diff options
Diffstat (limited to 'js/src/vm/Scope.h')
-rw-r--r-- | js/src/vm/Scope.h | 1822 |
1 files changed, 1822 insertions, 0 deletions
diff --git a/js/src/vm/Scope.h b/js/src/vm/Scope.h new file mode 100644 index 0000000000..2ad8340fa7 --- /dev/null +++ b/js/src/vm/Scope.h @@ -0,0 +1,1822 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef vm_Scope_h +#define vm_Scope_h + +#include "mozilla/Assertions.h" // MOZ_ASSERT, MOZ_ASSERT_IF +#include "mozilla/Attributes.h" // MOZ_IMPLICIT, MOZ_INIT_OUTSIDE_CTOR, MOZ_STACK_CLASS +#include "mozilla/Casting.h" // mozilla::AssertedCast +#include "mozilla/Maybe.h" // mozilla::Maybe +#include "mozilla/MemoryReporting.h" // mozilla::MallocSizeOf + +#include <algorithm> // std::fill_n +#include <stddef.h> // size_t +#include <stdint.h> // uint8_t, uint16_t, uint32_t, uintptr_t +#include <type_traits> // std::is_same_v + +#include "builtin/ModuleObject.h" // ModuleObject, HandleModuleObject +#include "frontend/ParserAtom.h" // frontend::TaggedParserAtomIndex +#include "gc/Allocator.h" // AllowGC +#include "gc/Barrier.h" // HeapPtr +#include "gc/Cell.h" // TenuredCellWithNonGCPointer +#include "gc/MaybeRooted.h" // MaybeRooted +#include "gc/Rooting.h" // HandleScope, HandleShape, MutableHandleShape +#include "js/GCPolicyAPI.h" // GCPolicy, IgnoreGCPolicy +#include "js/HeapAPI.h" // CellFlagBitsReservedForGC +#include "js/RootingAPI.h" // Handle, MutableHandle +#include "js/TraceKind.h" // JS::TraceKind +#include "js/TypeDecls.h" // HandleFunction +#include "js/UbiNode.h" // ubi::* +#include "js/UniquePtr.h" // UniquePtr +#include "util/Poison.h" // AlwaysPoison, JS_SCOPE_DATA_TRAILING_NAMES_PATTERN, MemCheckKind +#include "vm/BytecodeUtil.h" // LOCALNO_LIMIT, ENVCOORD_SLOT_LIMIT +#include "vm/JSFunction.h" // JSFunction +#include "vm/ScopeKind.h" // ScopeKind +#include "vm/Shape.h" // Shape +#include "vm/Xdr.h" // XDRResult, XDRState +#include "wasm/WasmJS.h" // WasmInstanceObject + +class JSAtom; +class JSFreeOp; +class JSFunction; +class JSScript; +class JSTracer; +struct JSContext; + +namespace JS { +class Zone; +} // namespace JS + +namespace js { + +class GenericPrinter; + +namespace frontend { +struct CompilationAtomCache; +class ScopeStencil; +class ParserAtom; +} // namespace frontend + +template <typename NameT> +class AbstractBaseScopeData; + +template <typename NameT> +class BaseAbstractBindingIter; + +template <typename NameT> +class AbstractBindingIter; + +using BindingIter = AbstractBindingIter<JSAtom>; + +class AbstractScopePtr; + +static inline bool ScopeKindIsCatch(ScopeKind kind) { + return kind == ScopeKind::SimpleCatch || kind == ScopeKind::Catch; +} + +static inline bool ScopeKindIsInBody(ScopeKind kind) { + return kind == ScopeKind::Lexical || kind == ScopeKind::SimpleCatch || + kind == ScopeKind::Catch || kind == ScopeKind::With || + kind == ScopeKind::FunctionLexical || + kind == ScopeKind::FunctionBodyVar || kind == ScopeKind::ClassBody; +} + +const char* BindingKindString(BindingKind kind); +const char* ScopeKindString(ScopeKind kind); + +template <typename NameT> +class AbstractBindingName; + +template <> +class AbstractBindingName<JSAtom> { + public: + using NameT = JSAtom; + using NamePointerT = NameT*; + + private: + // A JSAtom* with its low bit used as a tag for the: + // * whether it is closed over (i.e., exists in the environment shape) + // * whether it is a top-level function binding in global or eval scope, + // instead of var binding (both are in the same range in Scope data) + uintptr_t bits_; + + static constexpr uintptr_t ClosedOverFlag = 0x1; + // TODO: We should reuse this bit for let vs class distinction to + // show the better redeclaration error message (bug 1428672). + static constexpr uintptr_t TopLevelFunctionFlag = 0x2; + static constexpr uintptr_t FlagMask = 0x3; + + public: + AbstractBindingName() : bits_(0) {} + + AbstractBindingName(NameT* name, bool closedOver, + bool isTopLevelFunction = false) + : bits_(uintptr_t(name) | (closedOver ? ClosedOverFlag : 0x0) | + (isTopLevelFunction ? TopLevelFunctionFlag : 0x0)) {} + + private: + // For fromXDR. + AbstractBindingName(NameT* name, uint8_t flags) + : bits_(uintptr_t(name) | flags) { + static_assert(FlagMask < alignof(NameT), + "Flags should fit into unused low bits of atom repr"); + MOZ_ASSERT((flags & FlagMask) == flags); + } + + public: + static AbstractBindingName<NameT> fromXDR(NameT* name, uint8_t flags) { + return AbstractBindingName<NameT>(name, flags); + } + + uint8_t flagsForXDR() const { return static_cast<uint8_t>(bits_ & FlagMask); } + + NamePointerT name() const { + return reinterpret_cast<NameT*>(bits_ & ~FlagMask); + } + + bool closedOver() const { return bits_ & ClosedOverFlag; } + + private: + friend class BaseAbstractBindingIter<NameT>; + + // This method should be called only for binding names in `vars` range in + // BindingIter. + bool isTopLevelFunction() const { return bits_ & TopLevelFunctionFlag; } + + public: + void trace(JSTracer* trc); +}; + +template <> +class AbstractBindingName<frontend::TaggedParserAtomIndex> { + uint32_t bits_; + + using TaggedParserAtomIndex = frontend::TaggedParserAtomIndex; + + public: + using NameT = TaggedParserAtomIndex; + using NamePointerT = NameT; + + private: + static constexpr size_t TaggedIndexBit = TaggedParserAtomIndex::IndexBit + 2; + + static constexpr size_t FlagShift = TaggedIndexBit; + static constexpr size_t FlagBit = 2; + static constexpr uint32_t FlagMask = BitMask(FlagBit) << FlagShift; + + static constexpr uint32_t ClosedOverFlag = 1 << FlagShift; + static constexpr uint32_t TopLevelFunctionFlag = 2 << FlagShift; + + public: + AbstractBindingName() : bits_(TaggedParserAtomIndex::NullTag) { + // TaggedParserAtomIndex's tags shouldn't overlap with flags. + static_assert((TaggedParserAtomIndex::NullTag & FlagMask) == 0); + static_assert((TaggedParserAtomIndex::ParserAtomIndexTag & FlagMask) == 0); + static_assert((TaggedParserAtomIndex::WellKnownTag & FlagMask) == 0); + } + + AbstractBindingName(TaggedParserAtomIndex name, bool closedOver, + bool isTopLevelFunction = false) + : bits_(*name.rawData() | (closedOver ? ClosedOverFlag : 0x0) | + (isTopLevelFunction ? TopLevelFunctionFlag : 0x0)) {} + + public: + uint32_t* rawData() { return &bits_; } + + NamePointerT name() const { + return TaggedParserAtomIndex::fromRaw(bits_ & ~FlagMask); + } + + bool closedOver() const { return