summaryrefslogtreecommitdiffstats
path: root/js/src/frontend/ObjLiteral.h
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/frontend/ObjLiteral.h')
-rw-r--r--js/src/frontend/ObjLiteral.h562
1 files changed, 562 insertions, 0 deletions
diff --git a/js/src/frontend/ObjLiteral.h b/js/src/frontend/ObjLiteral.h
new file mode 100644
index 0000000000..bc51bdd262
--- /dev/null
+++ b/js/src/frontend/ObjLiteral.h
@@ -0,0 +1,562 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sw=2 et tw=0 ft=c:
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef frontend_ObjLiteral_h
+#define frontend_ObjLiteral_h
+
+#include "mozilla/EndianUtils.h"
+#include "mozilla/EnumSet.h"
+#include "mozilla/Span.h"
+
+#include "frontend/ParserAtom.h"
+#include "js/AllocPolicy.h"
+#include "js/GCPolicyAPI.h"
+#include "js/Value.h"
+#include "js/Vector.h"
+
+/*
+ * [SMDOC] ObjLiteral (Object Literal) Handling
+ * ============================================
+ *
+ * The `ObjLiteral*` family of classes defines an infastructure to handle
+ * object literals as they are encountered at parse time and translate them
+ * into objects that are attached to the bytecode.
+ *
+ * The object-literal "instructions", whose opcodes are defined in
+ * `ObjLiteralOpcode` below, each specify one key (atom property name, or
+ * numeric index) and one value. An `ObjLiteralWriter` buffers a linear
+ * sequence of such instructions, along with a side-table of atom references.
+ * The writer stores a compact binary format that is then interpreted by the
+ * `ObjLiteralReader` to construct an object according to the instructions.
+ *
+ * This may seem like an odd dance: create an intermediate data structure that
+ * specifies key/value pairs, then later build the object. Why not just do so
+ * directly, as we parse? In fact, we used to do this. However, for several
+ * good reasons, we want to avoid allocating or touching GC objects at all
+ * *during* the parse. We thus use a sequence of ObjLiteral instructions as an
+ * intermediate data structure to carry object literal contents from parse to
+ * the time at which we *can* allocate objects.
+ *
+ * (The original intent was to allow for ObjLiteral instructions to actually be
+ * invoked by a new JS opcode, JSOp::ObjLiteral, thus replacing the more
+ * general opcode sequences sometimes generated to fill in objects and removing
+ * the need to attach actual objects to JSOp::Object or JSOp::NewObject.
+ * However, this was far too invasive and led to performance regressions, so
+ * currently ObjLiteral only carries literals as far as the end of the parse
+ * pipeline, when all GC things are allocated.)
+ *
+ * ObjLiteral data structures are used to represent object literals whenever
+ * they are "compatible". See
+ * BytecodeEmitter::isPropertyListObjLiteralCompatible for the precise
+ * conditions; in brief, we can represent object literals with "primitive"
+ * (numeric, boolean, string, null/undefined) values, and "normal"
+ * (non-computed) object names. We can also represent arrays with the same
+ * value restrictions. We cannot represent nested objects. We use ObjLiteral in
+ * two different ways:
+ *
+ * - To build a template object, when we can support the properties but not the
+ * keys.
+ * - To build the actual result object, when we support the properties and the
+ * keys and this is a JSOp::Object case (see below).
+ *
+ * Design and Performance Considerations
+ * -------------------------------------
+ *
+ * As a brief overview, there are a number of opcodes that allocate objects:
+ *
+ * - JSOp::NewInit allocates a new empty `{}` object.
+ *
+ * - JSOp::NewObject, with an object as an argument (held by the script data
+ * side-tables), allocates a new object with `undefined` property values but
+ * with a defined set of properties. The given object is used as a
+ * *template*.
+ *
+ * - JSOp::Object, with an object as argument, instructs the runtime to
+ * literally return the object argument as the result. This is thus only an
+ * "allocation" in the sense that the object was originally allocated when
+ * the script data / bytecode was created. It is only used when we know for
+ * sure that the script, and this program point within the script, will run
+ * *once*. (See the `treatAsRunOnce` flag on JSScript.)
+ *
+ * An operation occurs in a "singleton context", according to the parser, if it
+ * will only ever execute once. In particular, this happens when (i) the script
+ * is a "run-once" script, which is usually the case for e.g. top-level scripts
+ * of web-pages (they run on page load, but no function or handle wraps or
+ * refers to the script so it can't be invoked again), and (ii) the operation
+ * itself is not within a loop or function in that run-once script.
