && stage3[newBlock-overlap-1]==0; + ++overlap) {} + + overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength; + overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength; + + newBlock-=overlap; + } + newTop=newBlock+blockSize; + + if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) { + fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n", + (int)c, printBytes(buffer, bytes, length)); + return FALSE; + } + /* each block has 16*maxCharLength bytes */ + i=idx; + while(newBlock<newTop) { + mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength; + newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; + } + mbcsData->stage3Top=newTop; /* ==newBlock */ + } + + stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx]; + + /* Build an alternate, UTF-8-friendly stage table as well. */ + if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { + /* Overflow for uint16_t entries in stageUTF8? */ + if(stage3Index>0xffff) { + /* + * This can occur only if the mapping table is nearly perfectly filled and if + * utf8Max==0xffff. + * (There is no known charset like this. GB 18030 does not map + * surrogate code points and LMBCS does not map 256 PUA code points.) + * + * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff + * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT) + * because we have a sorted table and there are at most MBCS_UTF8_LIMIT + * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also + * the initial all-unassigned block in stage3. + * + * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff. + * + * (See svn revision 20866 of the markus/ucnvutf8 feature branch for + * code that causes MBCSAddTable() to rebuild the table not utf8Friendly + * in case of overflow. That code was not tested.) + */ + mbcsData->utf8Max=0xfeff; + } else { + /* + * The stage 3 block has been assigned for the regular trie. + * Just copy its index into stageUTF8[], without the granularity. + */ + mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index; + } + } + + /* write the codepage bytes into stage 3 and get the previous bytes */ + + /* assemble the bytes into a single integer */ + pb=bytes; + b=0; + switch(length) { + case 4: + b=*pb++; + U_FALLTHROUGH; + case 3: + b=(b<<8)|*pb++; + U_FALLTHROUGH; + case 2: + b=(b<<8)|*pb++; + U_FALLTHROUGH; + case 1: + default: + b=(b<<8)|*pb++; + break; + } + + old=0; + p=stage3+(stage3Index+nextOffset)*maxCharLength; + switch(maxCharLength) { + case 2: + old=*(uint16_t *)p; + *(uint16_t *)p=(uint16_t)b; + break; + case 3: + old=(uint32_t)*p<<16; + *p++=(uint8_t)(b>>16); + old|=(uint32_t)*p<<8; + *p++=(uint8_t)(b>>8); + old|=*p; + *p=(uint8_t)b; + break; + case 4: + old=*(uint32_t *)p; + *(uint32_t *)p=b; + break; + default: + /* will never occur */ + break; + } + + /* check that this Unicode code point was still unassigned */ + if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) { + if(flag>=0) { + fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", + (int)c, printBytes(buffer, bytes, length), (int)old); + return FALSE; + } else if(VERBOSE) { + fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", + (int)c, printBytes(buffer, bytes, length), (int)old); + } + /* continue after the above warning if the precision of the mapping is + unspecified */ + } + if(flag<=0) { + /* set the roundtrip flag */ + mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf))); + } + + return TRUE; +} + +U_CFUNC UBool +MBCSOkForBaseFromUnicode(const MBCSData *mbcsData, + const uint8_t *bytes, int32_t length, + UChar32 c, int8_t flag) { + /* + * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under + * the following conditions: + * + * - a |2 SUB mapping for <subchar1> (no base table data structure for them) + * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry) + * - a multi-byte mapping with leading 0x00 bytes (no explicit length field) + * + * Some of these tests are redundant with ucm_mappingType(). + */ + if( (flag==2 && length==1) || + (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */ + (flag<=1 && length>1 && bytes[0]==0) + ) { + return FALSE; + } + + /* + * Additional restrictions for UTF-8-friendly fromUnicode tables, + * for code points up to the maximum optimized one: + * + * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry) + * - any |1 fallback (no roundtrip flags in the optimized table) + */ + if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) { + return FALSE; + } + + /* + * If we omit the fromUnicode data, we can only store roundtrips there + * because only they are recoverable from the toUnicode data. + * Fallbacks must go into the extension table. + */ + if(mbcsData->omitFromU && flag!