diff options
Diffstat (limited to 'js/src/jit/arm/Lowering-arm.cpp')
-rw-r--r-- | js/src/jit/arm/Lowering-arm.cpp | 1121 |
1 files changed, 1121 insertions, 0 deletions
diff --git a/js/src/jit/arm/Lowering-arm.cpp b/js/src/jit/arm/Lowering-arm.cpp new file mode 100644 index 0000000000..4d31b20eea --- /dev/null +++ b/js/src/jit/arm/Lowering-arm.cpp @@ -0,0 +1,1121 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/Lowering-arm.h" + +#include "mozilla/MathAlgorithms.h" + +#include "jit/arm/Assembler-arm.h" +#include "jit/Lowering.h" +#include "jit/MIR.h" +#include "jit/shared/Lowering-shared-inl.h" + +using namespace js; +using namespace js::jit; + +using mozilla::FloorLog2; + +LBoxAllocation LIRGeneratorARM::useBoxFixed(MDefinition* mir, Register reg1, + Register reg2, bool useAtStart) { + MOZ_ASSERT(mir->type() == MIRType::Value); + MOZ_ASSERT(reg1 != reg2); + + ensureDefined(mir); + return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart), + LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart)); +} + +LAllocation LIRGeneratorARM::useByteOpRegister(MDefinition* mir) { + return useRegister(mir); +} + +LAllocation LIRGeneratorARM::useByteOpRegisterAtStart(MDefinition* mir) { + return useRegisterAtStart(mir); +} + +LAllocation LIRGeneratorARM::useByteOpRegisterOrNonDoubleConstant( + MDefinition* mir) { + return useRegisterOrNonDoubleConstant(mir); +} + +LDefinition LIRGeneratorARM::tempByteOpRegister() { return temp(); } + +void LIRGenerator::visitBox(MBox* box) { + MDefinition* inner = box->getOperand(0); + + // If the box wrapped a double, it needs a new register. + if (IsFloatingPointType(inner->type())) { + defineBox(new (alloc()) LBoxFloatingPoint( + useRegisterAtStart(inner), tempCopy(inner, 0), inner->type()), + box); + return; + } + + if (box->canEmitAtUses()) { + emitAtUses(box); + return; + } + + if (inner->isConstant()) { + defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box); + return; + } + + LBox* lir = new (alloc()) LBox(use(inner), inner->type()); + + // Otherwise, we should not define a new register for the payload portion + // of the output, so bypass defineBox(). + uint32_t vreg = getVirtualRegister(); + + // Note that because we're using BogusTemp(), we do not change the type of + // the definition. We also do not define the first output as "TYPE", + // because it has no corresponding payload at (vreg + 1). Also note that + // although we copy the input's original type for the payload half of the + // definition, this is only for clarity. BogusTemp() definitions are + // ignored. + lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); + lir->setDef(1, LDefinition::BogusTemp()); + box->setVirtualRegister(vreg); + add(lir); +} + +void LIRGenerator::visitUnbox(MUnbox* unbox) { + MDefinition* inner = unbox->getOperand(0); + + // An unbox on arm reads in a type tag (either in memory or a register) and + // a payload. Unlike most instructions consuming a box, we ask for the type + // second, so that the result can re-use the first input. + MOZ_ASSERT(inner->type() == MIRType::Value); + + ensureDefined(inner); + + if (IsFloatingPointType(unbox->type())) { + LUnboxFloatingPoint* lir = + new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type()); + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + define(lir, unbox); + return; + } + + // Swap the order we use the box pieces so we can re-use the payload register. + LUnbox* lir = new (alloc()) LUnbox; + lir->setOperand(0, usePayloadInRegisterAtStart(inner)); + lir->setOperand(1, useType(inner, LUse::REGISTER)); + + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + + // Types and payloads form two separate intervals. If the type becomes dead + // before the payload, it could be used as a Value without the type being + // recoverable. Unbox's purpose is to eagerly kill the definition of a type + // tag, so keeping both alive (for the purpose of gcmaps) is unappealing. + // Instead, we create a new virtual register. + defineReuseInput(lir, unbox, 0); +} + +void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { + MOZ_ASSERT(opd->type() == MIRType::Value); + + LReturn* ins = new (alloc()) LReturn(isGenerator); + ins->setOperand(0, LUse(JSReturnReg_Type)); + ins->setOperand(1, LUse(JSReturnReg_Data)); + fillBoxUses(ins, 0, opd); + add(ins); +} + +void LIRGeneratorARM::defineInt64Phi(MPhi* phi, size_t lirIndex) { + LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX); + LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX); + + uint32_t lowVreg = getVirtualRegister(); + + phi->setVirtualRegister(lowVreg); + + uint32_t highVreg = getVirtualRegister(); + MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX); + + low->setDef(0, LDefinition(lowVreg, LDefinition::INT32)); + high->setDef(0, LDefinition(highVreg, LDefinition::INT32)); + annotate(high); + annotate(low); +} + +void LIRGeneratorARM::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + MDefinition* operand = phi->getOperand(inputPosition); + LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX); + LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX); + low->setOperand(inputPosition, + LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY)); + high->setOperand( + inputPosition, + LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY)); +} + +// x = !y +void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand( + 0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +// z = x+y +void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + // Some operations depend on checking inputs after writing the result, e.g. + // MulI, but only for bail out paths so useAtStart when no bailouts. + ins->setOperand(0, + ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs)); + ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs) + : useRegisterOrConstantAtStart(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +void LIRGeneratorARM::lowerForALUInt64( + LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorARM::lowerForMulInt64(LMulI64* ins, MMul* mir, + MDefinition* lhs, MDefinition* rhs) { + bool needsTemp = true; + + if (rhs->isConstant()) { + int64_t constant = rhs->toConstant()->toInt64(); + int32_t shift = mozilla::FloorLog2(constant); + // See special cases in CodeGeneratorARM::visitMulI64 + if (constant >= -1 && constant <= 2) { + needsTemp = false; + } + if (constant > 0 && int64_t(1) << shift == constant) { + needsTemp = false; + } + } + + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); + if (needsTemp) { + ins->setTemp(0, temp()); + } + + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand(0, useRegisterAtStart(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template <size_t Temps> +void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegisterAtStart(lhs)); + ins->setOperand(1, useRegisterAtStart(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); +template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); + +void LIRGeneratorARM::lowerForBitAndAndBranch(LBitAndAndBranch* baab, + MInstruction* mir, + MDefinition* lhs, + MDefinition* rhs) { + baab->setOperand(0, useRegisterAtStart(lhs)); + baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); + add(baab, mir); +} + +void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt32( + MWasmBuiltinTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + if (opd->type() == MIRType::Double) { + define(new (alloc()) LWasmBuiltinTruncateDToInt32( + useRegister(opd), useFixedAtStart(ins->tls(), WasmTlsReg), + LDefinition::BogusTemp()), + ins); + return; + } + + define(new (alloc()) LWasmBuiltinTruncateFToInt32( + useRegister(opd), useFixedAtStart(ins->tls(), WasmTlsReg), + LDefinition::BogusTemp()), + ins); +} + +void LIRGeneratorARM::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + MDefinition* operand = phi->getOperand(inputPosition); + LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); + LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); + type->setOperand( + inputPosition, + LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY)); + payload->setOperand(inputPosition, + LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); +} + +void LIRGeneratorARM::lowerForShift(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegister(lhs)); + ins->setOperand(1, useRegisterOrConstant(rhs)); + define(ins, mir); +} + +template <size_t Temps> +void