+ *
+ * When we encounter an object literal, we decide which opcode to use, and we
+ * construct the ObjLiteral and the bytecode using its result appropriately:
+ *
+ * - If in a singleton context, and if we support the values, we use
+ * JSOp::Object and we build the ObjLiteral instructions with values.
+ * - Otherwise, if we support the keys but not the values, or if we are not
+ * in a singleton context, we use JSOp::NewObject. In this case, the initial
+ * opcode only creates an object with empty values, so BytecodeEmitter then
+ * generates bytecode to set the values appropriately.
+ * - Otherwise, we generate JSOp::NewInit and bytecode to add properties one at
+ * a time. This will always work, but is the slowest and least
+ * memory-efficient option.
+ */
+
+namespace js {
+
+class JSONPrinter;
+
+namespace frontend {
+struct CompilationAtomCache;
+struct BaseCompilationStencil;
+class StencilXDR;
+} // namespace frontend
+
+// Object-literal instruction opcodes. An object literal is constructed by a
+// straight-line sequence of these ops, each adding one property to the
+// object.
+enum class ObjLiteralOpcode : uint8_t {
+ INVALID = 0,
+
+ ConstValue = 1, // numeric types only.
+ ConstAtom = 2,
+ Null = 3,
+ Undefined = 4,
+ True = 5,
+ False = 6,
+
+ MAX = False,
+};
+
+// Flags that are associated with a sequence of object-literal instructions.
+// (These become bitflags by wrapping with EnumSet below.)
+enum class ObjLiteralFlag : uint8_t {
+ // If set, this object is an array.
+ Array = 1,
+
+ // If set, this is an object literal in a singleton context and property
+ // values are included. See also JSOp::Object.
+ Singleton = 2,
+};
+
+using ObjLiteralFlags = mozilla::EnumSet<ObjLiteralFlag>;
+
+inline bool ObjLiteralOpcodeHasValueArg(ObjLiteralOpcode op) {
+ return op == ObjLiteralOpcode::ConstValue;
+}
+
+inline bool ObjLiteralOpcodeHasAtomArg(ObjLiteralOpcode op) {
+ return op == ObjLiteralOpcode::ConstAtom;
+}
+
+struct ObjLiteralReaderBase;
+
+// Property name (as TaggedParserAtomIndex) or an integer index. Only used for
+// object-type literals; array literals do not require the index (the sequence
+// is always dense, with no holes, so the index is implicit). For the latter
+// case, we have a `None` placeholder.
+struct ObjLiteralKey {
+ private:
+ uint32_t value_;
+
+ enum ObjLiteralKeyType {
+ None,
+ AtomIndex,
+ ArrayIndex,
+ };
+
+ ObjLiteralKeyType type_;
+
+ ObjLiteralKey(uint32_t value, ObjLiteralKeyType ty)
+ : value_(value), type_(ty) {}
+
+ public:
+ ObjLiteralKey() : ObjLiteralKey(0, None) {}
+ ObjLiteralKey(uint32_t value, bool isArrayIndex)
+ : ObjLiteralKey(value, isArrayIndex ? ArrayIndex : AtomIndex) {}
+ ObjLiteralKey(const ObjLiteralKey& other) = default;
+
+ static ObjLiteralKey fromPropName(frontend::TaggedParserAtomIndex atomIndex) {
+ return ObjLiteralKey(*atomIndex.rawData(), false);
+ }
+ static ObjLiteralKey fromArrayIndex(uint32_t index) {
+ return ObjLiteralKey(index, true);
+ }
+ static ObjLiteralKey none() { return ObjLiteralKey(); }
+
+ bool isNone() const { return type_ == None; }
+ bool isAtomIndex() const { return type_ == AtomIndex; }
+ bool isArrayIndex() const { return type_ == ArrayIndex; }
+
+ frontend::TaggedParserAtomIndex getAtomIndex() const {
+ MOZ_ASSERT(isAtomIndex());
+ return frontend::TaggedParserAtomIndex::fromRaw(value_);
+ }
+ uint32_t getArrayIndex() const {
+ MOZ_ASSERT(isArrayIndex());
+ return value_;
+ }
+
+ uint32_t rawIndex() const { return value_; }
+};
+
+struct ObjLiteralWriterBase {
+ protected:
+ friend struct ObjLiteralReaderBase; // for access to mask and shift.
+ static const uint32_t ATOM_INDEX_MASK = 0x7fffffff;
+ // If set, the atom index field is an array index, not an atom index.
