diff options
Diffstat (limited to '')
-rw-r--r-- | js/src/frontend/ObjLiteral.h | 562 |
1 files changed, 562 insertions, 0 deletions
diff --git a/js/src/frontend/ObjLiteral.h b/js/src/frontend/ObjLiteral.h new file mode 100644 index 0000000000..bc51bdd262 --- /dev/null +++ b/js/src/frontend/ObjLiteral.h @@ -0,0 +1,562 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sw=2 et tw=0 ft=c: + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef frontend_ObjLiteral_h +#define frontend_ObjLiteral_h + +#include "mozilla/EndianUtils.h" +#include "mozilla/EnumSet.h" +#include "mozilla/Span.h" + +#include "frontend/ParserAtom.h" +#include "js/AllocPolicy.h" +#include "js/GCPolicyAPI.h" +#include "js/Value.h" +#include "js/Vector.h" + +/* + * [SMDOC] ObjLiteral (Object Literal) Handling + * ============================================ + * + * The `ObjLiteral*` family of classes defines an infastructure to handle + * object literals as they are encountered at parse time and translate them + * into objects that are attached to the bytecode. + * + * The object-literal "instructions", whose opcodes are defined in + * `ObjLiteralOpcode` below, each specify one key (atom property name, or + * numeric index) and one value. An `ObjLiteralWriter` buffers a linear + * sequence of such instructions, along with a side-table of atom references. + * The writer stores a compact binary format that is then interpreted by the + * `ObjLiteralReader` to construct an object according to the instructions. + * + * This may seem like an odd dance: create an intermediate data structure that + * specifies key/value pairs, then later build the object. Why not just do so + * directly, as we parse? In fact, we used to do this. However, for several + * good reasons, we want to avoid allocating or touching GC objects at all + * *during* the parse. We thus use a sequence of ObjLiteral instructions as an + * intermediate data structure to carry object literal contents from parse to + * the time at which we *can* allocate objects. + * + * (The original intent was to allow for ObjLiteral instructions to actually be + * invoked by a new JS opcode, JSOp::ObjLiteral, thus replacing the more + * general opcode sequences sometimes generated to fill in objects and removing + * the need to attach actual objects to JSOp::Object or JSOp::NewObject. + * However, this was far too invasive and led to performance regressions, so + * currently ObjLiteral only carries literals as far as the end of the parse + * pipeline, when all GC things are allocated.) + * + * ObjLiteral data structures are used to represent object literals whenever + * they are "compatible". See + * BytecodeEmitter::isPropertyListObjLiteralCompatible for the precise + * conditions; in brief, we can represent object literals with "primitive" + * (numeric, boolean, string, null/undefined) values, and "normal" + * (non-computed) object names. We can also represent arrays with the same + * value restrictions. We cannot represent nested objects. We use ObjLiteral in + * two different ways: + * + * - To build a template object, when we can support the properties but not the + * keys. + * - To build the actual result object, when we support the properties and the + * keys and this is a JSOp::Object case (see below). + * + * Design and Performance Considerations + * ------------------------------------- + * + * As a brief overview, there are a number of opcodes that allocate objects: + * + * - JSOp::NewInit allocates a new empty `{}` object. + * + * - JSOp::NewObject, with an object as an argument (held by the script data + * side-tables), allocates a new object with `undefined` property values but + * with a defined set of properties. The given object is used as a + * *template*. + * + * - JSOp::Object, with an object as argument, instructs the runtime to + * literally return the object argument as the result. This is thus only an + * "allocation" in the sense that the object was originally allocated when + * the script data / bytecode was created. It is only used when we know for + * sure that the script, and this program point within the script, will run + * *once*. (See the `treatAsRunOnce` flag on JSScript.) + * + * An operation occurs in a "singleton context", according to the parser, if it + * will only ever execute once. In particular, this happens when (i) the script + * is a "run-once" script, which is usually the case for e.g. top-level scripts + * of web-pages (they run on page load, but no function or handle wraps or + * refers to the script so it can't be invoked again), and (ii) the operation + * itself is not within a loop or function in that run-once script. + * + * When we encounter an object literal, we decide which opcode to use, and we + * construct the ObjLiteral and the bytecode using its result appropriately: + * + * - If in a singleton context, and if we support the values, we use + * JSOp::Object and we build the ObjLiteral instructions with values. + * - Otherwise, if we support the keys but not the values, or if we are not + * in a singleton context, we use JSOp::NewObject. In this case, the initial + * opcode only creates an object with empty values, so BytecodeEmitter then + * generates bytecode to set the values appropriately. + * - Otherwise, we generate JSOp::NewInit and bytecode to add properties one at + * a time. This will always work, but is the slowest and least + * memory-efficient option. + */ + +namespace js { + +class JSONPrinter; + +namespace frontend { +struct CompilationAtomCache; +struct BaseCompilationStencil; +class StencilXDR; +} // namespace frontend + +// Object-literal instruction opcodes. An object literal is constructed by a +// straight-line sequence of these ops, each adding one property to the +// object. +enum class ObjLiteralOpcode : uint8_t { + INVALID = 0, + + ConstValue = 1, // numeric types only. + ConstAtom = 2, + Null = 3, + Undefined = 4, + True = 5, + False = 6, + + MAX = False, +}; + +// Flags that are associated with a sequence of object-literal instructions. +// (These become bitflags by wrapping with EnumSet below.) +enum class ObjLiteralFlag : uint8_t { + // If set, this object is an array. + Array = 1, + + // If set, this is an object literal in a singleton context and property + // values are included. See also JSOp::Object. + Singleton = 2, +}; + +using ObjLiteralFlags = mozilla::EnumSet<ObjLiteralFlag>; + +inline bool ObjLiteralOpcodeHasValueArg(ObjLiteralOpcode op) { + return op == ObjLiteralOpcode::ConstValue; +} + +inline bool ObjLiteralOpcodeHasAtomArg(ObjLiteralOpcode op) { + return op == ObjLiteralOpcode::ConstAtom; +} + +struct ObjLiteralReaderBase; + +// Property name (as TaggedParserAtomIndex) or an integer index. Only used for +// object-type literals; array literals do not require the index (the sequence +// is always dense, with no holes, so the index is implicit). For the latter +// case, we have a `None` placeholder. +struct ObjLiteralKey { + private: + uint32_t value_; + + enum ObjLiteralKeyType { + None, + AtomIndex, + ArrayIndex, + }; + + ObjLiteralKeyType type_; + + ObjLiteralKey(uint32_t value, ObjLiteralKeyType ty) + : value_(value), type_(ty) {} + + public: + ObjLiteralKey() : ObjLiteralKey(0, None) {} + ObjLiteralKey(uint32_t value, bool