=0) { + return FALSE; + } + + /* All other mappings do fit into the base table. */ + return TRUE; +} + +U_CDECL_BEGIN +/* we can assume that the table only contains 1:1 mappings with <=4 bytes each */ +static UBool +MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { + MBCSData *mbcsData; + UCMapping *m; + UChar32 c; + int32_t i, maxCharLength; + int8_t f; + UBool isOK, utf8Friendly; + + staticData->unicodeMask=table->unicodeMask; + if(staticData->unicodeMask==3) { + fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n"); + return FALSE; + } + + staticData->conversionType=UCNV_MBCS; + + mbcsData=(MBCSData *)cnvData; + maxCharLength=mbcsData->ucm->states.maxCharLength; + + /* + * Generation of UTF-8-friendly data requires + * a sorted table, which makeconv generates when explicit precision + * indicators are used. + */ + mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0); + if(utf8Friendly) { + mbcsData->utf8Max=MBCS_UTF8_MAX; + if(SMALL && maxCharLength>1) { + mbcsData->omitFromU=TRUE; + } + } else { + mbcsData->utf8Max=0; + if(SMALL && maxCharLength>1) { + fprintf(stderr, + "makeconv warning: --small not available for .ucm files without |0 etc.\n"); + } + } + + if(!MBCSStartMappings(mbcsData)) { + return FALSE; + } + + staticData->hasFromUnicodeFallback=FALSE; + staticData->hasToUnicodeFallback=FALSE; + + isOK=TRUE; + + m=table->mappings; + for(i=0; i<table->mappingsLength; ++m, ++i) { + c=m->u; + f=m->f; + + /* + * Small optimization for --small .cnv files: + * + * If there are fromUnicode mappings above MBCS_UTF8_MAX, + * then the file size will be smaller if we make utf8Max larger + * because the size increase in stageUTF8 will be more than balanced by + * how much less of stage2 needs to be stored. + * + * There is no point in doing this incrementally because stageUTF8 + * uses so much less space per block than stage2, + * so we immediately increase utf8Max to 0xffff. + * + * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode() + * sets it to that value when stageUTF8 overflows. + */ + if( mbcsData->omitFromU && f<=1 && + mbcsData->utf8Max<c && c<=0xffff && + mbcsData->utf8Max<0xfeff + ) { + mbcsData->utf8Max=0xffff; + } + + switch(f) { + case -1: + /* there was no precision/fallback indicator */ + /* fall through to set the mappings */ + U_FALLTHROUGH; + case 0: + /* set roundtrip mappings */ + isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); + + if(maxCharLength==1) { + isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); + } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { + isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); + } else { + m->f|=MBCS_FROM_U_EXT_FLAG; + m->moveFlag=UCM_MOVE_TO_EXT; + } + break; + case 1: + /* set only a fallback mapping from Unicode to codepage */ + if(maxCharLength==1) { + staticData->hasFromUnicodeFallback=TRUE; + isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); + } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { + staticData->hasFromUnicodeFallback=TRUE; + isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); + } else { + m->f|=MBCS_FROM_U_EXT_FLAG; + m->moveFlag=UCM_MOVE_TO_EXT; + } + break; + case 2: + /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */ + if(maxCharLength>1 && m->bLen==1) { + m->f|=MBCS_FROM_U_EXT_FLAG; + m->moveFlag=UCM_MOVE_TO_EXT; + } + break; + case 3: + /* set only a fallback mapping from codepage to Unicode */ + staticData->hasToUnicodeFallback=TRUE; + isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); + break; + case 4: + /* move "good one-way" mappings to the extension table */ + m->f|=MBCS_FROM_U_EXT_FLAG; + m->moveFlag=UCM_MOVE_TO_EXT; + break; + default: + /* will not occur because the parser checked it already */ + fprintf(stderr, "error: illegal fallback indicator %d\n", f); + return FALSE; + } + } + + MBCSPostprocess(mbcsData, staticData); + + return isOK; +} +U_CDECL_END +static UBool +transformEUC(MBCSData *mbcsData) { + uint8_t *p8; + uint32_t i, value, oldLength, old3Top; + uint8_t b; + + oldLength=mbcsData->ucm->states.maxCharLength; + if(oldLength<3) { + return FALSE; + } + + old3Top=mbcsData->stage3Top; + + /* careful: 2-byte and 4-byte codes are stored in platform endianness! */ + + /* test if all first bytes are in {0, 0x8e, 0x8f} */ + p8=mbcsData->fromUBytes; + +#if !U_IS_BIG_ENDIAN + if(oldLength==4) { + p8+=3; + } +#endif + + for(i=0; i<old3Top; i+=oldLength) { + b=p8[i]; + if(b!=0 && b!=0x8e && b!