summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/Lowering-arm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm/Lowering-arm.cpp')
-rw-r--r--js/src/jit/arm/Lowering-arm.cpp1121
1 files changed, 1121 insertions, 0 deletions
diff --git a/js/src/jit/arm/Lowering-arm.cpp b/js/src/jit/arm/Lowering-arm.cpp
new file mode 100644
index 0000000000..4d31b20eea
--- /dev/null
+++ b/js/src/jit/arm/Lowering-arm.cpp
@@ -0,0 +1,1121 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/arm/Lowering-arm.h"
+
+#include "mozilla/MathAlgorithms.h"
+
+#include "jit/arm/Assembler-arm.h"
+#include "jit/Lowering.h"
+#include "jit/MIR.h"
+#include "jit/shared/Lowering-shared-inl.h"
+
+using namespace js;
+using namespace js::jit;
+
+using mozilla::FloorLog2;
+
+LBoxAllocation LIRGeneratorARM::useBoxFixed(MDefinition* mir, Register reg1,
+ Register reg2, bool useAtStart) {
+ MOZ_ASSERT(mir->type() == MIRType::Value);
+ MOZ_ASSERT(reg1 != reg2);
+
+ ensureDefined(mir);
+ return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
+ LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
+}
+
+LAllocation LIRGeneratorARM::useByteOpRegister(MDefinition* mir) {
+ return useRegister(mir);
+}
+
+LAllocation LIRGeneratorARM::useByteOpRegisterAtStart(MDefinition* mir) {
+ return useRegisterAtStart(mir);
+}
+
+LAllocation LIRGeneratorARM::useByteOpRegisterOrNonDoubleConstant(
+ MDefinition* mir) {
+ return useRegisterOrNonDoubleConstant(mir);
+}
+
+LDefinition LIRGeneratorARM::tempByteOpRegister() { return temp(); }
+
+void LIRGenerator::visitBox(MBox* box) {
+ MDefinition* inner = box->getOperand(0);
+
+ // If the box wrapped a double, it needs a new register.
+ if (IsFloatingPointType(inner->type())) {
+ defineBox(new (alloc()) LBoxFloatingPoint(
+ useRegisterAtStart(inner), tempCopy(inner, 0), inner->type()),
+ box);
+ return;
+ }
+
+ if (box->canEmitAtUses()) {
+ emitAtUses(box);
+ return;
+ }
+
+ if (inner->isConstant()) {
+ defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box);
+ return;
+ }
+
+ LBox* lir = new (alloc()) LBox(use(inner), inner->type());
+
+ // Otherwise, we should not define a new register for the payload portion
+ // of the output, so bypass defineBox().
+ uint32_t vreg = getVirtualRegister();
+
+ // Note that because we're using BogusTemp(), we do not change the type of
+ // the definition. We also do not define the first output as "TYPE",
+ // because it has no corresponding payload at (vreg + 1). Also note that
+ // although we copy the input's original type for the payload half of the
+ // definition, this is only for clarity. BogusTemp() definitions are
+ // ignored.
+ lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
+ lir->setDef(1, LDefinition::BogusTemp());
+ box->setVirtualRegister(vreg);
+ add(lir);
+}
+
+void LIRGenerator::visitUnbox(MUnbox* unbox) {
+ MDefinition* inner = unbox->getOperand(0);
+
+ // An unbox on arm reads in a type tag (either in memory or a register) and
+ // a payload. Unlike most instructions consuming a box, we ask for the type
+ // second, so that the result can re-use the first input.
+ MOZ_ASSERT(inner->type() == MIRType::Value);
+
+ ensureDefined(inner);
+
+ if (IsFloatingPointType(unbox->type())) {
+ LUnboxFloatingPoint* lir =
+ new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
+ if (unbox->fallible()) {
+ assignSnapshot(lir, unbox->bailoutKind());
+ }
+ define(lir, unbox);
+ return;
+ }
+
+ // Swap the order we use the box pieces so we can re-use the payload register.