isArrayIndex) + : ObjLiteralKey(value, isArrayIndex ? ArrayIndex : AtomIndex) {} + ObjLiteralKey(const ObjLiteralKey& other) = default; + + static ObjLiteralKey fromPropName(frontend::TaggedParserAtomIndex atomIndex) { + return ObjLiteralKey(*atomIndex.rawData(), false); + } + static ObjLiteralKey fromArrayIndex(uint32_t index) { + return ObjLiteralKey(index, true); + } + static ObjLiteralKey none() { return ObjLiteralKey(); } + + bool isNone() const { return type_ == None; } + bool isAtomIndex() const { return type_ == AtomIndex; } + bool isArrayIndex() const { return type_ == ArrayIndex; } + + frontend::TaggedParserAtomIndex getAtomIndex() const { + MOZ_ASSERT(isAtomIndex()); + return frontend::TaggedParserAtomIndex::fromRaw(value_); + } + uint32_t getArrayIndex() const { + MOZ_ASSERT(isArrayIndex()); + return value_; + } + + uint32_t rawIndex() const { return value_; } +}; + +struct ObjLiteralWriterBase { + protected: + friend struct ObjLiteralReaderBase; // for access to mask and shift. + static const uint32_t ATOM_INDEX_MASK = 0x7fffffff; + // If set, the atom index field is an array index, not an atom index. + static const uint32_t INDEXED_PROP = 0x80000000; + + public: + using CodeVector = Vector<uint8_t, 64, js::SystemAllocPolicy>; + + protected: + CodeVector code_; + + public: + ObjLiteralWriterBase() = default; + + uint32_t curOffset() const { return code_.length(); } + + private: + MOZ_MUST_USE bool pushByte(JSContext* cx, uint8_t data) { + if (!code_.append(data)) { + js::ReportOutOfMemory(cx); + return false; + } + return true; + } + + MOZ_MUST_USE bool prepareBytes(JSContext* cx, size_t len, uint8_t** p) { + size_t offset = code_.length(); + if (!code_.growByUninitialized(len)) { + js::ReportOutOfMemory(cx); + return false; + } + *p = &code_[offset]; + return true; + } + + template <typename T> + MOZ_MUST_USE bool pushRawData(JSContext* cx, T data) { + uint8_t* p = nullptr; + if (!prepareBytes(cx, sizeof(T), &p)) { + return false; + } + mozilla::NativeEndian::copyAndSwapToLittleEndian(reinterpret_cast<void*>(p), + &data, 1); + return true; + } + + public: + MOZ_MUST_USE bool pushOpAndName(JSContext* cx, ObjLiteralOpcode op, + ObjLiteralKey key) { + uint8_t opdata = static_cast<uint8_t>(op); + uint32_t data = key.rawIndex() | (key.isArrayIndex() ? INDEXED_PROP : 0); + return pushByte(cx, opdata) && pushRawData(cx, data); + } + + MOZ_MUST_USE bool pushValueArg(JSContext* cx, const JS::Value& value) { + MOZ_ASSERT(value.isNumber() || value.isNullOrUndefined() || + value.isBoolean()); + uint64_t data = value.asRawBits(); + return pushRawData(cx, data); + } + + MOZ_MUST_USE bool pushAtomArg(JSContext* cx, + frontend::TaggedParserAtomIndex atomIndex) { + return pushRawData(cx, *atomIndex.rawData()); + } +}; + +// An object-literal instruction writer. This class, held by the bytecode +// emitter, keeps a sequence of object-literal instructions emitted as object +// literal expressions are parsed. It allows the user to 'begin' and 'end' +// straight-line sequences, returning the offsets for this range of instructions +// within the writer. +struct ObjLiteralWriter : private ObjLiteralWriterBase { + public: + ObjLiteralWriter() = default; + + void clear() { code_.clear(); } + + using CodeVector = typename ObjLiteralWriterBase::CodeVector; + + mozilla::Span<const uint8_t> getCode() const { return code_; } + ObjLiteralFlags getFlags() const { return flags_; } + + void beginObject(ObjLiteralFlags flags) { flags_ = flags; } + void setPropName(const frontend::ParserAtom* propName) { + // Only valid in object-mode. + MOZ_ASSERT(!flags_.contains(ObjLiteralFlag::Array)); + propName->markUsedByStencil(); + nextKey_ = ObjLiteralKey::fromPropName(propName->toIndex()); + } + void setPropIndex(uint32_t propIndex) { + // Only valid in object-mode. + MOZ_ASSERT(!flags_.contains(ObjLiteralFlag::Array)); + MOZ_ASSERT(propIndex <= ATOM_INDEX_MASK); + nextKey_ = ObjLiteralKey::fromArrayIndex(propIndex); + } + void beginDenseArrayElements() { + // Only valid in array-mode. + MOZ_ASSERT(flags_.contains(ObjLiteralFlag::Array)); + // Dense array element sequences do not use the keys; the indices are + // implicit. + nextKey_ = ObjLiteralKey::none(); + } + + MOZ_MUST_USE bool propWithConstNumericValue(JSContext* cx, + const JS::Value& value) { + MOZ_ASSERT(value.isNumber()); + return pushOpAndName(cx, ObjLiteralOpcode::ConstValue, nextKey_) && + pushValueArg(cx, value); + } + MOZ_MUST_USE bool propWithAtomValue(JSContext* cx, + const frontend::ParserAtom* value) { + value->markUsedByStencil(); + return pushOpAndName(cx, ObjLiteralOpcode::ConstAtom, nextKey_) && + pushAtomArg(cx, value->toIndex()); + } + MOZ_MUST_USE bool propWithNullValue(JSContext* cx) { + return pushOpAndName(cx, ObjLiteralOpcode::Null, nextKey_); + } + MOZ_MUST_USE bool propWithUndefinedValue(JSContext* cx) { + return pushOpAndName(cx, ObjLiteralOpcode::Undefined, nextKey_); + } + MOZ_MUST_USE bool propWithTrueValue(JSContext* cx) { + return pushOpAndName(cx, ObjLiteralOpcode::True, nextKey_); + } + MOZ_MUST_USE bool propWithFalseValue(JSContext* cx) { + return pushOpAndName(cx, ObjLiteralOpcode::False, nextKey_); + } + + static bool arrayIndexInRange(int32_t i) { + return i >= 0 && static_cast<uint32_t>(i) <= ATOM_INDEX_MASK; + } + +#if defined(DEBUG) || defined(JS_JITSPEW) + void dump(); + void dump(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); + void dumpFields(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); +#endif + + private: + ObjLiteralFlags flags_; + ObjLiteralKey nextKey_; +}; + +struct ObjLiteralReaderBase { + private: + mozilla::Span<const uint8_t> data_; + size_t cursor_; + + MOZ_MUST_USE bool readByte(uint8_t* b) { + if (cursor_ + 1 > data_.Length()) { + return false; + } + *b = *data_.From(cursor_).data(); + cursor_ += 1; + return true; + } + + MOZ_MUST_USE bool readBytes(size_t size, const uint8_t** p) { + if (cursor_ + size > data_.Length()) { + return false; + } + *p = data_.From(cursor_).data(); + cursor_ += size; + return true; + } + + template <typename T> + MOZ_MUST_USE bool readRawData(T* data) { + const uint8_t* p = nullptr; + if (!readBytes(sizeof(T), &p)) { + return false; + } + mozilla::NativeEndian::copyAndSwapFromLittleEndian( + data, reinterpret_cast<const void*>(p), 1); + return true; + } + + public: + explicit ObjLiteralReaderBase(mozilla::Span<const uint8_t> data) + : data_(data), cursor_(0) {} + + MOZ_MUST_USE bool readOpAndKey(ObjLiteralOpcode* op, ObjLiteralKey* key) { + uint8_t opbyte; + if (!readByte(&opbyte)) { + return false; + } + if (MOZ_UNLIKELY(opbyte > static_cast<uint8_t>(ObjLiteralOpcode::MAX))) { + return false; + } + *op = static_cast<ObjLiteralOpcode>(opbyte); + + uint32_t data; + if (!readRawData(&data)) { + return false; + } + bool isArray = data & ObjLiteralWriterBase::INDEXED_PROP; + uint32_t rawIndex = data & ~ObjLiteralWriterBase::INDEXED_PROP; + *key = ObjLiteralKey(rawIndex, isArray); + return true; + } + + MOZ_MUST_USE bool readValueArg(JS::Value* value) { + uint64_t data; + if (!readRawData(&data)) { + return false; + } + *value = JS::Value::fromRawBits(data); + return true; + } + + MOZ_MUST_USE bool readAtomArg(frontend::TaggedParserAtomIndex* atomIndex) { + return readRawData(atomIndex->rawData()); + } +}; + +// A single