diff options
Diffstat (limited to 'media/ffvpx/libavutil/mem.h')
-rw-r--r-- | media/ffvpx/libavutil/mem.h | 700 |
1 files changed, 700 insertions, 0 deletions
diff --git a/media/ffvpx/libavutil/mem.h b/media/ffvpx/libavutil/mem.h new file mode 100644 index 0000000000..5fb1a02dd9 --- /dev/null +++ b/media/ffvpx/libavutil/mem.h @@ -0,0 +1,700 @@ +/* + * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * @ingroup lavu_mem + * Memory handling functions + */ + +#ifndef AVUTIL_MEM_H +#define AVUTIL_MEM_H + +#include <limits.h> +#include <stdint.h> + +#include "attributes.h" +#include "error.h" +#include "avutil.h" + +/** + * @addtogroup lavu_mem + * Utilities for manipulating memory. + * + * FFmpeg has several applications of memory that are not required of a typical + * program. For example, the computing-heavy components like video decoding and + * encoding can be sped up significantly through the use of aligned memory. + * + * However, for each of FFmpeg's applications of memory, there might not be a + * recognized or standardized API for that specific use. Memory alignment, for + * instance, varies wildly depending on operating systems, architectures, and + * compilers. Hence, this component of @ref libavutil is created to make + * dealing with memory consistently possible on all platforms. + * + * @{ + * + * @defgroup lavu_mem_macros Alignment Macros + * Helper macros for declaring aligned variables. + * @{ + */ + +/** + * @def DECLARE_ALIGNED(n,t,v) + * Declare a variable that is aligned in memory. + * + * @code{.c} + * DECLARE_ALIGNED(16, uint16_t, aligned_int) = 42; + * DECLARE_ALIGNED(32, uint8_t, aligned_array)[128]; + * + * // The default-alignment equivalent would be + * uint16_t aligned_int = 42; + * uint8_t aligned_array[128]; + * @endcode + * + * @param n Minimum alignment in bytes + * @param t Type of the variable (or array element) + * @param v Name of the variable + */ + +/** + * @def DECLARE_ASM_ALIGNED(n,t,v) + * Declare an aligned variable appropriate for use in inline assembly code. + * + * @code{.c} + * DECLARE_ASM_ALIGNED(16, uint64_t, pw_08) = UINT64_C(0x0008000800080008); + * @endcode + * + * @param n Minimum alignment in bytes + * @param t Type of the variable (or array element) + * @param v Name of the variable + */ + +/** + * @def DECLARE_ASM_CONST(n,t,v) + * Declare a static constant aligned variable appropriate for use in inline + * assembly code. + * + * @code{.c} + * DECLARE_ASM_CONST(16, uint64_t, pw_08) = UINT64_C(0x0008000800080008); + * @endcode + * + * @param n Minimum alignment in bytes + * @param t Type of the variable (or array element) + * @param v Name of the variable + */ + +#if defined(__INTEL_COMPILER) && __INTEL_COMPILER < 1110 || defined(__SUNPRO_C) + #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v + #define DECLARE_ASM_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v + #define DECLARE_ASM_CONST(n,t,v) const t __attribute__ ((aligned (n))) v +#elif defined(__DJGPP__) + #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (FFMIN(n, 16)))) v + #define DECLARE_ASM_ALIGNED(n,t,v) t av_used __attribute__ ((aligned (FFMIN(n, 16)))) v + #define DECLARE_ASM_CONST(n,t,v) static const t av_used __attribute__ ((aligned (FFMIN(n, 16)))) v +#elif defined(__GNUC__) || defined(__clang__) + #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v + #define DECLARE_ASM_ALIGNED(n,t,v) t av_used __attribute__ ((aligned (n))) v + #define DECLARE_ASM_CONST(n,t,v) static const t av_used __attribute__ ((aligned (n))) v +#elif defined(_MSC_VER) + #define DECLARE_ALIGNED(n,t,v) __declspec(align(n)) t v + #define DECLARE_ASM_ALIGNED(n,t,v) __declspec(align(n)) t v + #define DECLARE_ASM_CONST(n,t,v) __declspec(align(n)) static const t v +#else + #define DECLARE_ALIGNED(n,t,v) t v + #define DECLARE_ASM_ALIGNED(n,t,v) t v + #define DECLARE_ASM_CONST(n,t,v) static const t v +#endif + +/** + * @} + */ + +/** + * @defgroup lavu_mem_attrs Function Attributes + * Function attributes applicable to memory handling functions. + * + * These function attributes can help compilers emit more useful warnings, or + * generate better code. + * @{ + */ + +/** + * @def av_malloc_attrib + * Function attribute denoting a malloc-like function. + * + * @see <a href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-g_t_0040code_007bmalloc_007d-function-attribute-3251">Function attribute `malloc` in GCC's documentation</a> + */ + +#if AV_GCC_VERSION_AT_LEAST(3,1) + #define av_malloc_attrib __attribute__((__malloc__)) +#else + #define