+ LUnbox* lir = new (alloc()) LUnbox;
+ lir->setOperand(0, usePayloadInRegisterAtStart(inner));
+ lir->setOperand(1, useType(inner, LUse::REGISTER));
+
+ if (unbox->fallible()) {
+ assignSnapshot(lir, unbox->bailoutKind());
+ }
+
+ // Types and payloads form two separate intervals. If the type becomes dead
+ // before the payload, it could be used as a Value without the type being
+ // recoverable. Unbox's purpose is to eagerly kill the definition of a type
+ // tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
+ // Instead, we create a new virtual register.
+ defineReuseInput(lir, unbox, 0);
+}
+
+void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
+ MOZ_ASSERT(opd->type() == MIRType::Value);
+
+ LReturn* ins = new (alloc()) LReturn(isGenerator);
+ ins->setOperand(0, LUse(JSReturnReg_Type));
+ ins->setOperand(1, LUse(JSReturnReg_Data));
+ fillBoxUses(ins, 0, opd);
+ add(ins);
+}
+
+void LIRGeneratorARM::defineInt64Phi(MPhi* phi, size_t lirIndex) {
+ LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
+
+ uint32_t lowVreg = getVirtualRegister();
+
+ phi->setVirtualRegister(lowVreg);
+
+ uint32_t highVreg = getVirtualRegister();
+ MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
+
+ low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
+ high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
+ annotate(high);
+ annotate(low);
+}
+
+void LIRGeneratorARM::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
+ LBlock* block, size_t lirIndex) {
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
+ low->setOperand(inputPosition,
+ LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
+ high->setOperand(
+ inputPosition,
+ LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
+}
+
+// x = !y
+void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 1, 0>* ins,
+ MDefinition* mir, MDefinition* input) {
+ ins->setOperand(
+ 0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+// z = x+y
+void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 2, 0>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs) {
+ // Some operations depend on checking inputs after writing the result, e.g.
+ // MulI, but only for bail out paths so useAtStart when no bailouts.
+ ins->setOperand(0,
+ ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs));
+ ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs)
+ : useRegisterOrConstantAtStart(rhs));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+void LIRGeneratorARM::lowerForALUInt64(
+ LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void LIRGeneratorARM::lowerForMulInt64(LMulI64* ins, MMul* mir,
+ MDefinition* lhs, MDefinition* rhs) {
+ bool needsTemp = true;
+
+ if (rhs->isConstant()) {
+ int64_t constant = rhs->toConstant()->toInt64();
+ int32_t shift = mozilla::FloorLog2(constant);
+ // See special cases in CodeGeneratorARM::visitMulI64
+ if (constant >= -1 && constant <= 2) {
+ needsTemp = false;
+ }
+ if (constant > 0 && int64_t(1) << shift == constant) {
+ needsTemp = false;
+ }
+ }
+
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ if (needsTemp) {
+ ins->setTemp(0, temp());
+ }
+
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 1, 0>* ins,
+ MDefinition* mir, MDefinition* input) {
+ ins->setOperand(0, useRegisterAtStart(input));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+template <size_t Temps>
+void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs) {
+ ins->setOperand(0, useRegisterAtStart(lhs));
+ ins->setOperand(1, useRegisterAtStart(rhs));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 0>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs);
+template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 1>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs);
+
+void LIRGeneratorARM::lowerForBitAndAndBranch(LBitAndAndBranch* baab,
+ MInstruction* mir,
+ MDefinition* lhs,
+ MDefinition* rhs) {
+ baab->setOperand(0, useRegisterAtStart(lhs));
+ baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
+ add(baab, mir);
+}
+
+void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt32(
+ MWasmBuiltinTruncateToInt32* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
+
+ if (opd->type() == MIRType::Double) {
+ define(new (alloc()) LWasmBuiltinTruncateDToInt32(
+ useRegister(opd), useFixedAtStart(ins->tls(), WasmTlsReg),
+ LDefinition::BogusTemp()),
+ ins);
+ return;
+ }
+
+ define(new (alloc()) LWasmBuiltinTruncateFToInt32(
+ useRegister(opd), useFixedAtStart(ins->tls(), WasmTlsReg),
+ LDefinition::BogusTemp()),
+ ins);
+}
+
+void LIRGeneratorARM::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition,
+ LBlock* block, size_t lirIndex) {
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
+ LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
+ type->setOperand(
+ inputPosition,
+ LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
+ payload->setOperand(inputPosition,
+ LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
+}
+
+void LIRGeneratorARM::lowerForShift(LInstructionHelper<1, 2, 0>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs) {
+ ins->setOperand(0, useRegister(lhs));
+ ins->setOperand(1, useRegisterOrConstant(rhs));
+ define(ins, mir);
+}
+
+template <size_t Temps>
+void LIRGeneratorARM::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
+ if (mir->isRotate() && !rhs->isConstant()) {
+ ins->setTemp(0, temp());
+ }
+
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+template void LIRGeneratorARM::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
+template void LIRGeneratorARM::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
+
+void LIRGeneratorARM::lowerDivI(MDiv* div) {
+ if (div->isUnsigned()) {
+ lowerUDiv(div);
+ return;
+ }
+
+ // Division instructions are slow. Division by constant denominators can be
+ // rewritten to use other instructions.