bits_ & ClosedOverFlag; } + + AbstractBindingName<JSAtom> copyWithNewAtom(JSAtom* newName) const { + return AbstractBindingName<JSAtom>(newName, closedOver(), + isTopLevelFunction()); + } + + private: + friend class BaseAbstractBindingIter<TaggedParserAtomIndex>; + friend class frontend::ScopeStencil; + + // This method should be called only for binding names in `vars` range in + // BindingIter. + bool isTopLevelFunction() const { return bits_ & TopLevelFunctionFlag; } +}; + +using BindingName = AbstractBindingName<JSAtom>; + +const size_t ScopeDataAlignBytes = size_t(1) << gc::CellFlagBitsReservedForGC; + +/** + * Empty base class for scope {Runtime,Parser}Data classes to inherit from. + * + * Scope GC things store a pointer to these in their first word so they must be + * suitably aligned to allow storing GC flags in the low bits. + */ +template <typename NameT> +class AbstractBaseScopeData { + public: + using NameType = NameT; +}; + +using BaseScopeData = AbstractBaseScopeData<JSAtom>; + +inline void PoisonNames(AbstractBindingName<JSAtom>* data, size_t nameCount) { + AlwaysPoison(data, JS_SCOPE_DATA_TRAILING_NAMES_PATTERN, + sizeof(AbstractBindingName<JSAtom>) * nameCount, + MemCheckKind::MakeUndefined); +} + +// frontend::TaggedParserAtomIndex doesn't require poison value. +// Fill with null value instead. +inline void PoisonNames( + AbstractBindingName<frontend::TaggedParserAtomIndex>* data, + size_t nameCount) { + std::fill_n(data, nameCount, + AbstractBindingName<frontend::TaggedParserAtomIndex>()); +} + +/** + * The various {Global,Module,...}Scope::{Runtime,Parser}Data classes consist + * of always-present bits, then a trailing array of BindingNames. The various + * {Runtime,Parser}Data classes all end in a TrailingNamesArray that contains + * sized/aligned space for *one* BindingName. {Runtime,Parser}Data instances + * that contain N BindingNames, are then allocated in + * sizeof({Runtime,Parser}Data) + (space for (N - 1) BindingNames). + * Because this class's |data_| field is properly sized/aligned, the + * N-BindingName array can start at |data_|. + * + * This is concededly a very low-level representation, but we want to only + * allocate once for data+bindings both, and this does so approximately as + * elegantly as C++ allows. + * + * The names array is implemented in terms of an generic type that + * allows specialization between a (JSAtom*) BindingName and a + * ParserAtom + */ +template <typename NameT> +class AbstractTrailingNamesArray { + using BindingNameT = AbstractBindingName<NameT>; + + private: + alignas(BindingNameT) unsigned char data_[sizeof(BindingNameT)]; + + private: + // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a + // -Werror compile error) to reinterpret_cast<> |data_| to |T*|, even + // through |void*|. Placing the latter cast in these separate functions + // breaks the chain such that affected GCC versions no longer warn/error. + void* ptr() { return data_; } + + public: + // Explicitly ensure no one accidentally allocates scope data without + // poisoning its trailing names. + AbstractTrailingNamesArray() = delete; + + explicit AbstractTrailingNamesArray(size_t nameCount) { + if (nameCount) { + PoisonNames(reinterpret_cast<BindingNameT*>(&data_), nameCount); + } + } + + BindingNameT* start() { return reinterpret_cast<BindingNameT*>(ptr()); } + + BindingNameT& get(size_t i) { return start()[i]; } + BindingNameT& operator[](size_t i) { return get(i); } +}; + +// +// Allow using is<T> and as<T> on Rooted<Scope*> and Handle<Scope*>. +// +template <typename Wrapper> +class WrappedPtrOperations<Scope*, Wrapper> { + public: + template <class U> + JS::Handle<U*> as() const { + const Wrapper& self = *static_cast<const Wrapper*>(this); + MOZ_ASSERT_IF(self, self->template is<U>()); + return Handle<U*>::fromMarkedLocation( + reinterpret_cast<U* const*>(self.address())); + } +}; + +// +// The base class of all Scopes. +// +class Scope : public gc::TenuredCellWithNonGCPointer<BaseScopeData> { + friend class GCMarker; + friend class frontend::ScopeStencil; + friend class js::AbstractBindingIter<JSAtom>; + + protected: + // The raw data pointer, stored in the cell header. + BaseScopeData* rawData() { return headerPtr(); } + const BaseScopeData* rawData() const { return headerPtr(); } + + // The kind determines data_. + const ScopeKind kind_; + + // If there are any aliased bindings, the shape for the + // EnvironmentObject. Otherwise nullptr. + const HeapPtr<Shape*> environmentShape_; + + // The enclosing scope or nullptr. + HeapPtr<Scope*> enclosingScope_; + + Scope(ScopeKind kind, Scope* enclosing, Shape* environmentShape) + : TenuredCellWithNonGCPointer(nullptr), + kind_(kind), + environmentShape_(environmentShape), + enclosingScope_(enclosing) {} + + static Scope* create(JSContext* cx, ScopeKind kind, HandleScope enclosing, + HandleShape envShape); + + template <typename ConcreteScope, XDRMode mode> + static XDRResult XDRSizedBindingNames( + XDRState<mode>* xdr, Handle<ConcreteScope*> scope, + MutableHandle<typename ConcreteScope::RuntimeData*> data); + + Shape* maybeCloneEnvironmentShape(JSContext* cx); + + template <typename ConcreteScope> + void initData( + MutableHandle<UniquePtr<typename ConcreteScope::RuntimeData>> data); + + template <typename F> + void applyScopeDataTyped(F&& f); + + template <typename EnvironmentT> + static bool updateEnvShapeIfRequired(JSContext* cx, MutableHandleShape shape, + bool needsEnvironment); + + template <typename EnvironmentT> + static bool updateEnvShapeIfRequired(JSContext* cx, + mozilla::Maybe<uint32_t>* envShape, + bool needsEnvironment); + + public: + template <typename ConcreteScope> + static ConcreteScope* create( + JSContext* cx, ScopeKind kind, HandleScope enclosing, + HandleShape envShape, + MutableHandle<UniquePtr<typename ConcreteScope::RuntimeData>> data); + + static const JS::TraceKind TraceKind = JS::TraceKind::Scope; + + template <typename T> + bool is() const { + return kind_ == T::classScopeKind_; + } + + template <typename T> + T& as() { + MOZ_ASSERT(this->is<T>()); + return *static_cast<T*>(this); + } + + template <typename T> + const T& as() const { + MOZ_ASSERT(this->is<T>()); + return *static_cast<const T*>(this); + } + + ScopeKind kind() const { return kind_; } + + Shape* environmentShape() const { return environmentShape_; } + + Scope* enclosing() const { return enclosingScope_; } + + static