object-literal instruction, creating one property on an object. +struct ObjLiteralInsn { + private: + ObjLiteralOpcode op_; + ObjLiteralKey key_; + union Arg { + explicit Arg(uint64_t raw_) : raw(raw_) {} + + JS::Value constValue; + frontend::TaggedParserAtomIndex atomIndex; + uint64_t raw; + } arg_; + + public: + ObjLiteralInsn() : op_(ObjLiteralOpcode::INVALID), arg_(0) {} + ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key) + : op_(op), key_(key), arg_(0) { + MOZ_ASSERT(!hasConstValue()); + MOZ_ASSERT(!hasAtomIndex()); + } + ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key, const JS::Value& value) + : op_(op), key_(key), arg_(0) { + MOZ_ASSERT(hasConstValue()); + MOZ_ASSERT(!hasAtomIndex()); + arg_.constValue = value; + } + ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key, + frontend::TaggedParserAtomIndex atomIndex) + : op_(op), key_(key), arg_(0) { + MOZ_ASSERT(!hasConstValue()); + MOZ_ASSERT(hasAtomIndex()); + arg_.atomIndex = atomIndex; + } + ObjLiteralInsn(const ObjLiteralInsn& other) : ObjLiteralInsn() { + *this = other; + } + ObjLiteralInsn& operator=(const ObjLiteralInsn& other) { + op_ = other.op_; + key_ = other.key_; + arg_.raw = other.arg_.raw; + return *this; + } + + bool isValid() const { + return op_ > ObjLiteralOpcode::INVALID && op_ <= ObjLiteralOpcode::MAX; + } + + ObjLiteralOpcode getOp() const { + MOZ_ASSERT(isValid()); + return op_; + } + const ObjLiteralKey& getKey() const { + MOZ_ASSERT(isValid()); + return key_; + } + + bool hasConstValue() const { + MOZ_ASSERT(isValid()); + return ObjLiteralOpcodeHasValueArg(op_); + } + bool hasAtomIndex() const { + MOZ_ASSERT(isValid()); + return ObjLiteralOpcodeHasAtomArg(op_); + } + + JS::Value getConstValue() const { + MOZ_ASSERT(isValid()); + MOZ_ASSERT(hasConstValue()); + return arg_.constValue; + } + frontend::TaggedParserAtomIndex getAtomIndex() const { + MOZ_ASSERT(isValid()); + MOZ_ASSERT(hasAtomIndex()); + return arg_.atomIndex; + }; +}; + +// A reader that parses a sequence of object-literal instructions out of the +// encoded form. +struct ObjLiteralReader : private ObjLiteralReaderBase { + public: + explicit ObjLiteralReader(mozilla::Span<const uint8_t> data) + : ObjLiteralReaderBase(data) {} + + MOZ_MUST_USE bool readInsn(ObjLiteralInsn* insn) { + ObjLiteralOpcode op; + ObjLiteralKey key; + if (!readOpAndKey(&op, &key)) { + return false; + } + if (ObjLiteralOpcodeHasValueArg(op)) { + JS::Value value; + if (!readValueArg(&value)) { + return false; + } + *insn = ObjLiteralInsn(op, key, value); + return true; + } + if (ObjLiteralOpcodeHasAtomArg(op)) { + frontend::TaggedParserAtomIndex atomIndex; + if (!readAtomArg(&atomIndex)) { + return false; + } + *insn = ObjLiteralInsn(op, key, atomIndex); + return true; + } + *insn = ObjLiteralInsn(op, key); + return true; + } +}; + +JSObject* InterpretObjLiteral(JSContext* cx, + frontend::CompilationAtomCache& atomCache, + const mozilla::Span<const uint8_t> insns, + ObjLiteralFlags flags); + +class ObjLiteralStencil { + friend class frontend::StencilXDR; + + mozilla::Span<uint8_t> code_; + ObjLiteralFlags flags_; + + public: + ObjLiteralStencil() = default; + + ObjLiteralStencil(uint8_t* code, size_t length, const ObjLiteralFlags& flags) + : code_(mozilla::Span(code, length)), flags_(flags) {} + + JSObject* create(JSContext* cx, + frontend::CompilationAtomCache& atomCache) const; + +#if defined(DEBUG) || defined(JS_JITSPEW) + void dump(); + void dump(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); + void dumpFields(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); + +#endif +}; + +} // namespace js +#endif // frontend_ObjLiteral_h |