av_malloc_attrib +#endif + +/** + * @def av_alloc_size(...) + * Function attribute used on a function that allocates memory, whose size is + * given by the specified parameter(s). + * + * @code{.c} + * void *av_malloc(size_t size) av_alloc_size(1); + * void *av_calloc(size_t nmemb, size_t size) av_alloc_size(1, 2); + * @endcode + * + * @param ... One or two parameter indexes, separated by a comma + * + * @see <a href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-g_t_0040code_007balloc_005fsize_007d-function-attribute-3220">Function attribute `alloc_size` in GCC's documentation</a> + */ + +#if AV_GCC_VERSION_AT_LEAST(4,3) + #define av_alloc_size(...) __attribute__((alloc_size(__VA_ARGS__))) +#else + #define av_alloc_size(...) +#endif + +/** + * @} + */ + +/** + * @defgroup lavu_mem_funcs Heap Management + * Functions responsible for allocating, freeing, and copying memory. + * + * All memory allocation functions have a built-in upper limit of `INT_MAX` + * bytes. This may be changed with av_max_alloc(), although exercise extreme + * caution when doing so. + * + * @{ + */ + +/** + * Allocate a memory block with alignment suitable for all memory accesses + * (including vectors if available on the CPU). + * + * @param size Size in bytes for the memory block to be allocated + * @return Pointer to the allocated block, or `NULL` if the block cannot + * be allocated + * @see av_mallocz() + */ +void *av_malloc(size_t size) av_malloc_attrib av_alloc_size(1); + +/** + * Allocate a memory block with alignment suitable for all memory accesses + * (including vectors if available on the CPU) and zero all the bytes of the + * block. + * + * @param size Size in bytes for the memory block to be allocated + * @return Pointer to the allocated block, or `NULL` if it cannot be allocated + * @see av_malloc() + */ +void *av_mallocz(size_t size) av_malloc_attrib av_alloc_size(1); + +/** + * Allocate a memory block for an array with av_malloc(). + * + * The allocated memory will have size `size * nmemb` bytes. + * + * @param nmemb Number of element + * @param size Size of a single element + * @return Pointer to the allocated block, or `NULL` if the block cannot + * be allocated + * @see av_malloc() + */ +av_alloc_size(1, 2) void *av_malloc_array(size_t nmemb, size_t size); + +/** + * Allocate a memory block for an array with av_mallocz(). + * + * The allocated memory will have size `size * nmemb` bytes. + * + * @param nmemb Number of elements + * @param size Size of the single element + * @return Pointer to the allocated block, or `NULL` if the block cannot + * be allocated + * + * @see av_mallocz() + * @see av_malloc_array() + */ +av_alloc_size(1, 2) void *av_mallocz_array(size_t nmemb, size_t size); + +/** + * Non-inlined equivalent of av_mallocz_array(). + * + * Created for symmetry with the calloc() C function. + */ +void *av_calloc(size_t nmemb, size_t size) av_malloc_attrib; + +/** + * Allocate, reallocate, or free a block of memory. + * + * If `ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is + * zero, free the memory block pointed to by `ptr`. Otherwise, expand or + * shrink that block of memory according to `size`. + * + * @param ptr Pointer to a memory block already allocated with + * av_realloc() or `NULL` + * @param size Size in bytes of the memory block to be allocated or + * reallocated + * + * @return Pointer to a newly-reallocated block or `NULL` if the block + * cannot be reallocated or the function is used to free the memory block + * + * @warning Unlike av_malloc(), the returned pointer is not guaranteed to be + * correctly aligned. + * @see av_fast_realloc() + * @see av_reallocp() + */ +void *av_realloc(void *ptr, size_t size) av_alloc_size(2); + +/** + * Allocate, reallocate, or free a block of memory through a pointer to a + * pointer. + * + * If `*ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is + * zero, free the memory block pointed to by `*ptr`. Otherwise, expand or + * shrink that block of memory according to `size`. + * + * @param[in,out] ptr Pointer to a pointer to a memory block already allocated + * with av_realloc(), or a pointer to `NULL`. The pointer + * is updated on success, or freed on failure. + * @param[in] size Size in bytes for the memory block to be allocated or + * reallocated + * + * @return Zero on success, an AVERROR error code on failure + * + * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be + * correctly aligned. + */ +av_warn_unused_result +int av_reallocp(void *ptr, size_t size); + +/** + * Allocate, reallocate, or