bool hasEnvironment(ScopeKind kind, bool environmentShape) { + switch (kind) { + case ScopeKind::With: + case ScopeKind::Global: + case ScopeKind::NonSyntactic: + return true; + default: + // If there's a shape, an environment must be created for this scope. + return environmentShape; + } + } + + bool hasEnvironment() const { + return hasEnvironment(kind_, environmentShape()); + } + + uint32_t firstFrameSlot() const; + + uint32_t chainLength() const; + uint32_t environmentChainLength() const; + + template <typename T> + bool hasOnChain() const { + for (const Scope* it = this; it; it = it->enclosing()) { + if (it->is<T>()) { + return true; + } + } + return false; + } + + bool hasOnChain(ScopeKind kind) const { + for (const Scope* it = this; it; it = it->enclosing()) { + if (it->kind() == kind) { + return true; + } + } + return false; + } + + static Scope* clone(JSContext* cx, HandleScope scope, HandleScope enclosing); + + void traceChildren(JSTracer* trc); + void finalize(JSFreeOp* fop); + + size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const; + + void dump(); +#if defined(DEBUG) || defined(JS_JITSPEW) + static bool dumpForDisassemble(JSContext* cx, JS::Handle<Scope*> scope, + GenericPrinter& out, const char* indent); +#endif /* defined(DEBUG) || defined(JS_JITSPEW) */ +}; + +template <class DataT> +inline size_t SizeOfScopeData(uint32_t numBindings) { + using BindingT = AbstractBindingName<typename DataT::NameType>; + +#if JS_BITS_PER_WORD == 64 + static_assert( + sizeof(DataT) == offsetof(DataT, trailingNames) + sizeof(BindingT), + "Unexpected default number of inlined elements"); + // -1 because AbstractTrailingNamesArray (trailingNames field in DataT) + // contains one inlined element in data_ field. + return sizeof(DataT) + + ((numBindings ? numBindings - 1 : 0) * sizeof(BindingT)); +#else + // RuntimeData has alignas(ScopeDataAlignBytes), that is 8-bytes. + // RuntimeData on 32-bit arch may have 4-bytes trailing padding after + // trailingNames, and in that case there are effectively 2 inlined elements + // inside sizeof(DataT). + static_assert( + sizeof(DataT) == offsetof(DataT, trailingNames) + sizeof(BindingT) || + sizeof(DataT) == + offsetof(DataT, trailingNames) + 2 * sizeof(BindingT), + "Unexpected default number of inlined elements"); + + if constexpr (sizeof(DataT) == + offsetof(DataT, trailingNames) + sizeof(BindingT)) { + // There's no trailing padding, and there's only one inlined element. + // This is RuntimeData without padding, or ParserData. + return sizeof(DataT) + + ((numBindings ? numBindings - 1 : 0) * sizeof(BindingT)); + } + + // There's trailing padding, and there are two inlined elements. + return sizeof(DataT) + + ((numBindings > 2 ? numBindings - 2 : 0) * sizeof(BindingT)); +#endif +} + +// +// A useful typedef for selecting between a gc-aware wrappers +// around pointers to BaseScopeData-derived types, and around raw +// pointer wrappers around BaseParserScopeData-derived types. +// +template <typename ScopeT, typename AtomT> +using AbstractScopeData = typename ScopeT::template AbstractData<AtomT>; + +template <typename ScopeT, typename AtomT> +using MaybeRootedScopeData = std::conditional_t< + std::is_same_v<AtomT, JSAtom>, + MaybeRooted<UniquePtr<typename ScopeT::RuntimeData>, AllowGC::CanGC>, + MaybeRooted<AbstractScopeData<ScopeT, AtomT>*, AllowGC::NoGC>>; + +template <typename SlotInfo> +struct ParserScopeData + : public AbstractBaseScopeData<frontend::TaggedParserAtomIndex> { + SlotInfo slotInfo; + AbstractTrailingNamesArray<frontend::TaggedParserAtomIndex> trailingNames; + + explicit ParserScopeData(size_t nameCount) : trailingNames(nameCount) {} + ParserScopeData() = delete; +}; + +// +// A lexical scope that holds let and const bindings. There are 4 kinds of +// LexicalScopes. +// +// Lexical +// A plain lexical scope. +// +// SimpleCatch +// Holds the single catch parameter of a catch block. +// +// Catch +// Holds the catch parameters (and only the catch parameters) of a catch +// block. +// +// NamedLambda +// StrictNamedLambda +// Holds the single name of the callee for a named lambda expression. +// +// All kinds of LexicalScopes correspond to LexicalEnvironmentObjects on the +// environment chain. +// +class LexicalScope : public Scope { + friend class Scope; + friend class AbstractBindingIter<JSAtom>; + friend class GCMarker; + friend class frontend::ScopeStencil; + + public: + struct SlotInfo { + // Frame slots [0, nextFrameSlot) are live when this is the innermost + // scope. + uint32_t nextFrameSlot = 0; + + // Bindings are sorted by kind in both frames and environments. + // + // lets - [0, constStart) + // consts - [constStart, length) + uint32_t constStart = 0; + uint32_t length = 0; + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {} + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + template <XDRMode mode> + static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind, + HandleScope enclosing, MutableHandleScope scope); + + private: + static LexicalScope* createWithData( + JSContext* cx, ScopeKind kind, MutableHandle<UniquePtr<RuntimeData>> data, + uint32_t firstFrameSlot, HandleScope enclosing); + + template <typename AtomT, typename ShapeT> + static bool prepareForScopeCreation( + JSContext* cx, ScopeKind kind, uint32_t firstFrameSlot, + typename MaybeRootedScopeData<LexicalScope, AtomT>::MutableHandleType + data, + ShapeT envShape); + + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } + + static uint32_t nextFrameSlot(Scope* scope); + + public: + uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; } + + // Returns an empty shape for extensible global and non-syntactic lexical + // scopes. + static Shape* getEmptyExtensibleEnvironmentShape(JSContext* cx); +}; + +template <> +inline bool Scope::is<LexicalScope>() const { + return kind_ == ScopeKind::Lexical || kind_ == ScopeKind::SimpleCatch || + kind_ == ScopeKind::Catch || kind_ == ScopeKind::NamedLambda || + kind_ == ScopeKind::StrictNamedLambda || + kind_ == ScopeKind::FunctionLexical || kind_ == ScopeKind::ClassBody; +} + +// +// Scope corresponding to a function. Holds formal parameter names, special +// internal names (see FunctionScope::isSpecialName), and, if the function +// parameters contain no expressions that might possibly be evaluated, the +// function's var bindings. For example, in these functions, the FunctionScope +// will store