=0x8f) { + /* some first byte does not fit the EUC pattern, nothing to be done */ + return FALSE; + } + } + /* restore p if it was modified above */ + p8=mbcsData->fromUBytes; + + /* modify outputType and adjust stage3Top */ + mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3); + mbcsData->stage3Top=(old3Top*(oldLength-1))/oldLength; + + /* + * EUC-encode all byte sequences; + * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly, + * p. 161 in chapter 4 "Encoding Methods" + * + * This also must reverse the byte order if the platform is little-endian! + */ + if(oldLength==3) { + uint16_t *q=(uint16_t *)p8; + for(i=0; i<old3Top; i+=oldLength) { + b=*p8; + if(b==0) { + /* short sequences are stored directly */ + /* code set 0 or 1 */ + (*q++)=(uint16_t)((p8[1]<<8)|p8[2]); + } else if(b==0x8e) { + /* code set 2 */ + (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]); + } else /* b==0x8f */ { + /* code set 3 */ + (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f)); + } + p8+=3; + } + } else /* oldLength==4 */ { + uint8_t *q=p8; + uint32_t *p32=(uint32_t *)p8; + for(i=0; i<old3Top; i+=4) { + value=(*p32++); + if(value<=0xffffff) { + /* short sequences are stored directly */ + /* code set 0 or 1 */ + (*q++)=(uint8_t)(value>>16); + (*q++)=(uint8_t)(value>>8); + (*q++)=(uint8_t)value; + } else if(value<=0x8effffff) { + /* code set 2 */ + (*q++)=(uint8_t)((value>>16)&0x7f); + (*q++)=(uint8_t)(value>>8); + (*q++)=(uint8_t)value; + } else /* first byte is 0x8f */ { + /* code set 3 */ + (*q++)=(uint8_t)(value>>16); + (*q++)=(uint8_t)((value>>8)&0x7f); + (*q++)=(uint8_t)value; + } + } + } + + return TRUE; +} + +/* + * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far + * as possible. Overlapping is done on unassigned head and tail + * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. + * Stage 1 indexes need to be adjusted accordingly. + * This function is very similar to genprops/store.c/compactStage(). + */ +static void +singleCompactStage2(MBCSData *mbcsData) { + /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ + uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; + uint16_t i, start, prevEnd, newStart; + + /* enter the all-unassigned first stage 2 block into the map */ + map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; + + /* begin with the first block after the all-unassigned one */ + start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; + while(start<mbcsData->stage2Top) { + prevEnd=(uint16_t)(newStart-1); + + /* find the size of the overlap */ + for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {} + + if(i>0) { + map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); + + /* move the non-overlapping indexes to their new positions */ + start+=i; + for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { + mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; + } + } else if(newStart<start) { + /* move the indexes to their new positions */ + map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; + for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { + mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; + } + } else /* no overlap && newStart==start */ { + map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; + start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; + } + } + + /* adjust stage2Top */ + if(VERBOSE && newStart<mbcsData->stage2Top) { + printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", + (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, + (long)(mbcsData->stage2Top-newStart)*2); + } + mbcsData->stage2Top=newStart; + + /* now adjust stage 1 */ + for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { + mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; + } +} + +/* Compact stage 3 for SBCS - same algorithm as above. */ +static void +singleCompactStage3(MBCSData *mbcsData) { + uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes; + + /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */ + uint16_t map[0x1000]; + uint16_t i, start, prevEnd, newStart; + + /* enter the all-unassigned first stage 3 block into the map */ + map[0]=0; + + /* begin with the first block after the all-unassigned one */ + start=newStart=16; + while(start<mbcsData->stage3Top) { + prevEnd=(uint16_t)(newStart-1); + + /* find the size of the overlap */ + for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {} + + if(i>0) { + map[start>>4]=(uint16_t)(newStart-i); + + /* move the non-overlapping indexes to their new positions */ + start+=i; + for(i=(uint16_t)(16-i); i>0; --i) { + stage3[newStart++]=stage3[start++]; + } + } else if(newStart<start) { + /* move the indexes to their new positions */ + map[start>>4]=newStart; + for(i=16; i>0; --i) { + stage3[newStart++]=stage3[start++]; + } + } else /* no overlap && newStart==start */ { + map[start>>4]=start; + start=newStart+=16; + } + } + + /* adjust stage3Top */ + if(VERBOSE && newStart<mbcsData->stage3Top) { + printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n", + (unsigned