+ if (div->rhs()->isConstant()) {
+ int32_t rhs = div->rhs()->toConstant()->toInt32();
+ // Check for division by a positive power of two, which is an easy and
+ // important case to optimize. Note that other optimizations are also
+ // possible; division by negative powers of two can be optimized in a
+ // similar manner as positive powers of two, and division by other
+ // constants can be optimized by a reciprocal multiplication technique.
+ int32_t shift = FloorLog2(rhs);
+ if (rhs > 0 && 1 << shift == rhs) {
+ LDivPowTwoI* lir =
+ new (alloc()) LDivPowTwoI(useRegisterAtStart(div->lhs()), shift);
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+ define(lir, div);
+ return;
+ }
+ }
+
+ if (HasIDIV()) {
+ LDivI* lir = new (alloc())
+ LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+ define(lir, div);
+ return;
+ }
+
+ LSoftDivI* lir = new (alloc()) LSoftDivI(useFixedAtStart(div->lhs(), r0),
+ useFixedAtStart(div->rhs(), r1));
+
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+
+ defineReturn(lir, div);
+}
+
+void LIRGeneratorARM::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs) {
+ LMulI* lir = new (alloc()) LMulI;
+ if (mul->fallible()) {
+ assignSnapshot(lir, mul->bailoutKind());
+ }
+ lowerForALU(lir, mul, lhs, rhs);
+}
+
+void LIRGeneratorARM::lowerModI(MMod* mod) {
+ if (mod->isUnsigned()) {
+ lowerUMod(mod);
+ return;
+ }
+
+ if (mod->rhs()->isConstant()) {
+ int32_t rhs = mod->rhs()->toConstant()->toInt32();
+ int32_t shift = FloorLog2(rhs);
+ if (rhs > 0 && 1 << shift == rhs) {
+ LModPowTwoI* lir =
+ new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+ define(lir, mod);
+ return;
+ }
+ if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) {
+ MOZ_ASSERT(rhs);
+ LModMaskI* lir = new (alloc())
+ LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift + 1);
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+ define(lir, mod);
+ return;
+ }
+ }
+
+ if (HasIDIV()) {
+ LModI* lir =
+ new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()));
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+ define(lir, mod);
+ return;
+ }
+
+ LSoftModI* lir =
+ new (alloc()) LSoftModI(useFixedAtStart(mod->lhs(), r0),
+ useFixedAtStart(mod->rhs(), r1), tempFixed(r2));
+
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+
+ defineReturn(lir, mod);
+}
+
+void LIRGeneratorARM::lowerDivI64(MDiv* div) {
+ MOZ_CRASH("We use MWasmBuiltinDivI64 instead.");
+}
+
+void LIRGeneratorARM::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
+ if (div->isUnsigned()) {
+ LUDivOrModI64* lir =
+ new (alloc()) LUDivOrModI64(useInt64RegisterAtStart(div->lhs()),
+ useInt64RegisterAtStart(div->rhs()),
+ useFixedAtStart(div->tls(), WasmTlsReg));
+ defineReturn(lir, div);
+ return;
+ }
+
+ LDivOrModI64* lir = new (alloc()) LDivOrModI64(
+ useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs()),
+ useFixedAtStart(div->tls(), WasmTlsReg));
+ defineReturn(lir, div);
+}
+
+void LIRGeneratorARM::lowerModI64(MMod* mod) {
+ MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
+}
+
+void LIRGeneratorARM::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
+ if (mod->isUnsigned()) {
+ LUDivOrModI64* lir =
+ new (alloc()) LUDivOrModI64(useInt64RegisterAtStart(mod->lhs()),