a/b/c bindings but not d/e/f bindings: +// +// function f1(a, b) { +// var c; +// let e; +// const f = 3; +// } +// function f2([a], b = 4, ...c) { +// var d, e, f; // stored in VarScope +// } +// +// Corresponds to CallObject on environment chain. +// +class FunctionScope : public Scope { + friend class GCMarker; + friend class AbstractBindingIter<JSAtom>; + friend class PositionalFormalParameterIter; + friend class Scope; + friend class AbstractScopePtr; + static const ScopeKind classScopeKind_ = ScopeKind::Function; + + public: + struct SlotInfo { + // Frame slots [0, nextFrameSlot) are live when this is the innermost + // scope. + uint32_t nextFrameSlot = 0; + + // Flag bits. + // This uses uint32_t in order to make this struct packed. + uint32_t flags = 0; + + // If parameter expressions are present, parameters act like lexical + // bindings. + static constexpr uint32_t HasParameterExprsFlag = 1; + + // Bindings are sorted by kind in both frames and environments. + // + // Positional formal parameter names are those that are not + // destructured. They may be referred to by argument slots if + // !script()->hasParameterExprs(). + // + // An argument slot that needs to be skipped due to being destructured + // or having defaults will have a nullptr name in the name array to + // advance the argument slot. + // + // Rest parameter binding is also included in positional formals. + // This also becomes nullptr if destructuring. + // + // The number of positional formals is equal to function.length if + // there's no rest, function.length+1 otherwise. + // + // Destructuring parameters and destructuring rest are included in + // "other formals" below. + // + // "vars" contains the following: + // * function's top level vars if !script()->hasParameterExprs() + // * special internal names (arguments, .this, .generator) if + // they're used. + // + // positional formals - [0, nonPositionalFormalStart) + // other formals - [nonPositionalParamStart, varStart) + // vars - [varStart, length) + uint16_t nonPositionalFormalStart = 0; + uint16_t varStart = 0; + uint32_t length = 0; + + bool hasParameterExprs() const { return flags & HasParameterExprsFlag; } + void setHasParameterExprs() { flags |= HasParameterExprsFlag; } + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + // The canonical function of the scope, as during a scope walk we + // often query properties of the JSFunction (e.g., is the function an + // arrow). + HeapPtr<JSFunction*> canonicalFunction = {}; + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {} + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + template <typename AtomT, typename ShapeT> + static bool prepareForScopeCreation( + JSContext* cx, + typename MaybeRootedScopeData<FunctionScope, AtomT>::MutableHandleType + data, + bool hasParameterExprs, bool needsEnvironment, HandleFunction fun, + ShapeT envShape); + + static FunctionScope* clone(JSContext* cx, Handle<FunctionScope*> scope, + HandleFunction fun, HandleScope enclosing); + + template <XDRMode mode> + static XDRResult XDR(XDRState<mode>* xdr, HandleFunction fun, + HandleScope enclosing, MutableHandleScope scope); + + private: + static FunctionScope* createWithData( + JSContext* cx, MutableHandle<UniquePtr<RuntimeData>> data, + bool hasParameterExprs, bool needsEnvironment, HandleFunction fun, + HandleScope enclosing); + + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } + + public: + uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; } + + JSFunction* canonicalFunction() const { return data().canonicalFunction; } + + JSScript* script() const; + + bool hasParameterExprs() const { return data().slotInfo.hasParameterExprs(); } + + uint32_t numPositionalFormalParameters() const { + return data().slotInfo.nonPositionalFormalStart; + } + + static bool isSpecialName(JSContext* cx, JSAtom* name); + static bool isSpecialName(JSContext* cx, + frontend::TaggedParserAtomIndex name); +}; + +// +// Scope holding only vars. There is a single kind of VarScopes. +// +// FunctionBodyVar +// Corresponds to the extra var scope present in functions with parameter +// expressions. See examples in comment above FunctionScope. +// +// Corresponds to VarEnvironmentObject on environment chain. +// +class VarScope : public Scope { + friend class GCMarker; + friend class AbstractBindingIter<JSAtom>; + friend class Scope; + friend class frontend::ScopeStencil; + + public: + struct SlotInfo { + // Frame slots [0, nextFrameSlot) are live when this is the innermost + // scope. + uint32_t nextFrameSlot = 0; + + // All bindings are vars. + // + // vars - [0, length) + uint32_t length = 0; + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {} + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + template <XDRMode mode> + static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind, + HandleScope enclosing, MutableHandleScope scope); + + private: + static VarScope* createWithData(JSContext* cx, ScopeKind kind, + MutableHandle<UniquePtr<RuntimeData>> data, + uint32_t firstFrameSlot, + bool needsEnvironment, HandleScope enclosing); + + template <typename AtomT, typename ShapeT> + static bool prepareForScopeCreation( + JSContext* cx, ScopeKind kind, + typename MaybeRootedScopeData<VarScope, AtomT>::MutableHandleType data, + uint32_t firstFrameSlot, bool needsEnvironment, ShapeT envShape); + + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } + + public: + uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; } +}; + +template <> +inline bool Scope::is<VarScope>() const { + return kind_ == ScopeKind::FunctionBodyVar; +} + +// +// Scope corresponding to both the global object scope and the global lexical +// scope. +// +// Both are extensible and are singletons across <script> tags, so these +// scopes are a fragment of the names in global scope. In other words, two +// global scripts may have two different GlobalScopes despite having the same +// GlobalObject. +// +// There are 2 kinds of GlobalScopes. +// +// Global +// Corresponds to a GlobalObject and its global LexicalEnvironmentObject on +// the environment chain. +// +// NonSyntactic +// Corresponds to a non-GlobalObject created by the embedding on the +// environment chain. This distinction is important for optimizations. +// +class GlobalScope : public Scope { + friend class Scope; + friend class AbstractBindingIter<JSAtom>; + friend class GCMarker; + + public: + struct SlotInfo { + // Bindings are sorted by kind. + // `vars` includes top-level functions which is distinguished by a bit + // on the BindingName. + // + // vars - [0, letStart) + // lets - [letStart, constStart) + // consts - [constStart, length) + uint32_t letStart = 0; + uint32_t constStart = 0; + uint32_t length = 0; + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {} + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + static GlobalScope* create(JSContext* cx, ScopeKind kind, + Handle<RuntimeData*> data); + + static GlobalScope* createEmpty(JSContext* cx, ScopeKind kind) { + return create(cx, kind, nullptr); + } + + static GlobalScope* clone(JSContext* cx, Handle<GlobalScope*> scope, + ScopeKind kind); + + template <XDRMode mode> + static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind, + MutableHandleScope scope); + + private: + static GlobalScope* createWithData( + JSContext* cx, ScopeKind kind, + MutableHandle<UniquePtr<RuntimeData>> data); + + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } + + public: + bool isSyntactic() const { return kind() != ScopeKind::NonSyntactic; } + + bool hasBindings() const { return data().slotInfo.length > 0; } +}; + +template <> +inline bool Scope::is<GlobalScope>() const { + return kind_ == ScopeKind::Global || kind_ == ScopeKind::NonSyntactic; +} + +// +// Scope of a 'with' statement. Has no bindings. +// +// Corresponds to a WithEnvironmentObject on the environment chain. +class WithScope : public Scope { + friend class Scope; + friend class AbstractScopePtr; + static const ScopeKind classScopeKind_ = ScopeKind::With; + + public: + static WithScope* create(JSContext* cx, HandleScope enclosing); + + template <XDRMode mode> + static XDRResult XDR(XDRState<mode>* xdr, HandleScope enclosing, + MutableHandleScope scope); +}; + +// +// Scope of an eval. Holds var bindings. There are 2 kinds of EvalScopes. +// +// StrictEval +// A strict eval. Corresponds to a VarEnvironmentObject, where its var +// bindings lives. +// +// Eval +// A sloppy eval. This is an empty scope, used only in the frontend, to +// detect redeclaration errors. It has no Environment. Any `var`s declared +// in the eval code are bound on the nearest enclosing var environment. +// +class EvalScope : public Scope { + friend class Scope; + friend class AbstractBindingIter<JSAtom>; + friend class GCMarker; + friend class frontend::ScopeStencil; + + public: + struct SlotInfo { + // Frame slots [0, nextFrameSlot) are live when this is the innermost + // scope. + uint32_t nextFrameSlot = 0; + + // All bindings in an eval script are 'var' bindings. The implicit + // lexical scope around the eval is present regardless of strictness + // and is its own LexicalScope. + // `vars` includes top-level functions which is distinguished by a bit + // on the BindingName. + // + // vars - [0, length) + uint32_t length = 0; + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {} + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + template <XDRMode mode> + static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind, + HandleScope enclosing, MutableHandleScope scope); + + private: + static EvalScope* createWithData(JSContext* cx, ScopeKind kind, + MutableHandle<UniquePtr<RuntimeData>> data, + HandleScope enclosing); + + template <typename AtomT, typename ShapeT> + static bool prepareForScopeCreation( + JSContext* cx, ScopeKind scopeKind, + typename MaybeRootedScopeData<EvalScope, AtomT>::MutableHandleType data, + ShapeT envShape); + + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } + + public: + // Starting a scope, the nearest var scope that a direct eval can + // introduce vars on. + static Scope* nearestVarScopeForDirectEval(Scope* scope); + + uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; } + + bool strict() const { return kind() == ScopeKind::StrictEval; } + + bool hasBindings() const { return data().slotInfo.length > 0; } + + bool isNonGlobal() const { + if (strict()) { + return true; + } + return !nearestVarScopeForDirectEval(enclosing())->is<GlobalScope>(); + } +}; + +template <> +inline bool Scope::is<EvalScope>() const { + return kind_ == ScopeKind::Eval || kind_ == ScopeKind::StrictEval; +} + +// +// Scope corresponding to the toplevel script in an ES module. +// +// Like GlobalScopes, these scopes contain both vars and lexical bindings, as +// the treating of imports and exports requires putting them in one scope. +// +// Corresponds to a ModuleEnvironmentObject on the environment chain. +// +class ModuleScope : public Scope { + friend class GCMarker; + friend class AbstractBindingIter<JSAtom>; + friend class Scope; + friend class AbstractScopePtr; + friend class frontend::ScopeStencil; + static const ScopeKind classScopeKind_ = ScopeKind::Module; + + public: + struct SlotInfo { + // Frame slots [0, nextFrameSlot) are live when this is the innermost + // scope. + uint32_t nextFrameSlot = 0; + + // Bindings are sorted by kind. + // + // imports - [0, varStart) + // vars - [varStart, letStart) + // lets - [letStart, constStart) + // consts - [constStart, length) + uint32_t varStart = 0; + uint32_t letStart = 0; + uint32_t constStart = 0; + uint32_t length = 0; + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + // The module of the scope. + HeapPtr<ModuleObject*> module = {}; + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount); + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + template <XDRMode mode> + static XDRResult XDR(XDRState<mode>* xdr, HandleModuleObject module, + HandleScope enclosing, MutableHandleScope scope); + + private: + static ModuleScope* createWithData(JSContext* cx, + MutableHandle<UniquePtr<RuntimeData>> data, + Handle<ModuleObject*> module, + HandleScope enclosing); + template <typename AtomT, typename ShapeT> + static bool prepareForScopeCreation( + JSContext* cx, + typename MaybeRootedScopeData<ModuleScope, AtomT>::MutableHandleType data, + HandleModuleObject module, ShapeT envShape); + + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } + + public: + uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; } + + ModuleObject* module() const { return data().module; } + + // Off-thread compilation needs to calculate environmentChainLength for + // an emptyGlobalScope where the global may not be available. + static const size_t EnclosingEnvironmentChainLength = 1; +}; + +class WasmInstanceScope : public Scope { + friend class AbstractBindingIter<JSAtom>; + friend class Scope; + friend class GCMarker; + friend class AbstractScopePtr; + static const ScopeKind classScopeKind_ = ScopeKind::WasmInstance; + + public: + struct SlotInfo { + // Frame slots [0, nextFrameSlot) are live when this is the innermost + // scope. + uint32_t nextFrameSlot = 0; + + // Bindings list the WASM memories and globals. + // + // memories - [0, globalsStart) + // globals - [globalsStart, length) + uint32_t globalsStart = 0; + uint32_t length = 0; + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + // The wasm instance of the scope. + HeapPtr<WasmInstanceObject*> instance = {}; + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount); + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + static WasmInstanceScope* create(JSContext* cx, WasmInstanceObject* instance); + + private: + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } + + public: + WasmInstanceObject* instance() const { return data().instance; } + + uint32_t memoriesStart() const { return 0; } + + uint32_t globalsStart() const { return data().slotInfo.globalsStart; } + + uint32_t namesCount() const { return data().slotInfo.length; } +}; + +// Scope corresponding to the wasm function. A WasmFunctionScope is used by +// Debugger only, and not for wasm execution. +// +class WasmFunctionScope : public Scope { + friend class AbstractBindingIter<JSAtom>; + friend class Scope; + friend class GCMarker; + friend class AbstractScopePtr; + static const ScopeKind classScopeKind_ = ScopeKind::WasmFunction; + + public: + struct SlotInfo { + // Frame slots [0, nextFrameSlot) are live when this is the innermost + // scope. + uint32_t nextFrameSlot = 0; + + // Bindings are the local variable names. + // + // vars - [0, length) + uint32_t length = 0; + }; + + struct alignas(ScopeDataAlignBytes) RuntimeData + : public AbstractBaseScopeData<JSAtom> { + SlotInfo slotInfo; + AbstractTrailingNamesArray<JSAtom> trailingNames; + + explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {} + RuntimeData() = delete; + + void trace(JSTracer* trc); + }; + + using ParserData = ParserScopeData<SlotInfo>; + + template <typename NameT> + using AbstractData = + typename std::conditional_t<std::is_same<NameT, JSAtom>::value, + RuntimeData, ParserData>; + + static WasmFunctionScope* create(JSContext* cx, HandleScope enclosing, + uint32_t funcIndex); + + private: + RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); } + + const RuntimeData& data() const { + return *static_cast<const RuntimeData*>(rawData()); + } +}; + +template <typename F> +void Scope::applyScopeDataTyped(F&& f) { + switch (kind()) { + case ScopeKind::Function: { + f(&as<FunctionScope>().data()); + break; + case ScopeKind::FunctionBodyVar: + f(&as<VarScope>().data()); + break; + case ScopeKind::Lexical: + case ScopeKind::SimpleCatch: + case ScopeKind::Catch: + case ScopeKind::NamedLambda: + case ScopeKind::StrictNamedLambda: + case ScopeKind::FunctionLexical: + case ScopeKind::ClassBody: + f(&as<LexicalScope>().data()); + break; + case ScopeKind::With: + // With scopes do not have data. + break; + case ScopeKind::Eval: + case ScopeKind::StrictEval: + f(&as<EvalScope>().data()); + break; + case ScopeKind::Global: + case ScopeKind::NonSyntactic: + f(&as<GlobalScope>().data()); + break; + case ScopeKind::Module: + f(&as<ModuleScope>().data()); + break; + case ScopeKind::WasmInstance: + f(&as<WasmInstanceScope>().data()); + break; + case ScopeKind::WasmFunction: + f(&as<WasmFunctionScope>().data()); + break; + } + } +} + +// +// An iterator for a Scope's bindings. This is the source of truth for frame +// and environment object layout. +// +// It may be placed in GC containers; for example: +// +// for (Rooted<BindingIter> bi(cx, BindingIter(scope)); bi; bi++) { +// use(bi); +// SomeMayGCOperation(); +// use(bi); +// } +// +template <typename NameT> +class BaseAbstractBindingIter { + protected: + // Bindings are sorted by kind. Because different Scopes have differently + // laid out {Runtime,Parser}Data for packing, BindingIter must handle all + // binding kinds. + // + // Kind ranges: + // + // imports - [0, positionalFormalStart) + // positional formals - [positionalFormalStart, nonPositionalFormalStart) + // other formals - [nonPositionalParamStart, varStart) + // vars - [varStart, letStart) + // lets - [letStart, constStart) + // consts - [constStart, length) + // + // Access method when not closed over: + // + // imports - name + // positional formals - argument slot + // other formals - frame slot + // vars - frame slot + // lets - frame slot + // consts - frame slot + // + // Access method when closed over: + // + // imports - name + // positional formals - environment slot or name + // other formals - environment slot or name + // vars - environment slot or name + // lets - environment slot or name + // consts - environment slot or name + MOZ_INIT_OUTSIDE_CTOR uint32_t positionalFormalStart_; + MOZ_INIT_OUTSIDE_CTOR uint32_t nonPositionalFormalStart_; + MOZ_INIT_OUTSIDE_CTOR uint32_t varStart_; + MOZ_INIT_OUTSIDE_CTOR uint32_t letStart_; + MOZ_INIT_OUTSIDE_CTOR uint32_t constStart_; + MOZ_INIT_OUTSIDE_CTOR uint32_t length_; + + MOZ_INIT_OUTSIDE_CTOR uint32_t index_; + + enum Flags : uint8_t { + CannotHaveSlots = 0, + CanHaveArgumentSlots = 1 << 0, + CanHaveFrameSlots = 1 << 1, + CanHaveEnvironmentSlots = 1 << 2, + + // See comment in settle below. + HasFormalParameterExprs = 1 << 3, + IgnoreDestructuredFormalParameters = 1 << 4, + + // Truly I hate named lambdas. + IsNamedLambda = 1 << 5 + }; + + static const uint8_t CanHaveSlotsMask = 0x7; + + MOZ_INIT_OUTSIDE_CTOR uint8_t flags_; + MOZ_INIT_OUTSIDE_CTOR uint16_t argumentSlot_; + MOZ_INIT_OUTSIDE_CTOR uint32_t frameSlot_; + MOZ_INIT_OUTSIDE_CTOR uint32_t environmentSlot_; + + MOZ_INIT_OUTSIDE_CTOR AbstractBindingName<NameT>* names_; + + void init(uint32_t positionalFormalStart, uint32_t nonPositionalFormalStart, + uint32_t varStart, uint32_t letStart, uint32_t constStart, + uint8_t flags, uint32_t firstFrameSlot, + uint32_t firstEnvironmentSlot, AbstractBindingName<NameT>* names, + uint32_t length) { + positionalFormalStart_ = positionalFormalStart; + nonPositionalFormalStart_ = nonPositionalFormalStart; + varStart_ = varStart; + letStart_ = letStart; + constStart_ = constStart; + length_ = length; + index_ = 0; + flags_ = flags; + argumentSlot_ = 