free a block of memory. + * + * This function does the same thing as av_realloc(), except: + * - It takes two size arguments and allocates `nelem * elsize` bytes, + * after checking the result of the multiplication for integer overflow. + * - It frees the input block in case of failure, thus avoiding the memory + * leak with the classic + * @code{.c} + * buf = realloc(buf); + * if (!buf) + * return -1; + * @endcode + * pattern. + */ +void *av_realloc_f(void *ptr, size_t nelem, size_t elsize); + +/** + * Allocate, reallocate, or free an array. + * + * If `ptr` is `NULL` and `nmemb` > 0, allocate a new block. If + * `nmemb` is zero, free the memory block pointed to by `ptr`. + * + * @param ptr Pointer to a memory block already allocated with + * av_realloc() or `NULL` + * @param nmemb Number of elements in the array + * @param size Size of the single element of the array + * + * @return Pointer to a newly-reallocated block or NULL if the block + * cannot be reallocated or the function is used to free the memory block + * + * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be + * correctly aligned. + * @see av_reallocp_array() + */ +av_alloc_size(2, 3) void *av_realloc_array(void *ptr, size_t nmemb, size_t size); + +/** + * Allocate, reallocate, or free an array through a pointer to a pointer. + * + * If `*ptr` is `NULL` and `nmemb` > 0, allocate a new block. If `nmemb` is + * zero, free the memory block pointed to by `*ptr`. + * + * @param[in,out] ptr Pointer to a pointer to a memory block already + * allocated with av_realloc(), or a pointer to `NULL`. + * The pointer is updated on success, or freed on failure. + * @param[in] nmemb Number of elements + * @param[in] size Size of the single element + * + * @return Zero on success, an AVERROR error code on failure + * + * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be + * correctly aligned. + */ +int av_reallocp_array(void *ptr, size_t nmemb, size_t size); + +/** + * Reallocate the given buffer if it is not large enough, otherwise do nothing. + * + * If the given buffer is `NULL`, then a new uninitialized buffer is allocated. + * + * If the given buffer is not large enough, and reallocation fails, `NULL` is + * returned and `*size` is set to 0, but the original buffer is not changed or + * freed. + * + * A typical use pattern follows: + * + * @code{.c} + * uint8_t *buf = ...; + * uint8_t *new_buf = av_fast_realloc(buf, ¤t_size, size_needed); + * if (!new_buf) { + * // Allocation failed; clean up original buffer + * av_freep(&buf); + * return AVERROR(ENOMEM); + * } + * @endcode + * + * @param[in,out] ptr Already allocated buffer, or `NULL` + * @param[in,out] size Pointer to the size of buffer `ptr`. `*size` is + * updated to the new allocated size, in particular 0 + * in case of failure. + * @param[in] min_size Desired minimal size of buffer `ptr` + * @return `ptr` if the buffer is large enough, a pointer to newly reallocated + * buffer if the buffer was not large enough, or `NULL` in case of + * error + * @see av_realloc() + * @see av_fast_malloc() + */ +void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size); + +/** + * Allocate a buffer, reusing the given one if large enough. + * + * Contrary to av_fast_realloc(), the current buffer contents might not be + * preserved and on error the old buffer is freed, thus no special handling to + * avoid memleaks is necessary. + * + * `*ptr` is allowed to be `NULL`, in which case allocation always happens if + * `size_needed` is greater than 0. + * + * @code{.c} + * uint8_t *buf = ...; + * av_fast_malloc(&buf, ¤t_size, size_needed); + * if (!buf) { + * // Allocation failed; buf already freed + * return AVERROR(ENOMEM); + * } + * @endcode + * + * @param[in,out] ptr Pointer to pointer to an already allocated buffer. + * `*ptr` will be overwritten with pointer to new + * buffer on success or `NULL` on failure + * @param[in,out] size Pointer to the size of buffer `*ptr`. `*size` is + * updated to the new allocated size, in particular 0 + * in case of failure. + * @param[in] min_size Desired minimal size of buffer `*ptr` + * @see av_realloc() + * @see av_fast_mallocz() + */ +void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size); + +/** + * Allocate and clear a buffer, reusing the given one if large enough. + * + * Like av_fast_malloc(), but all newly allocated space is initially cleared. + * Reused buffer is not cleared. + * + * `*ptr` is allowed to be `NULL`, in which case allocation always happens if + * `size_needed` is greater