+ static const uint32_t INDEXED_PROP = 0x80000000;
+
+ public:
+ using CodeVector = Vector<uint8_t, 64, js::SystemAllocPolicy>;
+
+ protected:
+ CodeVector code_;
+
+ public:
+ ObjLiteralWriterBase() = default;
+
+ uint32_t curOffset() const { return code_.length(); }
+
+ private:
+ MOZ_MUST_USE bool pushByte(JSContext* cx, uint8_t data) {
+ if (!code_.append(data)) {
+ js::ReportOutOfMemory(cx);
+ return false;
+ }
+ return true;
+ }
+
+ MOZ_MUST_USE bool prepareBytes(JSContext* cx, size_t len, uint8_t** p) {
+ size_t offset = code_.length();
+ if (!code_.growByUninitialized(len)) {
+ js::ReportOutOfMemory(cx);
+ return false;
+ }
+ *p = &code_[offset];
+ return true;
+ }
+
+ template <typename T>
+ MOZ_MUST_USE bool pushRawData(JSContext* cx, T data) {
+ uint8_t* p = nullptr;
+ if (!prepareBytes(cx, sizeof(T), &p)) {
+ return false;
+ }
+ mozilla::NativeEndian::copyAndSwapToLittleEndian(reinterpret_cast<void*>(p),
+ &data, 1);
+ return true;
+ }
+
+ public:
+ MOZ_MUST_USE bool pushOpAndName(JSContext* cx, ObjLiteralOpcode op,
+ ObjLiteralKey key) {
+ uint8_t opdata = static_cast<uint8_t>(op);
+ uint32_t data = key.rawIndex() | (key.isArrayIndex() ? INDEXED_PROP : 0);
+ return pushByte(cx, opdata) && pushRawData(cx, data);
+ }
+
+ MOZ_MUST_USE bool pushValueArg(JSContext* cx, const JS::Value& value) {
+ MOZ_ASSERT(value.isNumber() || value.isNullOrUndefined() ||
+ value.isBoolean());
+ uint64_t data = value.asRawBits();
+ return pushRawData(cx, data);
+ }
+
+ MOZ_MUST_USE bool pushAtomArg(JSContext* cx,
+ frontend::TaggedParserAtomIndex atomIndex) {
+ return pushRawData(cx, *atomIndex.rawData());
+ }
+};
+
+// An object-literal instruction writer. This class, held by the bytecode
+// emitter, keeps a sequence of object-literal instructions emitted as object
+// literal expressions are parsed. It allows the user to 'begin' and 'end'
+// straight-line sequences, returning the offsets for this range of instructions
+// within the writer.
+struct ObjLiteralWriter : private ObjLiteralWriterBase {
+ public:
+ ObjLiteralWriter() = default;
+
+ void clear() { code_.clear(); }
+
+ using CodeVector = typename ObjLiteralWriterBase::CodeVector;
+
+ mozilla::Span<const uint8_t> getCode() const { return code_; }
+ ObjLiteralFlags getFlags() const { return flags_; }
+
+ void beginObject(ObjLiteralFlags flags) { flags_ = flags; }
+ void setPropName(const frontend::ParserAtom* propName) {
+ // Only valid in object-mode.
+ MOZ_ASSERT(!flags_.contains(ObjLiteralFlag::Array));
+ propName->markUsedByStencil();
+ nextKey_ = ObjLiteralKey::fromPropName(propName->toIndex());
+ }
+ void setPropIndex(uint32_t propIndex) {
+ // Only valid in object-mode.
+ MOZ_ASSERT(!flags_.contains(ObjLiteralFlag::Array));
+ MOZ_ASSERT(propIndex <= ATOM_INDEX_MASK);
+ nextKey_ = ObjLiteralKey::fromArrayIndex(propIndex);
+ }
+ void beginDenseArrayElements() {
+ // Only valid in array-mode.
+ MOZ_ASSERT(flags_.contains(ObjLiteralFlag::Array));
+ // Dense array element sequences do not use the keys; the indices are
+ // implicit.