0; + frameSlot_ = firstFrameSlot; + environmentSlot_ = firstEnvironmentSlot; + names_ = names; + + settle(); + } + + void init(LexicalScope::AbstractData<NameT>& data, uint32_t firstFrameSlot, + uint8_t flags); + + void init(FunctionScope::AbstractData<NameT>& data, uint8_t flags); + + void init(VarScope::AbstractData<NameT>& data, uint32_t firstFrameSlot); + void init(GlobalScope::AbstractData<NameT>& data); + void init(EvalScope::AbstractData<NameT>& data, bool strict); + void init(ModuleScope::AbstractData<NameT>& data); + void init(WasmInstanceScope::AbstractData<NameT>& data); + void init(WasmFunctionScope::AbstractData<NameT>& data); + + bool hasFormalParameterExprs() const { + return flags_ & HasFormalParameterExprs; + } + + bool ignoreDestructuredFormalParameters() const { + return flags_ & IgnoreDestructuredFormalParameters; + } + + bool isNamedLambda() const { return flags_ & IsNamedLambda; } + + void increment() { + MOZ_ASSERT(!done()); + if (flags_ & CanHaveSlotsMask) { + if (canHaveArgumentSlots()) { + if (index_ < nonPositionalFormalStart_) { + MOZ_ASSERT(index_ >= positionalFormalStart_); + argumentSlot_++; + } + } + if (closedOver()) { + // Imports must not be given known slots. They are + // indirect bindings. + MOZ_ASSERT(kind() != BindingKind::Import); + MOZ_ASSERT(canHaveEnvironmentSlots()); + environmentSlot_++; + } else if (canHaveFrameSlots()) { + // Usually positional formal parameters don't have frame + // slots, except when there are parameter expressions, in + // which case they act like lets. + if (index_ >= nonPositionalFormalStart_ || + (hasFormalParameterExprs() && name())) { + frameSlot_++; + } + } + } + index_++; + } + + void settle() { + if (ignoreDestructuredFormalParameters()) { + while (!done() && !name()) { + increment(); + } + } + } + + BaseAbstractBindingIter() = default; + + public: + BaseAbstractBindingIter(LexicalScope::AbstractData<NameT>& data, + uint32_t firstFrameSlot, bool isNamedLambda) { + init(data, firstFrameSlot, isNamedLambda ? IsNamedLambda : 0); + } + + BaseAbstractBindingIter(FunctionScope::AbstractData<NameT>& data, + bool hasParameterExprs) { + init(data, IgnoreDestructuredFormalParameters | + (hasParameterExprs ? HasFormalParameterExprs : 0)); + } + + BaseAbstractBindingIter(VarScope::AbstractData<NameT>& data, + uint32_t firstFrameSlot) { + init(data, firstFrameSlot); + } + + explicit BaseAbstractBindingIter(GlobalScope::AbstractData<NameT>& data) { + init(data); + } + + explicit BaseAbstractBindingIter(ModuleScope::AbstractData<NameT>& data) { + init(data); + } + + explicit BaseAbstractBindingIter( + WasmFunctionScope::AbstractData<NameT>& data) { + init(data); + } + + BaseAbstractBindingIter(EvalScope::AbstractData<NameT>& data, bool strict) { + init(data, strict); + } + + MOZ_IMPLICIT BaseAbstractBindingIter( + const BaseAbstractBindingIter<NameT>& bi) = default; + + bool done() const { return index_ == length_; } + + explicit operator bool() const { return !done(); } + + void operator++(int) { + increment(); + settle(); + } + + bool isLast() const { + MOZ_ASSERT(!done()); + return index_ + 1 == length_; + } + + bool canHaveArgumentSlots() const { return flags_ & CanHaveArgumentSlots; } + + bool canHaveFrameSlots() const { return flags_ & CanHaveFrameSlots; } + + bool canHaveEnvironmentSlots() const { + return flags_ & CanHaveEnvironmentSlots; + } + + typename AbstractBindingName<NameT>::NamePointerT name() const { + MOZ_ASSERT(!done()); + return names_[index_].name(); + } + + bool closedOver() const { + MOZ_ASSERT(!done()); + return names_[index_].closedOver(); + } + + BindingLocation location() const { + MOZ_ASSERT(!done()); + if (!(flags_ & CanHaveSlotsMask)) { + return BindingLocation::Global(); + } + if (index_ < positionalFormalStart_) { + return BindingLocation::Import(); + } + if (closedOver()) { + MOZ_ASSERT(canHaveEnvironmentSlots()); + return BindingLocation::Environment(environmentSlot_); + } + if (index_ < nonPositionalFormalStart_ && canHaveArgumentSlots()) { + return BindingLocation::Argument(argumentSlot_); + } + if (canHaveFrameSlots()) { + return BindingLocation::Frame(frameSlot_); + } + MOZ_ASSERT(isNamedLambda()); + return BindingLocation::NamedLambdaCallee(); + } + + BindingKind kind() const { + MOZ_ASSERT(!done()); + if (index_ < positionalFormalStart_) { + return BindingKind::Import; + } + if (index_ < varStart_) { + // When the parameter list has expressions, the parameters act + // like lexical bindings and have TDZ. + if (hasFormalParameterExprs()) { + return BindingKind::Let; + } + return BindingKind::FormalParameter; + } + if (index_ < letStart_) { + return BindingKind::Var; + } + if (index_ < constStart_) { + return BindingKind::Let; + } + if (isNamedLambda()) { + return BindingKind::NamedLambdaCallee; + } + return BindingKind::Const; + } + + bool isTopLevelFunction() const { + MOZ_ASSERT(!done()); + bool result = names_[index_].isTopLevelFunction(); + MOZ_ASSERT_IF(result, kind() == BindingKind::Var); + return result; + } + + bool hasArgumentSlot() const { + MOZ_ASSERT(!done()); + if (hasFormalParameterExprs()) { + return false; + } + return index_ >= positionalFormalStart_ && + index_ < nonPositionalFormalStart_; + } + + uint16_t argumentSlot() const { + MOZ_ASSERT(canHaveArgumentSlots()); + return mozilla::AssertedCast<uint16_t>(index_); + } + + uint32_t nextFrameSlot() const { + MOZ_ASSERT(canHaveFrameSlots()); + return frameSlot_; + } + + uint32_t nextEnvironmentSlot() const { + MOZ_ASSERT(canHaveEnvironmentSlots()); + return environmentSlot_; + } +}; + +template <typename NameT> +class AbstractBindingIter; + +template <> +class AbstractBindingIter<JSAtom> : public BaseAbstractBindingIter<JSAtom> { + using Base = BaseAbstractBindingIter<JSAtom>; + + public: + AbstractBindingIter<JSAtom>(ScopeKind kind, BaseScopeData* data, + uint32_t firstFrameSlot); + + explicit AbstractBindingIter<JSAtom>(Scope* scope); + explicit AbstractBindingIter<JSAtom>(JSScript* script); + + using Base::Base; + + void trace(JSTracer* trc); +}; + +template <> +class AbstractBindingIter<frontend::TaggedParserAtomIndex> + : public BaseAbstractBindingIter<frontend::TaggedParserAtomIndex> { + using Base = BaseAbstractBindingIter<frontend::TaggedParserAtomIndex>; + + public: + using Base::Base; +}; + +void DumpBindings(JSContext* cx, Scope* scope); +JSAtom* FrameSlotName(JSScript* script, jsbytecode* pc); + +Shape* EmptyEnvironmentShape(JSContext* cx, const