than 0. + * + * @param[in,out] ptr Pointer to pointer to an already allocated buffer. + * `*ptr` will be overwritten with pointer to new + * buffer on success or `NULL` on failure + * @param[in,out] size Pointer to the size of buffer `*ptr`. `*size` is + * updated to the new allocated size, in particular 0 + * in case of failure. + * @param[in] min_size Desired minimal size of buffer `*ptr` + * @see av_fast_malloc() + */ +void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size); + +/** + * Free a memory block which has been allocated with a function of av_malloc() + * or av_realloc() family. + * + * @param ptr Pointer to the memory block which should be freed. + * + * @note `ptr = NULL` is explicitly allowed. + * @note It is recommended that you use av_freep() instead, to prevent leaving + * behind dangling pointers. + * @see av_freep() + */ +void av_free(void *ptr); + +/** + * Free a memory block which has been allocated with a function of av_malloc() + * or av_realloc() family, and set the pointer pointing to it to `NULL`. + * + * @code{.c} + * uint8_t *buf = av_malloc(16); + * av_free(buf); + * // buf now contains a dangling pointer to freed memory, and accidental + * // dereference of buf will result in a use-after-free, which may be a + * // security risk. + * + * uint8_t *buf = av_malloc(16); + * av_freep(&buf); + * // buf is now NULL, and accidental dereference will only result in a + * // NULL-pointer dereference. + * @endcode + * + * @param ptr Pointer to the pointer to the memory block which should be freed + * @note `*ptr = NULL` is safe and leads to no action. + * @see av_free() + */ +void av_freep(void *ptr); + +/** + * Duplicate a string. + * + * @param s String to be duplicated + * @return Pointer to a newly-allocated string containing a + * copy of `s` or `NULL` if the string cannot be allocated + * @see av_strndup() + */ +char *av_strdup(const char *s) av_malloc_attrib; + +/** + * Duplicate a substring of a string. + * + * @param s String to be duplicated + * @param len Maximum length of the resulting string (not counting the + * terminating byte) + * @return Pointer to a newly-allocated string containing a + * substring of `s` or `NULL` if the string cannot be allocated + */ +char *av_strndup(const char *s, size_t len) av_malloc_attrib; + +/** + * Duplicate a buffer with av_malloc(). + * + * @param p Buffer to be duplicated + * @param size Size in bytes of the buffer copied + * @return Pointer to a newly allocated buffer containing a + * copy of `p` or `NULL` if the buffer cannot be allocated + */ +void *av_memdup(const void *p, size_t size); + +/** + * Overlapping memcpy() implementation. + * + * @param dst Destination buffer + * @param back Number of bytes back to start copying (i.e. the initial size of + * the overlapping window); must be > 0 + * @param cnt Number of bytes to copy; must be >= 0 + * + * @note `cnt > back` is valid, this will copy the bytes we just copied, + * thus creating a repeating pattern with a period length of `back`. + */ +void av_memcpy_backptr(uint8_t *dst, int back, int cnt); + +/** + * @} + */ + +/** + * @defgroup lavu_mem_dynarray Dynamic Array + * + * Utilities to make an array grow when needed. + * + * Sometimes, the programmer would want to have an array that can grow when + * needed. The libavutil dynamic array utilities fill that need. + * + * libavutil supports two systems of appending elements onto a dynamically + * allocated array, the first one storing the pointer to the value in the + * array, and the second storing the value directly. In both systems, the + * caller is responsible for maintaining a variable containing the length of + * the array, as well as freeing of the array after use. + * + * The first system stores pointers to values in a block of dynamically + * allocated memory. Since only pointers are stored, the function does not need + * to know the size of the type. Both av_dynarray_add() and + * av_dynarray_add_nofree() implement this system. + * + * @code + * type **array = NULL; //< an array of pointers to values + * int nb = 0; //< a variable to keep track of the length of the array + * + * type to_be_added = ...; + * type to_be_added2 = ...; + * + * av_dynarray_add(&array, &nb, &to_be_added); + * if (nb == 0) + * return AVERROR(ENOMEM); + * + * av_dynarray_add(&array, &nb, &to_be_added2); + * if (nb == 0) + * return AVERROR(ENOMEM); + * + * // Now: + * // nb == 2 + * // &to_be_added == array[0] + * // &to_be_added2 == array[1] + * + * av_freep(&array); + * @endcode + * + * The