summaryrefslogtreecommitdiffstats
path: root/servo/components/hashglobe/src
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--servo/components/hashglobe/src/alloc.rs161
-rw-r--r--servo/components/hashglobe/src/fake.rs269
-rw-r--r--servo/components/hashglobe/src/hash_map.rs3087
-rw-r--r--servo/components/hashglobe/src/hash_set.rs1648
-rw-r--r--servo/components/hashglobe/src/lib.rs71
-rw-r--r--servo/components/hashglobe/src/shim.rs61
-rw-r--r--servo/components/hashglobe/src/table.rs1230
7 files changed, 6527 insertions, 0 deletions
diff --git a/servo/components/hashglobe/src/alloc.rs b/servo/components/hashglobe/src/alloc.rs
new file mode 100644
index 0000000000..b1c7a6eca5
--- /dev/null
+++ b/servo/components/hashglobe/src/alloc.rs
@@ -0,0 +1,161 @@
+// FORK NOTE: Copied from liballoc_system, removed unnecessary APIs,
+// APIs take size/align directly instead of Layout
+
+// The minimum alignment guaranteed by the architecture. This value is used to
+// add fast paths for low alignment values. In practice, the alignment is a
+// constant at the call site and the branch will be optimized out.
+#[cfg(all(any(
+ target_arch = "x86",
+ target_arch = "arm",
+ target_arch = "mips",
+ target_arch = "powerpc",
+ target_arch = "powerpc64",
+ target_arch = "asmjs",
+ target_arch = "wasm32"
+)))]
+const MIN_ALIGN: usize = 8;
+#[cfg(all(any(
+ target_arch = "x86_64",
+ target_arch = "aarch64",
+ target_arch = "mips64",
+ target_arch = "s390x",
+ target_arch = "sparc64"
+)))]
+const MIN_ALIGN: usize = 16;
+
+pub use self::platform::{alloc, dealloc, realloc};
+
+#[cfg(any(unix, target_os = "redox"))]
+mod platform {
+ extern crate libc;
+
+ #[cfg(not(any(target_os = "android")))]
+ use std::ptr;
+
+ use super::MIN_ALIGN;
+
+ #[inline]
+ pub unsafe fn alloc(size: usize, align: usize) -> *mut u8 {
+ let ptr = if align <= MIN_ALIGN {
+ libc::malloc(size) as *mut u8
+ } else {
+ aligned_malloc(size, align)
+ };
+ ptr
+ }
+
+ #[inline]
+ pub unsafe fn dealloc(ptr: *mut u8, _align: usize) {
+ libc::free(ptr as *mut libc::c_void)
+ }
+
+ #[inline]
+ pub unsafe fn realloc(ptr: *mut u8, new_size: usize) -> *mut u8 {
+ libc::realloc(ptr as *mut libc::c_void, new_size) as *mut u8
+ }
+
+ #[cfg(any(target_os = "android", target_os = "redox"))]
+ #[inline]
+ unsafe fn aligned_malloc(size: usize, align: usize) -> *mut u8 {
+ // On android we currently target API level 9 which unfortunately
+ // doesn't have the `posix_memalign` API used below. Instead we use
+ // `memalign`, but this unfortunately has the property on some systems
+ // where the memory returned cannot be deallocated by `free`!
+ //
+ // Upon closer inspection, however, this appears to work just fine with
+ // Android, so for this platform we should be fine to call `memalign`
+ // (which is present in API level 9). Some helpful references could
+ // possibly be chromium using memalign [1], attempts at documenting that
+ // memalign + free is ok [2] [3], or the current source of chromium
+ // which still uses memalign on android [4].
+ //
+ // [1]: https://codereview.chromium.org/10796020/
+ // [2]: https://code.google.com/p/android/issues/detail?id=35391
+ // [3]: https://bugs.chromium.org/p/chromium/issues/detail?id=138579
+ // [4]: https://chromium.googlesource.com/chromium/src/base/+/master/
+ // /memory/aligned_memory.cc
+ libc::memalign(align, size) as *mut u8
+ }
+
+ #[cfg(not(any(target_os = "android", target_os = "redox")))]
+ #[inline]
+ unsafe fn aligned_malloc(size: usize, align: usize) -> *mut u8 {
+ let mut out = ptr::null_mut();
+ let ret = libc::posix_memalign(&mut out, align, size);
+ if ret != 0 {
+ ptr::null_mut()
+ } else {
+ out as *mut u8
+ }
+ }
+}
+
+#[cfg(windows)]
+#[allow(bad_style)]
+mod platform {
+
+ use super::MIN_ALIGN;
+ type LPVOID = *mut u8;
+ type HANDLE = LPVOID;
+ type SIZE_T = usize;
+ type DWORD = u32;
+ type BOOL = i32;
+
+ extern "system" {
+ fn GetProcessHeap() -> HANDLE;
+ fn HeapAlloc(hHeap: HANDLE, dwFlags: DWORD, dwBytes: SIZE_T) -> LPVOID;
+ fn HeapReAlloc(hHeap: HANDLE, dwFlags: DWORD, lpMem: LPVOID, dwBytes: SIZE_T) -> LPVOID;
+ fn HeapFree(hHeap: HANDLE, dwFlags: DWORD, lpMem: LPVOID) -> BOOL;