JSClass* cls, + uint32_t numSlots, uint32_t baseShapeFlags); + +template <class T> +Shape* EmptyEnvironmentShape(JSContext* cx) { + return EmptyEnvironmentShape(cx, &T::class_, T::RESERVED_SLOTS, + T::BASESHAPE_FLAGS); +} + +// +// A refinement BindingIter that only iterates over positional formal +// parameters of a function. +// +class PositionalFormalParameterIter : public BindingIter { + void settle() { + if (index_ >= nonPositionalFormalStart_) { + index_ = length_; + } + } + + public: + explicit PositionalFormalParameterIter(Scope* scope); + explicit PositionalFormalParameterIter(JSScript* script); + + void operator++(int) { + BindingIter::operator++(1); + settle(); + } + + bool isDestructured() const { return !name(); } +}; + +// +// Iterator for walking the scope chain. +// +// It may be placed in GC containers; for example: +// +// for (Rooted<ScopeIter> si(cx, ScopeIter(scope)); si; si++) { +// use(si); +// SomeMayGCOperation(); +// use(si); +// } +// +class MOZ_STACK_CLASS ScopeIter { + Scope* scope_; + + public: + explicit ScopeIter(Scope* scope) : scope_(scope) {} + + explicit ScopeIter(JSScript* script); + + explicit ScopeIter(const ScopeIter& si) = default; + + bool done() const { return !scope_; } + + explicit operator bool() const { return !done(); } + + void operator++(int) { + MOZ_ASSERT(!done()); + scope_ = scope_->enclosing(); + } + + Scope* scope() const { + MOZ_ASSERT(!done()); + return scope_; + } + + ScopeKind kind() const { + MOZ_ASSERT(!done()); + return scope_->kind(); + } + + // Returns the shape of the environment if it is known. It is possible to + // hasSyntacticEnvironment and to have no known shape, e.g., eval. + Shape* environmentShape() const { return scope()->environmentShape(); } + + // Returns whether this scope has a syntactic environment (i.e., an + // Environment that isn't a non-syntactic With or NonSyntacticVariables) + // on the environment chain. + bool hasSyntacticEnvironment() const; + + void trace(JSTracer* trc) { + if (scope_) { + TraceRoot(trc, &scope_, "scope iter scope"); + } + } +}; + +// +// Specializations of Rooted containers for the iterators. +// + +template <typename Wrapper> +class WrappedPtrOperations<BindingIter, Wrapper> { + const BindingIter& iter() const { + return static_cast<const Wrapper*>(this)->get(); + } + + public: + bool done() const { return iter().done(); } + explicit operator bool() const { return !done(); } + bool isLast() const { return iter().isLast(); } + bool canHaveArgumentSlots() const { return iter().canHaveArgumentSlots(); } + bool canHaveFrameSlots() const { return iter().canHaveFrameSlots(); } + bool canHaveEnvironmentSlots() const { + return iter().canHaveEnvironmentSlots(); + } + JSAtom* name() const { return iter().name(); } + bool closedOver() const { return iter().closedOver(); } + BindingLocation location() const { return iter().location(); } + BindingKind kind() const { return iter().kind(); } + bool isTopLevelFunction() const { return iter().isTopLevelFunction(); } + bool hasArgumentSlot() const { return iter().hasArgumentSlot(); } + uint16_t argumentSlot() const { return iter().argumentSlot(); } + uint32_t nextFrameSlot() const { return iter().nextFrameSlot(); } + uint32_t nextEnvironmentSlot() const { return iter().nextEnvironmentSlot(); } +}; + +template <typename Wrapper> +class MutableWrappedPtrOperations<BindingIter, Wrapper> + : public WrappedPtrOperations<BindingIter, Wrapper> { + BindingIter& iter() { return static_cast<Wrapper*>(this)->get(); } + + public: + void operator++(int) { iter().operator++(1); } +}; + +template <typename Wrapper> +class WrappedPtrOperations<ScopeIter, Wrapper> { + const ScopeIter& iter() const { + return static_cast<const Wrapper*>(this)->get(); + } + + public: + bool done() const { return iter().done(); } + explicit operator bool() const { return !done(); } + Scope* scope() const { return iter().scope(); } + ScopeKind kind() const { return iter().kind(); } + Shape* environmentShape() const { return iter().environmentShape(); } + bool hasSyntacticEnvironment() const { + return iter().hasSyntacticEnvironment(); + } +}; + +template <typename Wrapper> +class MutableWrappedPtrOperations<ScopeIter, Wrapper> + : public WrappedPtrOperations<ScopeIter, Wrapper> { + ScopeIter& iter() { return static_cast<Wrapper*>(this)->get(); } + + public: + void operator++(int) { iter().operator++(1); } +}; + +Shape* CreateEnvironmentShape(JSContext* cx, BindingIter& bi, + const JSClass* cls, uint32_t numSlots, + uint32_t baseShapeFlags); + +Shape* CreateEnvironmentShape( + JSContext* cx, frontend::CompilationAtomCache& atomCache, + AbstractBindingIter<frontend::TaggedParserAtomIndex>& bi, + const JSClass* cls, uint32_t numSlots, uint32_t baseShapeFlags); + +Shape* EmptyEnvironmentShape(JSContext* cx, const JSClass* cls, + uint32_t numSlots, uint32_t baseShapeFlags); + +} // namespace js + +namespace JS { + +template <> +struct GCPolicy<js::ScopeKind> : public IgnoreGCPolicy<js::ScopeKind> {}; + +template <typename T> +struct ScopeDataGCPolicy : public NonGCPointerPolicy<T> {}; + +#define DEFINE_SCOPE_DATA_GCPOLICY(Data) \ + template <> \ + struct MapTypeToRootKind<Data*> { \ + static const RootKind kind = RootKind::Traceable; \ + }; \ + template <> \ + struct GCPolicy<Data*> : public ScopeDataGCPolicy<Data*> {} + +DEFINE_SCOPE_DATA_GCPOLICY(js::LexicalScope::RuntimeData); +DEFINE_SCOPE_DATA_GCPOLICY(js::FunctionScope::RuntimeData); +DEFINE_SCOPE_DATA_GCPOLICY(js::VarScope::RuntimeData); +DEFINE_SCOPE_DATA_GCPOLICY(js::GlobalScope::RuntimeData); +DEFINE_SCOPE_DATA_GCPOLICY(js::EvalScope::RuntimeData); +DEFINE_SCOPE_DATA_GCPOLICY(js::ModuleScope::RuntimeData); +DEFINE_SCOPE_DATA_GCPOLICY(js::WasmFunctionScope::RuntimeData); + +#undef DEFINE_SCOPE_DATA_GCPOLICY + +namespace ubi { + +template <> +class Concrete<js::Scope> : TracerConcrete<js::Scope> { + protected: + explicit Concrete(js::Scope* ptr) : TracerConcrete<js::Scope>(ptr) {} + + public: + static void construct(void* storage, js::Scope* ptr) { + new (storage) Concrete(ptr); + } + + CoarseType coarseType() const final { return CoarseType::Script; } + + Size size(mozilla::MallocSizeOf mallocSizeOf) const override; + + const char16_t* typeName() const override { return concreteTypeName; } + static const char16_t concreteTypeName[]; +}; + +} // namespace ubi +} // namespace JS + +#endif // vm_Scope_h |