+ useInt64RegisterAtStart(mod->rhs()),
+ useFixedAtStart(mod->tls(), WasmTlsReg));
+ defineReturn(lir, mod);
+ return;
+ }
+
+ LDivOrModI64* lir = new (alloc()) LDivOrModI64(
+ useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs()),
+ useFixedAtStart(mod->tls(), WasmTlsReg));
+ defineReturn(lir, mod);
+}
+
+void LIRGeneratorARM::lowerUDivI64(MDiv* div) {
+ MOZ_CRASH("We use MWasmBuiltinDivI64 instead.");
+}
+
+void LIRGeneratorARM::lowerUModI64(MMod* mod) {
+ MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
+}
+
+void LIRGenerator::visitPowHalf(MPowHalf* ins) {
+ MDefinition* input = ins->input();
+ MOZ_ASSERT(input->type() == MIRType::Double);
+ LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input));
+ defineReuseInput(lir, ins, 0);
+}
+
+LTableSwitch* LIRGeneratorARM::newLTableSwitch(const LAllocation& in,
+ const LDefinition& inputCopy,
+ MTableSwitch* tableswitch) {
+ return new (alloc()) LTableSwitch(in, inputCopy, tableswitch);
+}
+
+LTableSwitchV* LIRGeneratorARM::newLTableSwitchV(MTableSwitch* tableswitch) {
+ return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(),
+ tempDouble(), tableswitch);
+}
+
+void LIRGeneratorARM::lowerUrshD(MUrsh* mir) {
+ MDefinition* lhs = mir->lhs();
+ MDefinition* rhs = mir->rhs();
+
+ MOZ_ASSERT(lhs->type() == MIRType::Int32);
+ MOZ_ASSERT(rhs->type() == MIRType::Int32);
+
+ LUrshD* lir = new (alloc())
+ LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
+ define(lir, mir);
+}
+
+void LIRGeneratorARM::lowerPowOfTwoI(MPow* mir) {
+ int32_t base = mir->input()->toConstant()->toInt32();
+ MDefinition* power = mir->power();
+
+ auto* lir = new (alloc()) LPowOfTwoI(base, useRegister(power));
+ assignSnapshot(lir, mir->bailoutKind());
+ define(lir, mir);
+}
+
+void LIRGeneratorARM::lowerBigIntLsh(MBigIntLsh* ins) {
+ auto* lir = new (alloc()) LBigIntLsh(
+ useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorARM::lowerBigIntRsh(MBigIntRsh* ins) {
+ auto* lir = new (alloc()) LBigIntRsh(
+ useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorARM::lowerBigIntDiv(MBigIntDiv* ins) {
+ LDefinition temp1, temp2;
+ if (HasIDIV()) {
+ temp1 = temp();
+ temp2 = temp();
+ } else {
+ temp1 = tempFixed(r0);
+ temp2 = tempFixed(r1);
+ }
+ auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()),
+ useRegister(ins->rhs()), temp1, temp2);
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorARM::lowerBigIntMod(MBigIntMod* ins) {
+ LDefinition temp1, temp2;
+ if (HasIDIV()) {
+ temp1 = temp();
+ temp2 = temp();
+ } else {
+ temp1 = tempFixed(r0);
+ temp2 = tempFixed(r1);
+ }
+ auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()),
+ useRegister(ins->rhs()), temp1, temp2);
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGenerator::visitWasmNeg(MWasmNeg* ins) {
+ if (ins->type() == MIRType::Int32) {
+ define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
+ } else if (ins->type() == MIRType::Float32) {
+ define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
+ } else {
+ MOZ_ASSERT(ins->type() == MIRType::Double);
+ define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
+ }
+}
+
+void LIRGeneratorARM::lowerUDiv(MDiv* div) {
+ MDefinition* lhs = div->getOperand(0);
+ MDefinition* rhs = div->getOperand(1);
+
+ if (HasIDIV()) {