+ nextKey_ = ObjLiteralKey::none();
+ }
+
+ MOZ_MUST_USE bool propWithConstNumericValue(JSContext* cx,
+ const JS::Value& value) {
+ MOZ_ASSERT(value.isNumber());
+ return pushOpAndName(cx, ObjLiteralOpcode::ConstValue, nextKey_) &&
+ pushValueArg(cx, value);
+ }
+ MOZ_MUST_USE bool propWithAtomValue(JSContext* cx,
+ const frontend::ParserAtom* value) {
+ value->markUsedByStencil();
+ return pushOpAndName(cx, ObjLiteralOpcode::ConstAtom, nextKey_) &&
+ pushAtomArg(cx, value->toIndex());
+ }
+ MOZ_MUST_USE bool propWithNullValue(JSContext* cx) {
+ return pushOpAndName(cx, ObjLiteralOpcode::Null, nextKey_);
+ }
+ MOZ_MUST_USE bool propWithUndefinedValue(JSContext* cx) {
+ return pushOpAndName(cx, ObjLiteralOpcode::Undefined, nextKey_);
+ }
+ MOZ_MUST_USE bool propWithTrueValue(JSContext* cx) {
+ return pushOpAndName(cx, ObjLiteralOpcode::True, nextKey_);
+ }
+ MOZ_MUST_USE bool propWithFalseValue(JSContext* cx) {
+ return pushOpAndName(cx, ObjLiteralOpcode::False, nextKey_);
+ }
+
+ static bool arrayIndexInRange(int32_t i) {
+ return i >= 0 && static_cast<uint32_t>(i) <= ATOM_INDEX_MASK;
+ }
+
+#if defined(DEBUG) || defined(JS_JITSPEW)
+ void dump();
+ void dump(JSONPrinter& json, frontend::BaseCompilationStencil* stencil);
+ void dumpFields(JSONPrinter& json, frontend::BaseCompilationStencil* stencil);
+#endif
+
+ private:
+ ObjLiteralFlags flags_;
+ ObjLiteralKey nextKey_;
+};
+
+struct ObjLiteralReaderBase {
+ private:
+ mozilla::Span<const uint8_t> data_;
+ size_t cursor_;
+
+ MOZ_MUST_USE bool readByte(uint8_t* b) {
+ if (cursor_ + 1 > data_.Length()) {
+ return false;
+ }
+ *b = *data_.From(cursor_).data();
+ cursor_ += 1;
+ return true;
+ }
+
+ MOZ_MUST_USE bool readBytes(size_t size, const uint8_t** p) {
+ if (cursor_ + size > data_.Length()) {
+ return false;
+ }
+ *p = data_.From(cursor_).data();
+ cursor_ += size;
+ return true;
+ }
+
+ template <typename T>
+ MOZ_MUST_USE bool readRawData(T* data) {
+ const uint8_t* p = nullptr;
+ if (!readBytes(sizeof(T), &p)) {
+ return false;
+ }
+ mozilla::NativeEndian::copyAndSwapFromLittleEndian(
+ data, reinterpret_cast<const void*>(p), 1);
+ return true;
+ }
+
+ public:
+ explicit ObjLiteralReaderBase(mozilla::Span<const uint8_t> data)
+ : data_(data), cursor_(0) {}
+
+ MOZ_MUST_USE bool readOpAndKey(ObjLiteralOpcode* op, ObjLiteralKey* key) {
+ uint8_t opbyte;
+ if (!readByte(&opbyte)) {
+ return false;
+ }
+ if (MOZ_UNLIKELY(opbyte > static_cast<uint8_t>(ObjLiteralOpcode::MAX))) {
+ return false;
+ }
+ *op = static_cast<ObjLiteralOpcode>(opbyte);
+
+ uint32_t data;
+ if (!readRawData(&data)) {
+ return false;
+ }
+ bool isArray = data & ObjLiteralWriterBase::INDEXED_PROP;
+ uint32_t rawIndex = data & ~ObjLiteralWriterBase::INDEXED_PROP;
+ *key = ObjLiteralKey(rawIndex, isArray);
+ return true;
+ }
+
+ MOZ_MUST_USE bool readValueArg(JS::Value* value) {
+ uint64_t data;
+ if (!readRawData(&data)) {
+ return false;
+ }
+ *value = JS::Value::fromRawBits(data);
+ return true;
+ }
+
+ MOZ_MUST_USE bool readAtomArg(frontend::TaggedParserAtomIndex* atomIndex) {
+ return readRawData(atomIndex->rawData());
+ }
+};
+
+// A single object-literal instruction, creating one property on an object.