long)mbcsData->stage3Top, (unsigned long)newStart, + (long)(mbcsData->stage3Top-newStart)*2); + } + mbcsData->stage3Top=newStart; + + /* now adjust stage 2 */ + for(i=0; i<mbcsData->stage2Top; ++i) { + mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4]; + } +} + +/* + * Compact stage 2 by overlapping adjacent stage 2 blocks as far + * as possible. Overlapping is done on unassigned head and tail + * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. + * Stage 1 indexes need to be adjusted accordingly. + * This function is very similar to genprops/store.c/compactStage(). + */ +static void +compactStage2(MBCSData *mbcsData) { + /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ + uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; + uint16_t i, start, prevEnd, newStart; + + /* enter the all-unassigned first stage 2 block into the map */ + map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; + + /* begin with the first block after the all-unassigned one */ + start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; + while(start<mbcsData->stage2Top) { + prevEnd=(uint16_t)(newStart-1); + + /* find the size of the overlap */ + for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {} + + if(i>0) { + map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); + + /* move the non-overlapping indexes to their new positions */ + start+=i; + for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { + mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; + } + } else if(newStart<start) { + /* move the indexes to their new positions */ + map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; + for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { + mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; + } + } else /* no overlap && newStart==start */ { + map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; + start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; + } + } + + /* adjust stage2Top */ + if(VERBOSE && newStart<mbcsData->stage2Top) { + printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", + (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, + (long)(mbcsData->stage2Top-newStart)*4); + } + mbcsData->stage2Top=newStart; + + /* now adjust stage 1 */ + for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { + mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; + } +} + +static void +MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData * /*staticData*/) { + UCMStates *states; + int32_t maxCharLength, stage3Width; + + states=&mbcsData->ucm->states; + stage3Width=maxCharLength=states->maxCharLength; + + ucm_optimizeStates(states, + &mbcsData->unicodeCodeUnits, + mbcsData->toUFallbacks, mbcsData->countToUFallbacks, + VERBOSE); + + /* try to compact the fromUnicode tables */ + if(transformEUC(mbcsData)) { + --stage3Width; + } + + /* + * UTF-8-friendly tries are built precompacted, to cope with variable + * stage 3 allocation block sizes. + * + * Tables without precision indicators cannot be built that way, + * because if a block was overlapped with a previous one, then a smaller + * code point for the same block would not fit. + * Therefore, such tables are not marked UTF-8-friendly and must be + * compacted after all mappings are entered. + */ + if(!mbcsData->utf8Friendly) { + if(maxCharLength==1) { + singleCompactStage3(mbcsData); + singleCompactStage2(mbcsData); + } else { + compactStage2(mbcsData); + } + } + + if(VERBOSE) { + /*uint32_t c, i1, i2, i2Limit, i3;*/ + + printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n", + maxCharLength==1 ? "16" : "32", + (unsigned long)mbcsData->stage2Top, + (unsigned long)mbcsData->stage2Top); + printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n", + (int)stage3Width, + (unsigned long)mbcsData->stage3Top/stage3Width, + (unsigned long)mbcsData->stage3Top/stage3Width); +#if 0 + c=0; + for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) { + i2=mbcsData->stage1[i1]; + if(i2==0) { + c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE; + continue; + } + for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) { + if(maxCharLength==1) { + i3=mbcsData->stage2Single[i2]; + } else { + i3=(uint16_t)mbcsData->stage2[i2]; + } + if(i3==0) { + c+=MBCS_STAGE_3_BLOCK_SIZE; + continue; + } + printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n", + (unsigned long)c, + (unsigned long)i1, + (unsigned long)i2, + (unsigned long)i3); + c+=MBCS_STAGE_3_BLOCK_SIZE; + } + } +#endif + } +} + +U_CDECL_BEGIN +static uint32_t +MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, + UNewDataMemory *pData, int32_t tableType) { + MBCSData *mbcsData=(MBCSData *)cnvData; + uint32_t stage2Start, stage2Length; + uint32_t top, stageUTF8Length=0; + int32_t