+ LUDiv* lir = new (alloc()) LUDiv;
+ lir->setOperand(0, useRegister(lhs));
+ lir->setOperand(1, useRegister(rhs));
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+ define(lir, div);
+ return;
+ }
+
+ LSoftUDivOrMod* lir = new (alloc())
+ LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1));
+
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+
+ defineReturn(lir, div);
+}
+
+void LIRGeneratorARM::lowerUMod(MMod* mod) {
+ MDefinition* lhs = mod->getOperand(0);
+ MDefinition* rhs = mod->getOperand(1);
+
+ if (HasIDIV()) {
+ LUMod* lir = new (alloc()) LUMod;
+ lir->setOperand(0, useRegister(lhs));
+ lir->setOperand(1, useRegister(rhs));
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+ define(lir, mod);
+ return;
+ }
+
+ LSoftUDivOrMod* lir = new (alloc())
+ LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1));
+
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+
+ defineReturn(lir, mod);
+}
+
+void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToDouble* lir =
+ new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()));
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToFloat32* lir =
+ new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()));
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) {
+ auto* lir = new (alloc()) LWasmHeapBase(LAllocation());
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
+ auto* lir = new (alloc()) LWasmAtomicLoadI64(useRegisterAtStart(base));
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(IntArgReg1)),
+ LAllocation(AnyRegister(IntArgReg0))));
+ return;
+ }
+
+ LAllocation ptr = useRegisterAtStart(base);
+
+ if (IsUnaligned(ins->access())) {
+ MOZ_ASSERT(!ins->access().isAtomic());
+
+ // Unaligned access expected! Revert to a byte load.
+ LDefinition ptrCopy = tempCopy(base, 0);
+
+ LDefinition noTemp = LDefinition::BogusTemp();
+ if (ins->type() == MIRType::Int64) {
+ auto* lir = new (alloc())
+ LWasmUnalignedLoadI64(ptr, ptrCopy, temp(), noTemp, noTemp);
+ defineInt64(lir, ins);
+ return;
+ }
+
+ LDefinition temp2 = noTemp;
+ LDefinition temp3 = noTemp;
+ if (IsFloatingPointType(ins->type())) {
+ // For putting the low value in a GPR.
+ temp2 = temp();
+ // For putting the high value in a GPR.
+ if (ins->type() == MIRType::Double) {
+ temp3 = temp();
+ }
+ }
+
+ auto* lir =
+ new (alloc()) LWasmUnalignedLoad(ptr, ptrCopy, temp(), temp2, temp3);
+ define(lir, ins);
+ return;
+ }
+
+ if (ins->type() == MIRType::Int64) {
+ auto* lir = new (alloc()) LWasmLoadI64(ptr);
+ if (ins->access().offset() || ins->access().type() == Scalar::Int64) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+ defineInt64(lir, ins);
+ return;
+ }
+
+ auto* lir = new (alloc()) LWasmLoad(ptr);
+ if (ins->access().offset()) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmStore(MWasmStore* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
+ auto* lir = new (alloc()) LWasmAtomicStoreI64(
+ useRegister(base),
+ useInt64Fixed(ins->value(), Register64(IntArgReg1, IntArgReg0)),
+ tempFixed(IntArgReg2), tempFixed(IntArgReg3));
+ add(lir, ins);
+ return;
+ }
+
+ LAllocation ptr = useRegisterAtStart(base);
+
+ if (IsUnaligned(ins->access())) {
+ MOZ_ASSERT(!ins->access().isAtomic());
+
+ // Unaligned access expected! Revert to a byte store.