+struct ObjLiteralInsn {
+ private:
+ ObjLiteralOpcode op_;
+ ObjLiteralKey key_;
+ union Arg {
+ explicit Arg(uint64_t raw_) : raw(raw_) {}
+
+ JS::Value constValue;
+ frontend::TaggedParserAtomIndex atomIndex;
+ uint64_t raw;
+ } arg_;
+
+ public:
+ ObjLiteralInsn() : op_(ObjLiteralOpcode::INVALID), arg_(0) {}
+ ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key)
+ : op_(op), key_(key), arg_(0) {
+ MOZ_ASSERT(!hasConstValue());
+ MOZ_ASSERT(!hasAtomIndex());
+ }
+ ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key, const JS::Value& value)
+ : op_(op), key_(key), arg_(0) {
+ MOZ_ASSERT(hasConstValue());
+ MOZ_ASSERT(!hasAtomIndex());
+ arg_.constValue = value;
+ }
+ ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key,
+ frontend::TaggedParserAtomIndex atomIndex)
+ : op_(op), key_(key), arg_(0) {
+ MOZ_ASSERT(!hasConstValue());
+ MOZ_ASSERT(hasAtomIndex());
+ arg_.atomIndex = atomIndex;
+ }
+ ObjLiteralInsn(const ObjLiteralInsn& other) : ObjLiteralInsn() {
+ *this = other;
+ }
+ ObjLiteralInsn& operator=(const ObjLiteralInsn& other) {
+ op_ = other.op_;
+ key_ = other.key_;
+ arg_.raw = other.arg_.raw;
+ return *this;
+ }
+
+ bool isValid() const {
+ return op_ > ObjLiteralOpcode::INVALID && op_ <= ObjLiteralOpcode::MAX;
+ }
+
+ ObjLiteralOpcode getOp() const {
+ MOZ_ASSERT(isValid());
+ return op_;
+ }
+ const ObjLiteralKey& getKey() const {
+ MOZ_ASSERT(isValid());
+ return key_;
+ }
+
+ bool hasConstValue() const {
+ MOZ_ASSERT(isValid());
+ return ObjLiteralOpcodeHasValueArg(op_);
+ }
+ bool hasAtomIndex() const {
+ MOZ_ASSERT(isValid());
+ return ObjLiteralOpcodeHasAtomArg(op_);
+ }
+
+ JS::Value getConstValue() const {
+ MOZ_ASSERT(isValid());
+ MOZ_ASSERT(hasConstValue());
+ return arg_.constValue;
+ }
+ frontend::TaggedParserAtomIndex getAtomIndex() const {
+ MOZ_ASSERT(isValid());
+ MOZ_ASSERT(hasAtomIndex());
+ return arg_.atomIndex;
+ };
+};
+
+// A reader that parses a sequence of object-literal instructions out of the
+// encoded form.
+struct ObjLiteralReader : private ObjLiteralReaderBase {
+ public:
+ explicit ObjLiteralReader(mozilla::Span<const uint8_t> data)
+ : ObjLiteralReaderBase(data) {}
+
+ MOZ_MUST_USE bool readInsn(ObjLiteralInsn* insn) {
+ ObjLiteralOpcode op;
+ ObjLiteralKey key;
+ if (!readOpAndKey(&op, &key)) {
+ return false;
+ }
+ if (ObjLiteralOpcodeHasValueArg(op)) {
+ JS::Value value;
+ if (!readValueArg(&value)) {
+ return false;
+ }
+ *insn = ObjLiteralInsn(op, key, value);
+ return true;
+ }
+ if (ObjLiteralOpcodeHasAtomArg(op)) {
+ frontend::TaggedParserAtomIndex atomIndex;
+ if (!readAtomArg(&atomIndex)) {
+ return false;
+ }
+ *insn = ObjLiteralInsn(op, key, atomIndex);
+ return true;
+ }
+ *insn = ObjLiteralInsn(op, key);
+ return true;
+ }
+};
+
+JSObject* InterpretObjLiteral(JSContext* cx,
+ frontend::CompilationAtomCache& atomCache,
+ const mozilla::Span<const uint8_t> insns,
+ ObjLiteralFlags flags);
+
+class ObjLiteralStencil {
+ friend class frontend::StencilXDR;
+
+ mozilla::Span<uint8_t> code_;
+ ObjLiteralFlags flags_;
+
+ public:
+ ObjLiteralStencil() = default;
+
+ ObjLiteralStencil(uint8_t* code, size_t length, const ObjLiteralFlags& flags)
+ : code_(mozilla::Span(code, length)), flags_(flags) {}
+
+ JSObject* create(JSContext* cx,
+ frontend::CompilationAtomCache& atomCache) const;
+
+#if defined(DEBUG) || defined(JS_JITSPEW)
+ void dump();
+ void dump(JSONPrinter& json, frontend::BaseCompilationStencil* stencil);
+ void dumpFields(JSONPrinter& json, frontend::BaseCompilationStencil* stencil);
+
+#endif
+};
+
+} // namespace js
+#endif // frontend_ObjLiteral_h