second system stores the value directly in a block of memory. As a + * result, the function has to know the size of the type. av_dynarray2_add() + * implements this mechanism. + * + * @code + * type *array = NULL; //< an array of values + * int nb = 0; //< a variable to keep track of the length of the array + * + * type to_be_added = ...; + * type to_be_added2 = ...; + * + * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array), NULL); + * if (!addr) + * return AVERROR(ENOMEM); + * memcpy(addr, &to_be_added, sizeof(to_be_added)); + * + * // Shortcut of the above. + * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array), + * (const void *)&to_be_added2); + * if (!addr) + * return AVERROR(ENOMEM); + * + * // Now: + * // nb == 2 + * // to_be_added == array[0] + * // to_be_added2 == array[1] + * + * av_freep(&array); + * @endcode + * + * @{ + */ + +/** + * Add the pointer to an element to a dynamic array. + * + * The array to grow is supposed to be an array of pointers to + * structures, and the element to add must be a pointer to an already + * allocated structure. + * + * The array is reallocated when its size reaches powers of 2. + * Therefore, the amortized cost of adding an element is constant. + * + * In case of success, the pointer to the array is updated in order to + * point to the new grown array, and the number pointed to by `nb_ptr` + * is incremented. + * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and + * `*nb_ptr` is set to 0. + * + * @param[in,out] tab_ptr Pointer to the array to grow + * @param[in,out] nb_ptr Pointer to the number of elements in the array + * @param[in] elem Element to add + * @see av_dynarray_add_nofree(), av_dynarray2_add() + */ +void av_dynarray_add(void *tab_ptr, int *nb_ptr, void *elem); + +/** + * Add an element to a dynamic array. + * + * Function has the same functionality as av_dynarray_add(), + * but it doesn't free memory on fails. It returns error code + * instead and leave current buffer untouched. + * + * @return >=0 on success, negative otherwise + * @see av_dynarray_add(), av_dynarray2_add() + */ +av_warn_unused_result +int av_dynarray_add_nofree(void *tab_ptr, int *nb_ptr, void *elem); + +/** + * Add an element of size `elem_size` to a dynamic array. + * + * The array is reallocated when its number of elements reaches powers of 2. + * Therefore, the amortized cost of adding an element is constant. + * + * In case of success, the pointer to the array is updated in order to + * point to the new grown array, and the number pointed to by `nb_ptr` + * is incremented. + * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and + * `*nb_ptr` is set to 0. + * + * @param[in,out] tab_ptr Pointer to the array to grow + * @param[in,out] nb_ptr Pointer to the number of elements in the array + * @param[in] elem_size Size in bytes of an element in the array + * @param[in] elem_data Pointer to the data of the element to add. If + * `NULL`, the space of the newly added element is + * allocated but left uninitialized. + * + * @return Pointer to the data of the element to copy in the newly allocated + * space + * @see av_dynarray_add(), av_dynarray_add_nofree() + */ +void *av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size, + const uint8_t *elem_data); + +/** + * @} + */ + +/** + * @defgroup lavu_mem_misc Miscellaneous Functions + * + * Other functions related to memory allocation. + * + * @{ + */ + +/** + * Multiply two `size_t` values checking for overflow. + * + * @param[in] a,b Operands of multiplication + * @param[out] r Pointer to the result of the operation + * @return 0 on success, AVERROR(EINVAL) on overflow + */ +static inline int av_size_mult(size_t a, size_t b, size_t *r) +{ + size_t t = a * b; + /* Hack inspired from glibc: don't try the division if nelem and elsize + * are both less than sqrt(SIZE_MAX). */ + if ((a | b) >= ((size_t)1 << (sizeof(size_t) * 4)) && a && t / a != b) + return AVERROR(EINVAL); + *r = t; + return 0; +} + +/** + * Set the maximum size that may be allocated in one block. + * + * The value specified with this function is effective for all libavutil's @ref + * lavu_mem_funcs "heap management functions." + * + * By default, the max value is defined as `INT_MAX`. + * + * @param max Value to be set as the new maximum size + * + * @warning Exercise extreme caution when using this function. Don't touch + * this if you do not understand the full consequence of doing so. + */ +void av_max_alloc(size_t max); + +/** + * @} + * @} + */ + +#endif /* AVUTIL_MEM_H */ |