+ LDefinition ptrCopy = tempCopy(base, 0);
+
+ MIRType valueType = ins->value()->type();
+ if (valueType == MIRType::Int64) {
+ LInt64Allocation value = useInt64RegisterAtStart(ins->value());
+ auto* lir =
+ new (alloc()) LWasmUnalignedStoreI64(ptr, value, ptrCopy, temp());
+ add(lir, ins);
+ return;
+ }
+
+ LAllocation value = useRegisterAtStart(ins->value());
+ LDefinition valueHelper = IsFloatingPointType(valueType)
+ ? temp() // to do a FPU -> GPR move.
+ : tempCopy(base, 1); // to clobber the value.
+
+ auto* lir =
+ new (alloc()) LWasmUnalignedStore(ptr, value, ptrCopy, valueHelper);
+ add(lir, ins);
+ return;
+ }
+
+ if (ins->value()->type() == MIRType::Int64) {
+ LInt64Allocation value = useInt64RegisterAtStart(ins->value());
+ auto* lir = new (alloc()) LWasmStoreI64(ptr, value);
+ if (ins->access().offset() || ins->access().type() == Scalar::Int64) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+ add(lir, ins);
+ return;
+ }
+
+ LAllocation value = useRegisterAtStart(ins->value());
+ auto* lir = new (alloc()) LWasmStore(ptr, value);
+
+ if (ins->access().offset()) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+
+ add(lir, ins);
+}
+
+void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) {
+ MOZ_ASSERT(ins->offset() == 0);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ // For the ARM it is best to keep the 'base' in a register if a bounds check
+ // is needed.
+ LAllocation baseAlloc;
+ LAllocation limitAlloc;
+
+ if (base->isConstant() && !ins->needsBoundsCheck()) {
+ // A bounds check is only skipped for a positive index.
+ MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
+ baseAlloc = LAllocation(base->toConstant());
+ } else {
+ baseAlloc = useRegisterAtStart(base);
+ if (ins->needsBoundsCheck()) {
+ MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
+ MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32);
+ limitAlloc = useRegisterAtStart(boundsCheckLimit);
+ }
+ }
+
+ define(new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc), ins);
+}
+
+void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) {
+ MOZ_ASSERT(ins->offset() == 0);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ LAllocation baseAlloc;
+ LAllocation limitAlloc;
+
+ if (base->isConstant() && !ins->needsBoundsCheck()) {
+ MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
+ baseAlloc = LAllocation(base->toConstant());
+ } else {
+ baseAlloc = useRegisterAtStart(base);
+ if (ins->needsBoundsCheck()) {
+ MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
+ MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32);
+ limitAlloc = useRegisterAtStart(boundsCheckLimit);
+ }
+ }
+
+ add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()),
+ limitAlloc),
+ ins);
+}
+
+void LIRGeneratorARM::lowerTruncateDToInt32(MTruncateToInt32* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double);
+
+ define(new (alloc())
+ LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()),
+ ins);
+}
+
+void LIRGeneratorARM::lowerTruncateFToInt32(MTruncateToInt32* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Float32);
+
+ define(new (alloc())
+ LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()),
+ ins);
+}
+
+void LIRGenerator::visitAtomicExchangeTypedArrayElement(
+ MAtomicExchangeTypedArrayElement* ins) {
+ MOZ_ASSERT(HasLDSTREXBHD());
+ MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index = useRegisterOrConstant(ins->index());
+
+ // If the target is a floating register then we need a temp at the
+ // CodeGenerator level for creating the result.