i, stage1Top; + uint32_t headerLength; + + _MBCSHeader header=UCNV_MBCS_HEADER_INITIALIZER; + + stage2Length=mbcsData->stage2Top; + if(mbcsData->omitFromU) { + /* find how much of stage2 can be omitted */ + int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1; + uint32_t st2=0; /*initialized it to avoid compiler warnings */ + + i=utf8Limit>>MBCS_STAGE_1_SHIFT; + if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) { + /* utf8Limit is in the middle of an existing stage 2 block */ + stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK); + } else { + /* find the last stage2 block with mappings before utf8Limit */ + while(i>0 && (st2=mbcsData->stage1[--i])==0) {} + /* stage2 up to the end of this block corresponds to stageUTF8 */ + stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE; + } + header.options|=MBCS_OPT_NO_FROM_U; + header.fullStage2Length=stage2Length; + stage2Length-=stage2Start; + if(VERBOSE) { + printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n", + (unsigned long)stage2Start, + (unsigned long)mbcsData->stage2Top, + (unsigned long)mbcsData->stage3Top); + printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top); + } + } else { + stage2Start=0; + } + + if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { + stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */ + } else { + stage1Top=0x40; /* 0x40==64 */ + } + + /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */ + if(mbcsData->ucm->states.maxCharLength==1) { + for(i=0; i<stage1Top; ++i) { + mbcsData->stage1[i]+=(uint16_t)stage1Top; + } + + /* stage2Top/Length have counted 16-bit results, now we need to count bytes */ + /* also round up to a multiple of 4 bytes */ + stage2Length=(stage2Length*2+1)&~1; + + /* stage3Top has counted 16-bit results, now we need to count bytes */ + mbcsData->stage3Top*=2; + + if(mbcsData->utf8Friendly) { + header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */ + } + } else { + for(i=0; i<stage1Top; ++i) { + mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */ + } + + /* stage2Top/Length have counted 32-bit results, now we need to count bytes */ + stage2Length*=4; + /* leave stage2Start counting 32-bit units */ + + if(mbcsData->utf8Friendly) { + stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT; + header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */ + } + + /* stage3Top has already counted bytes */ + } + + /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */ + mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3; + + /* fill the header */ + if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) { + header.version[0]=5; + if(header.options&MBCS_OPT_NO_FROM_U) { + headerLength=10; /* include fullStage2Length */ + } else { + headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */ + } + } else { + header.version[0]=4; + headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */ + } + header.version[1]=4; + /* header.version[2] set above for utf8Friendly data */ + + header.options|=(uint32_t)headerLength; + + header.countStates=mbcsData->ucm->states.countStates; + header.countToUFallbacks=mbcsData->countToUFallbacks; + + header.offsetToUCodeUnits= + headerLength*4+ + mbcsData->ucm->states.countStates*1024+ + mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback); + header.offsetFromUTable= + header.offsetToUCodeUnits+ + mbcsData->ucm->states.countToUCodeUnits*2; + header.offsetFromUBytes= + header.offsetFromUTable+ + stage1Top*2+ + stage2Length; + header.fromUBytesLength=mbcsData->stage3Top; + + top=header.offsetFromUBytes+stageUTF8Length*2; + if(!(header.options&MBCS_OPT_NO_FROM_U)) { + top+=header.fromUBytesLength; + } + + header.flags=(uint8_t)(mbcsData->ucm->states.outputType); + + if(tableType&TABLE_EXT) { + if(top>0xffffff) { + fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top); + return 0; + } + + header.flags|=top<<8; + } + + /* write the MBCS data */ + udata_writeBlock(pData, &header, headerLength*4); + udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024); + udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback)); + udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2); + udata_writeBlock(pData, mbcsData->stage1, stage1Top*2); + if(mbcsData->ucm->states.maxCharLength==1) { + udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length); + } else { + udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length); + } + if(!(header.options&MBCS_OPT_NO_FROM_U)) { + udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top); + } + + if(stageUTF8Length>0) { + udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2); + } + + /* return the number of bytes that should have been written */ + return top; +} +U_CDECL_END |