LIRGeneratorARM::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + if (mir->isRotate() && !rhs->isConstant()) { + ins->setTemp(0, temp()); + } + + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs)); + defineInt64ReuseInput(ins, mir, 0); +} + +template void LIRGeneratorARM::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); +template void LIRGeneratorARM::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); + +void LIRGeneratorARM::lowerDivI(MDiv* div) { + if (div->isUnsigned()) { + lowerUDiv(div); + return; + } + + // Division instructions are slow. Division by constant denominators can be + // rewritten to use other instructions. + if (div->rhs()->isConstant()) { + int32_t rhs = div->rhs()->toConstant()->toInt32(); + // Check for division by a positive power of two, which is an easy and + // important case to optimize. Note that other optimizations are also + // possible; division by negative powers of two can be optimized in a + // similar manner as positive powers of two, and division by other + // constants can be optimized by a reciprocal multiplication technique. + int32_t shift = FloorLog2(rhs); + if (rhs > 0 && 1 << shift == rhs) { + LDivPowTwoI* lir = + new (alloc()) LDivPowTwoI(useRegisterAtStart(div->lhs()), shift); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + } + + if (HasIDIV()) { + LDivI* lir = new (alloc()) + LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + + LSoftDivI* lir = new (alloc()) LSoftDivI(useFixedAtStart(div->lhs(), r0), + useFixedAtStart(div->rhs(), r1)); + + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + + defineReturn(lir, div); +} + +void LIRGeneratorARM::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs) { + LMulI* lir = new (alloc()) LMulI; + if (mul->fallible()) { + assignSnapshot(lir, mul->bailoutKind()); + } + lowerForALU(lir, mul, lhs, rhs); +} + +void LIRGeneratorARM::lowerModI(MMod* mod) { + if (mod->isUnsigned()) { + lowerUMod(mod); + return; + } + + if (mod->rhs()->isConstant()) { + int32_t rhs = mod->rhs()->toConstant()->toInt32(); + int32_t shift = FloorLog2(rhs); + if (rhs > 0 && 1 << shift == rhs) { + LModPowTwoI* lir = + new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { + MOZ_ASSERT(rhs); + LModMaskI* lir = new (alloc()) + LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift + 1); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + } + + if (HasIDIV()) { + LModI* lir = + new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs())); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + + LSoftModI* lir = + new (alloc()) LSoftModI(useFixedAtStart(mod->lhs(), r0), + useFixedAtStart(mod->rhs(), r1), tempFixed(r2)); + + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + + defineReturn(lir, mod); +} + +void LIRGeneratorARM::lowerDivI64(MDiv* div) { + MOZ_CRASH("We use MWasmBuiltinDivI64 instead."); +} + +void LIRGeneratorARM::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { + if (div->isUnsigned()) { + LUDivOrModI64* lir = + new (alloc()) LUDivOrModI64(useInt64RegisterAtStart(div->lhs()), + useInt64RegisterAtStart(div->rhs()), + useFixedAtStart(div->tls(), WasmTlsReg)); + defineReturn(lir, div); + return; + } + + LDivOrModI64* lir = new (alloc()) LDivOrModI64( + useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs()), + useFixedAtStart(div->tls(), WasmTlsReg)); + defineReturn(lir, div); +} + +void LIRGeneratorARM::lowerModI64(MMod* mod) { + MOZ_CRASH("We use MWasmBuiltinModI64 instead."); +} + +void LIRGeneratorARM::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { + if (mod->isUnsigned()) { + LUDivOrModI64* lir = + new (alloc()) LUDivOrModI64(useInt64RegisterAtStart(mod->lhs()), + useInt64RegisterAtStart(mod->rhs()), + useFixedAtStart(mod->tls(), WasmTlsReg)); + defineReturn(lir, mod); + return; + } + + LDivOrModI64* lir = new (alloc()) LDivOrModI64( + useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs()), + useFixedAtStart(mod->tls(), WasmTlsReg)); + defineReturn(lir, mod); +} + +void LIRGeneratorARM::lowerUDivI64(MDiv* div) { + MOZ_CRASH("We use MWasmBuiltinDivI64 instead."); +} + +void LIRGeneratorARM::lowerUModI64(MMod* mod) { + MOZ_CRASH("We use MWasmBuiltinModI64 instead."); +} + +void LIRGenerator::visitPowHalf(MPowHalf* ins) { + MDefinition* input = ins->input(); + MOZ_ASSERT(input->type() == MIRType::Double); + LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input)); + defineReuseInput(lir, ins, 0); +} + +LTableSwitch* LIRGeneratorARM::newLTableSwitch(const LAllocation& in, + const LDefinition& inputCopy, + MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitch(in, inputCopy, tableswitch); +} + +LTableSwitchV* LIRGeneratorARM::newLTableSwitchV(MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(), + tempDouble(), tableswitch); +} + +void LIRGeneratorARM::lowerUrshD(MUrsh* mir) { + MDefinition* lhs = mir->lhs(); + MDefinition* rhs = mir->rhs(); + + MOZ_ASSERT(lhs->type() == MIRType::Int32); + MOZ_ASSERT(rhs->type() == MIRType::Int32); + + LUrshD* lir = new (alloc()) + LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); + define(lir, mir); +} + +void LIRGeneratorARM::lowerPowOfTwoI(MPow* mir) { + int32_t base = mir->input()->toConstant()->toInt32(); + MDefinition* power = mir->power(); + + auto* lir = new (alloc()) LPowOfTwoI(base, useRegister(power)); + assignSnapshot(lir, mir->bailoutKind()); + define(lir, mir); +} + +void LIRGeneratorARM::lowerBigIntLsh(MBigIntLsh* ins) { + auto* lir = new (alloc()) LBigIntLsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM::lowerBigIntRsh(MBigIntRsh* ins) { + auto* lir = new (alloc()) LBigIntRsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM::lowerBigIntDiv(MBigIntDiv* ins) { + LDefinition temp1, temp2; + if (HasIDIV()) { + temp1 = temp(); + temp2 = temp(); + } else { + temp1 = tempFixed(r0); + temp2 = tempFixed(r1); + } + auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM::lowerBigIntMod(MBigIntMod* ins) { + LDefinition temp1, temp2; + if (HasIDIV()) { + temp1 = temp(); + temp2 = temp(); + } else { + temp1 = tempFixed(r0); + temp2 = tempFixed(r1); + } + auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitWasmNeg(MWasmNeg* ins) { + if (ins->type() == MIRType::Int32) { + define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins); + } else if (ins->type() == MIRType::Float32) { + define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins); + } else { + MOZ_ASSERT(ins->type() == MIRType::Double); + define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins); + } +} + +void LIRGeneratorARM::lowerUDiv(MDiv* div) { + MDefinition* lhs = div->getOperand(0); + MDefinition* rhs = div->getOperand(1); + + if (HasIDIV()) { + LUDiv* lir = new (alloc()) LUDiv; + lir->setOperand(0, useRegister(lhs)); + lir->setOperand(1, useRegister(rhs)); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + + LSoftUDivOrMod* lir = new (alloc()) + LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1)); + + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + + defineReturn(lir, div); +} + +void LIRGeneratorARM::lowerUMod(MMod* mod) { + MDefinition* lhs = mod->getOperand(0); + MDefinition* rhs = mod->getOperand(1); + + if (HasIDIV()) { + LUMod* lir = new (alloc()) LUMod; + lir->setOperand(0, useRegister(lhs)); + lir->setOperand(1, useRegister(rhs)); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + + LSoftUDivOrMod* lir = new (alloc()) + LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1)); + + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + + defineReturn(lir, mod); +} + +void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToDouble* lir = + new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToFloat32* lir = + new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) { + auto* lir = new (alloc()) LWasmHeapBase(LAllocation()); + define(lir, ins); +} + +void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { + auto* lir = new (alloc()) LWasmAtomicLoadI64(useRegisterAtStart(base)); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(IntArgReg1)), + LAllocation(AnyRegister(IntArgReg0)))); + return; + } + + LAllocation ptr = useRegisterAtStart(base); + + if (IsUnaligned(ins->access())) { + MOZ_ASSERT(!ins->access().isAtomic()); + + // Unaligned access expected! Revert to a byte load. + LDefinition ptrCopy = tempCopy(base, 0); + + LDefinition noTemp = LDefinition::BogusTemp(); + if (ins->type() == MIRType::Int64) { + auto* lir = new (alloc()) + LWasmUnalignedLoadI64(ptr, ptrCopy, temp(), noTemp, noTemp); + defineInt64(lir, ins); + return; + } + + LDefinition temp2 = noTemp; + LDefinition temp3 = noTemp; + if (IsFloatingPointType(ins->type())) { + // For putting the low value in a GPR. + temp2 = temp(); + // For putting the high value in a GPR. + if (ins->type() == MIRType::Double) { + temp3 = temp(); + } + } + + auto* lir = + new (alloc()) LWasmUnalignedLoad(ptr, ptrCopy, temp(), temp2, temp3); + define(lir, ins); + return; + } + + if (ins->type() == MIRType::Int64) { + auto* lir = new (alloc()) LWasmLoadI64(ptr); + if (ins->access().offset() || ins->access().type() == Scalar::Int64) { + lir->setTemp(0, tempCopy(base, 0)); + } + defineInt64(lir, ins); + return; + } + + auto* lir = new (alloc()) LWasmLoad(ptr); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + define(lir, ins); +} + +void LIRGenerator::visitWasmStore(MWasmStore* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { + auto* lir = new (alloc()) LWasmAtomicStoreI64( + useRegister(base), + useInt64Fixed(ins->value(), Register64(IntArgReg1, IntArgReg0)), + tempFixed(IntArgReg2), tempFixed(IntArgReg3)); + add(lir, ins); + return; + } + + LAllocation ptr = useRegisterAtStart(base); + + if (IsUnaligned(ins->access())) { + MOZ_ASSERT(!ins->access().isAtomic()); + + // Unaligned access expected! Revert to a byte store. + LDefinition ptrCopy = tempCopy(base, 0); + + MIRType valueType = ins->value()->type(); + if (valueType == MIRType::Int64) { + LInt64Allocation value = useInt64RegisterAtStart(ins->value()); + auto* lir = + new (alloc()) LWasmUnalignedStoreI64(ptr, value, ptrCopy, temp()); + add(lir, ins); + return; + } + + LAllocation value = useRegisterAtStart(ins->value()); + LDefinition valueHelper = IsFloatingPointType(valueType) + ? temp() // to do a FPU -> GPR move. + : tempCopy(base, 1); // to clobber the value. + + auto* lir = + new (alloc()) LWasmUnalignedStore(ptr, value, ptrCopy, valueHelper); + add(lir, ins); + return; + } + + if (ins->value()->type() == MIRType::Int64) { + LInt64Allocation value = useInt64RegisterAtStart(ins->value()); + auto* lir = new (alloc()) LWasmStoreI64(ptr, value); + if (ins->access().offset() || ins->access().type() == Scalar::Int64) { + lir->setTemp(0, tempCopy(base, 0)); + } + add(lir, ins); + return; + } + + LAllocation value = useRegisterAtStart(ins->value()); + auto* lir = new (alloc()) LWasmStore(ptr, value); + + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + add(lir, ins); +} + +void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) { + MOZ_ASSERT(ins->offset() == 0); + + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + // For the ARM it is best to keep the 'base' in a register if a bounds check + // is needed. + LAllocation baseAlloc; + LAllocation limitAlloc; + + if (base->isConstant() && !ins->needsBoundsCheck()) { + // A bounds check is only skipped for a positive index. + MOZ_ASSERT(base->toConstant()->toInt32() >= 0); + baseAlloc = LAllocation(base->toConstant()); + } else { + baseAlloc = useRegisterAtStart(base); + if (ins->needsBoundsCheck()) { + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); + limitAlloc = useRegisterAtStart(boundsCheckLimit); + } + } + + define(new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc), ins); +} + +void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) { + MOZ_ASSERT(ins->offset() == 0); + + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + LAllocation baseAlloc; + LAllocation limitAlloc; + + if (base->isConstant() && !ins->needsBoundsCheck()) { + MOZ_ASSERT(base->toConstant()->toInt32() >= 0); + baseAlloc = LAllocation(base->toConstant()); + } else { + baseAlloc = useRegisterAtStart(base); + if (ins->needsBoundsCheck()) { + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); + limitAlloc = useRegisterAtStart(boundsCheckLimit); + } + } + + add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()), + limitAlloc), + ins); +} + +void LIRGeneratorARM::lowerTruncateDToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double); + + define(new (alloc()) + LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), + ins); +} + +void LIRGeneratorARM::lowerTruncateFToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Float32); + + define(new (alloc()) + LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), + ins); +} + +void LIRGenerator::visitAtomicExchangeTypedArrayElement( + MAtomicExchangeTypedArrayElement* ins) { + MOZ_ASSERT(HasLDSTREXBHD()); + MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::Int32); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = useRegisterOrConstant(ins->index()); + + // If the target is a floating register then we need a temp at the + // CodeGenerator level for creating the result. + + const LAllocation value = useRegister(ins->value()); + LDefinition tempDef = LDefinition::BogusTemp(); + if (ins->arrayType() == Scalar::Uint32) { + MOZ_ASSERT(ins->type() == MIRType::Double); + tempDef = temp(); + } + + LAtomicExchangeTypedArrayElement* lir = new (alloc()) + LAtomicExchangeTypedArrayElement(elements, index, value, tempDef); + + define(lir, ins); +} + +void LIRGenerator::visitAtomicTypedArrayElementBinop( + MAtomicTypedArrayElementBinop* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped); + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::Int32); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = useRegisterOrConstant(ins->index()); + const LAllocation value = useRegister(ins->value()); + + if (!ins->hasUses()) { + LAtomicTypedArrayElementBinopForEffect* lir = new (alloc()) + LAtomicTypedArrayElementBinopForEffect(elements, index, value, + /* flagTemp= */ temp()); + add(lir, ins); + return; + } + + // For a Uint32Array with a known double result we need a temp for + // the intermediate output. + // + // Optimization opportunity (bug 1077317): We can do better by + // allowing 'value' to remain as an imm32 if it is small enough to + // fit in an instruction. + + LDefinition flagTemp = temp(); + LDefinition outTemp = LDefinition::BogusTemp(); + + if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { + outTemp = temp(); + } + + // On arm, map flagTemp to temp1 and outTemp to temp2, at least for now. + + LAtomicTypedArrayElementBinop* lir = new (alloc()) + LAtomicTypedArrayElementBinop(elements, index, value, flagTemp, outTemp); + define(lir, ins); +} + +void LIRGenerator::visitCompareExchangeTypedArrayElement( + MCompareExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::Int32); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = useRegisterOrConstant(ins->index()); + + // If the target is a floating register then we need a temp at the + // CodeGenerator level for creating the result. + // + // Optimization opportunity (bug 1077317): We could do better by + // allowing oldval to remain an immediate, if it is small enough + // to fit in an instruction. + + const LAllocation newval = useRegister(ins->newval()); + const LAllocation oldval = useRegister(ins->oldval()); + LDefinition tempDef = LDefinition::BogusTemp(); + if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { + tempDef = temp(); + } + + LCompareExchangeTypedArrayElement* lir = + new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, + newval, tempDef); + + define(lir, ins); +} + +void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64) { + // The three register pairs must be distinct. + auto* lir = new (alloc()) LWasmCompareExchangeI64( + useRegister(base), useInt64Fixed(ins->oldValue(), CmpXchgOld64), + useInt64Fixed(ins->newValue(), CmpXchgNew64)); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(CmpXchgOutHi)), + LAllocation(AnyRegister(CmpXchgOutLo)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints"); + + LWasmCompareExchangeHeap* lir = new (alloc()) + LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()), + useRegister(ins->newValue())); + + define(lir, ins); +} + +void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { + MOZ_ASSERT(ins->base()->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) LWasmAtomicExchangeI64( + useRegister(ins->base()), useInt64Fixed(ins->value(), XchgNew64), + ins->access()); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(XchgOutHi)), + LAllocation(AnyRegister(XchgOutLo)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints"); + + const LAllocation base = useRegister(ins->base()); + const LAllocation value = useRegister(ins->value()); + define(new (alloc()) LWasmAtomicExchangeHeap(base, value), ins); +} + +void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) LWasmAtomicBinopI64( + useRegister(ins->base()), useInt64Fixed(ins->value(), FetchOpVal64), + tempFixed(FetchOpTmpLo), tempFixed(FetchOpTmpHi), ins->access(), + ins->operation()); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(FetchOpOutHi)), + LAllocation(AnyRegister(FetchOpOutLo)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints"); + + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (!ins->hasUses()) { + LWasmAtomicBinopHeapForEffect* lir = + new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), + useRegister(ins->value()), + /* flagTemp= */ temp()); + add(lir, ins); + return; + } + + LWasmAtomicBinopHeap* lir = new (alloc()) + LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()), + /* temp = */ LDefinition::BogusTemp(), + /* flagTemp= */ temp()); + define(lir, ins); +} + +void LIRGenerator::visitSubstr(MSubstr* ins) { + LSubstr* lir = new (alloc()) + LSubstr(useRegister(ins->string()), useRegister(ins->begin()), + useRegister(ins->length()), temp(), temp(), tempByteOpRegister()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { + MOZ_CRASH("We don't use MWasmTruncateToInt64 for arm"); +} + +void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt64( + MWasmBuiltinTruncateToInt64* ins) { + MDefinition* opd = ins->input(); + MDefinition* tls = ins->tls(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + defineReturn(new (alloc()) LWasmTruncateToInt64( + useRegisterAtStart(opd), useFixedAtStart(tls, WasmTlsReg)), + ins); +} + +void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { + MOZ_CRASH("We use BuiltinInt64ToFloatingPoint instead."); +} + +void LIRGeneratorARM::lowerBuiltinInt64ToFloatingPoint( + MBuiltinInt64ToFloatingPoint* ins) { + MOZ_ASSERT(ins->type() == MIRType::Double || ins->type() == MIRType::Float32); + + auto* lir = new (alloc()) + LInt64ToFloatingPointCall(useInt64RegisterAtStart(ins->input()), + useFixedAtStart(ins->tls(), WasmTlsReg)); + defineReturn(lir, ins); +} + +void LIRGenerator::visitCopySign(MCopySign* ins) { + MDefinition* lhs = ins->lhs(); + MDefinition* rhs = ins->rhs(); + + MOZ_ASSERT(IsFloatingPointType(lhs->type())); + MOZ_ASSERT(lhs->type() == rhs->type()); + MOZ_ASSERT(lhs->type() == ins->type()); + + LInstructionHelper<1, 2, 2>* lir; + if (lhs->type() == MIRType::Double) { + lir = new (alloc()) LCopySignD(); + } else { + lir = new (alloc()) LCopySignF(); + } + + lir->setTemp(0, temp()); + lir->setTemp(1, temp()); + + lowerForFPU(lir, ins, lhs, rhs); +} + +void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { + auto* lir = + new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())); + defineInt64(lir, ins); + + LDefinition def(LDefinition::GENERAL, LDefinition::MUST_REUSE_INPUT); + def.setReusedInput(0); + def.setVirtualRegister(ins->virtualRegister()); + + lir->setDef(0, def); +} + +void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { + defineInt64(new (alloc()) + LSignExtendInt64(useInt64RegisterAtStart(ins->input())), + ins); +} + +void LIRGenerator::visitWasmBitselectSimd128(MWasmBitselectSimd128* ins) { + MOZ_CRASH("bitselect NYI"); +} + +void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) { + MOZ_CRASH("binary SIMD NYI"); +} + +bool MWasmBinarySimd128::specializeForConstantRhs() { + // Probably many we want to do here + return false; +} + +void LIRGenerator::visitWasmBinarySimd128WithConstant( + MWasmBinarySimd128WithConstant* ins) { + MOZ_CRASH("binary SIMD with constant NYI"); +} + +void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) { + MOZ_CRASH("shift SIMD NYI"); +} + +void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) { + MOZ_CRASH("shuffle SIMD NYI"); +} + +void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) { + MOZ_CRASH("replace-lane SIMD NYI"); +} + +void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) { + MOZ_CRASH("scalar-to-SIMD NYI"); +} + +void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) { + MOZ_CRASH("unary SIMD NYI"); +} + +void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) { + MOZ_CRASH("reduce-SIMD NYI"); +} |