+
+ const LAllocation value = useRegister(ins->value());
+ LDefinition tempDef = LDefinition::BogusTemp();
+ if (ins->arrayType() == Scalar::Uint32) {
+ MOZ_ASSERT(ins->type() == MIRType::Double);
+ tempDef = temp();
+ }
+
+ LAtomicExchangeTypedArrayElement* lir = new (alloc())
+ LAtomicExchangeTypedArrayElement(elements, index, value, tempDef);
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitAtomicTypedArrayElementBinop(
+ MAtomicTypedArrayElementBinop* ins) {
+ MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index = useRegisterOrConstant(ins->index());
+ const LAllocation value = useRegister(ins->value());
+
+ if (!ins->hasUses()) {
+ LAtomicTypedArrayElementBinopForEffect* lir = new (alloc())
+ LAtomicTypedArrayElementBinopForEffect(elements, index, value,
+ /* flagTemp= */ temp());
+ add(lir, ins);
+ return;
+ }
+
+ // For a Uint32Array with a known double result we need a temp for
+ // the intermediate output.
+ //
+ // Optimization opportunity (bug 1077317): We can do better by
+ // allowing 'value' to remain as an imm32 if it is small enough to
+ // fit in an instruction.
+
+ LDefinition flagTemp = temp();
+ LDefinition outTemp = LDefinition::BogusTemp();
+
+ if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
+ outTemp = temp();
+ }
+
+ // On arm, map flagTemp to temp1 and outTemp to temp2, at least for now.
+
+ LAtomicTypedArrayElementBinop* lir = new (alloc())
+ LAtomicTypedArrayElementBinop(elements, index, value, flagTemp, outTemp);
+ define(lir, ins);
+}
+
+void LIRGenerator::visitCompareExchangeTypedArrayElement(
+ MCompareExchangeTypedArrayElement* ins) {
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index = useRegisterOrConstant(ins->index());
+
+ // If the target is a floating register then we need a temp at the
+ // CodeGenerator level for creating the result.
+ //
+ // Optimization opportunity (bug 1077317): We could do better by
+ // allowing oldval to remain an immediate, if it is small enough
+ // to fit in an instruction.
+
+ const LAllocation newval = useRegister(ins->newval());
+ const LAllocation oldval = useRegister(ins->oldval());
+ LDefinition tempDef = LDefinition::BogusTemp();
+ if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
+ tempDef = temp();
+ }
+
+ LCompareExchangeTypedArrayElement* lir =
+ new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval,
+ newval, tempDef);
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ if (ins->access().type() == Scalar::Int64) {
+ // The three register pairs must be distinct.
+ auto* lir = new (alloc()) LWasmCompareExchangeI64(
+ useRegister(base), useInt64Fixed(ins->oldValue(), CmpXchgOld64),
+ useInt64Fixed(ins->newValue(), CmpXchgNew64));
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(CmpXchgOutHi)),
+ LAllocation(AnyRegister(CmpXchgOutLo))));
+ return;
+ }
+
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+ MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints");
+
+ LWasmCompareExchangeHeap* lir = new (alloc())
+ LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()),
+ useRegister(ins->newValue()));
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
+ MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
+
+ if (ins->access().type() == Scalar::Int64) {
+ auto* lir = new (alloc()) LWasmAtomicExchangeI64(
+ useRegister(ins->base()), useInt64Fixed(ins->value(), XchgNew64),
+ ins->access());
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(XchgOutHi)),
+ LAllocation(AnyRegister(XchgOutLo))));
+ return;
+ }
+
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+ MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints");
+
+ const LAllocation base = useRegister(ins->base());
+ const LAllocation value = useRegister(ins->value());
+ define(new (alloc()) LWasmAtomicExchangeHeap(base, value), ins);
+}
+
+void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
+ if (ins->access().type() == Scalar::Int64) {
+ auto* lir = new (alloc()) LWasmAtomicBinopI64(
+ useRegister(ins->base()), useInt64Fixed(ins->value(), FetchOpVal64),
+ tempFixed(FetchOpTmpLo), tempFixed(FetchOpTmpHi), ins->access(),
+ ins->operation());
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(FetchOpOutHi)),
+ LAllocation(AnyRegister(FetchOpOutLo))));
+ return;
+ }
+
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+ MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints");
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ if (!ins->hasUses()) {
+ LWasmAtomicBinopHeapForEffect* lir =
+ new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base),
+ useRegister(ins->value()),
+ /* flagTemp= */ temp());
+ add(lir, ins);
+ return;
+ }
+
+ LWasmAtomicBinopHeap* lir = new (alloc())
+ LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()),
+ /* temp = */ LDefinition::BogusTemp(),
+ /* flagTemp= */ temp());
+ define(lir, ins);
+}
+
+void LIRGenerator::visitSubstr(MSubstr* ins) {
+ LSubstr* lir = new (alloc())
+ LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
+ useRegister(ins->length()), temp(), temp(), tempByteOpRegister());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
+ MOZ_CRASH("We don't use MWasmTruncateToInt64 for arm");
+}
+
+void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt64(
+ MWasmBuiltinTruncateToInt64* ins) {
+ MDefinition* opd = ins->input();
+ MDefinition* tls = ins->tls();
+ MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
+
+ defineReturn(new (alloc()) LWasmTruncateToInt64(
+ useRegisterAtStart(opd), useFixedAtStart(tls, WasmTlsReg)),
+ ins);
+}
+
+void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
+ MOZ_CRASH("We use BuiltinInt64ToFloatingPoint instead.");
+}
+
+void LIRGeneratorARM::lowerBuiltinInt64ToFloatingPoint(
+ MBuiltinInt64ToFloatingPoint* ins) {
+ MOZ_ASSERT(ins->type() == MIRType::Double || ins->type() == MIRType::Float32);
+
+ auto* lir = new (alloc())
+ LInt64ToFloatingPointCall(useInt64RegisterAtStart(ins->input()),
+ useFixedAtStart(ins->tls(), WasmTlsReg));
+ defineReturn(lir, ins);
+}
+
+void LIRGenerator::visitCopySign(MCopySign* ins) {
+ MDefinition* lhs = ins->lhs();
+ MDefinition* rhs = ins->rhs();
+
+ MOZ_ASSERT(IsFloatingPointType(lhs->type()));
+ MOZ_ASSERT(lhs->type() == rhs->type());
+ MOZ_ASSERT(lhs->type() == ins->type());
+
+ LInstructionHelper<1, 2, 2>* lir;
+ if (lhs->type() == MIRType::Double) {
+ lir = new (alloc()) LCopySignD();
+ } else {
+ lir = new (alloc()) LCopySignF();
+ }
+
+ lir->setTemp(0, temp());
+ lir->setTemp(1, temp());
+
+ lowerForFPU(lir, ins, lhs, rhs);
+}
+
+void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
+ auto* lir =
+ new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input()));
+ defineInt64(lir, ins);
+
+ LDefinition def(LDefinition::GENERAL, LDefinition::MUST_REUSE_INPUT);
+ def.setReusedInput(0);
+ def.setVirtualRegister(ins->virtualRegister());
+
+ lir->setDef(0, def);
+}
+
+void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
+ defineInt64(new (alloc())
+ LSignExtendInt64(useInt64RegisterAtStart(ins->input())),
+ ins);
+}
+
+void LIRGenerator::visitWasmBitselectSimd128(MWasmBitselectSimd128* ins) {
+ MOZ_CRASH("bitselect NYI");
+}
+
+void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) {
+ MOZ_CRASH("binary SIMD NYI");
+}
+
+bool MWasmBinarySimd128::specializeForConstantRhs() {
+ // Probably many we want to do here
+ return false;
+}
+
+void LIRGenerator::visitWasmBinarySimd128WithConstant(
+ MWasmBinarySimd128WithConstant* ins) {
+ MOZ_CRASH("binary SIMD with constant NYI");
+}
+
+void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) {
+ MOZ_CRASH("shift SIMD NYI");
+}
+
+void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) {
+ MOZ_CRASH("shuffle SIMD NYI");
+}
+
+void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) {
+ MOZ_CRASH("replace-lane SIMD NYI");
+}
+
+void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) {
+ MOZ_CRASH("scalar-to-SIMD NYI");
+}
+
+void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) {
+ MOZ_CRASH("unary SIMD NYI");
+}
+
+void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) {
+ MOZ_CRASH("reduce-SIMD NYI");
+}