+ fn GetLastError() -> DWORD;
+ }
+
+ #[repr(C)]
+ struct Header(*mut u8);
+
+ unsafe fn get_header<'a>(ptr: *mut u8) -> &'a mut Header {
+ &mut *(ptr as *mut Header).offset(-1)
+ }
+
+ unsafe fn align_ptr(ptr: *mut u8, align: usize) -> *mut u8 {
+ let aligned = ptr.offset((align - (ptr as usize & (align - 1))) as isize);
+ *get_header(aligned) = Header(ptr);
+ aligned
+ }
+
+ #[inline]
+ unsafe fn allocate_with_flags(size: usize, align: usize, flags: DWORD) -> *mut u8 {
+ if align <= MIN_ALIGN {
+ HeapAlloc(GetProcessHeap(), flags, size)
+ } else {
+ let size = size + align;
+ let ptr = HeapAlloc(GetProcessHeap(), flags, size);
+ if ptr.is_null() {
+ ptr
+ } else {
+ align_ptr(ptr, align)
+ }
+ }
+ }
+
+ #[inline]
+ pub unsafe fn alloc(size: usize, align: usize) -> *mut u8 {
+ allocate_with_flags(size, align, 0)
+ }
+
+ #[inline]
+ pub unsafe fn dealloc(ptr: *mut u8, align: usize) {
+ if align <= MIN_ALIGN {
+ let err = HeapFree(GetProcessHeap(), 0, ptr as LPVOID);
+ debug_assert!(err != 0, "Failed to free heap memory: {}", GetLastError());
+ } else {
+ let header = get_header(ptr);
+ let err = HeapFree(GetProcessHeap(), 0, header.0 as LPVOID);
+ debug_assert!(err != 0, "Failed to free heap memory: {}", GetLastError());
+ }
+ }
+
+ #[inline]
+ pub unsafe fn realloc(ptr: *mut u8, new_size: usize) -> *mut u8 {
+ HeapReAlloc(GetProcessHeap(), 0, ptr as LPVOID, new_size) as *mut u8
+ }
+}
diff --git a/servo/components/hashglobe/src/fake.rs b/servo/components/hashglobe/src/fake.rs
new file mode 100644
index 0000000000..339c54a499
--- /dev/null
+++ b/servo/components/hashglobe/src/fake.rs
@@ -0,0 +1,269 @@
+// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! This module contains shims around the stdlib HashMap
+//! that add fallible methods
+//!
+//! These methods are a lie. They are not actually fallible. This is just to make
+//! it smooth to switch between hashmap impls in a codebase.
+
+use std::collections::HashMap as StdMap;
+use std::collections::HashSet as StdSet;
+use std::fmt;
+use std::hash::{BuildHasher, Hash};
+use std::ops::{Deref, DerefMut};
+
+pub use std::collections::hash_map::{Entry, Iter as MapIter, IterMut as MapIterMut, RandomState};
+pub use std::collections::hash_set::{IntoIter as SetIntoIter, Iter as SetIter};
+
+#[derive(Clone)]
+pub struct HashMap<K, V, S = RandomState>(StdMap<K, V, S>);
+
+use crate::FailedAllocationError;
+
+impl<K, V, S> Deref for HashMap<K, V, S> {
+ type Target = StdMap<K, V, S>;
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+}
+
+impl<K, V, S> DerefMut for HashMap<K, V, S> {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ &mut self.0
+ }
+}
+
+impl<K, V, S> HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ #[inline]
+ pub fn try_with_hasher(hash_builder: S) -> Result<HashMap<K, V, S>, FailedAllocationError> {
+ Ok(HashMap(StdMap::with_hasher(hash_builder)))
+ }
+
+ #[inline]
+ pub fn try_with_capacity_and_hasher(
+ capacity: usize,
+ hash_builder: S,
+ ) -> Result<HashMap<K, V, S>, FailedAllocationError> {
+ Ok(HashMap(StdMap::with_capacity_and_hasher(
+ capacity,
+ hash_builder,
+ )))
+ }
+
+ pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> HashMap<K, V, S> {
+ HashMap(StdMap::with_capacity_and_hasher(capacity, hash_builder))
+ }
+
+ #[inline]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), FailedAllocationError> {
+ Ok(self.reserve(additional))
+ }
+
+ pub fn try_shrink_to_fit(&mut self) -> Result<(), FailedAllocationError> {
+ Ok(self.shrink_to_fit())
+ }
+
+ pub fn try_entry(&mut self, key: K) -> Result<Entry<K, V>, FailedAllocationError> {
+ Ok(self.entry(key))
+ }
+
+ #[inline]
+ pub fn try_insert(&mut self, k: K, v: V) -> Result<Option<V>, FailedAllocationError> {
+ Ok(self.insert(k, v))
+ }
+}
+
+#[derive(Clone)]
+pub struct HashSet<T, S = RandomState>(StdSet<T, S>);
+
+impl<T, S> Deref for HashSet<T, S> {
+ type Target = StdSet<T, S>;
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+}
+
+impl<T, S> DerefMut for HashSet<T, S> {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ &mut self.0
+ }
+}
+
+impl<T: Hash + Eq> HashSet<T, RandomState> {
+ #[inline]
+ pub fn new() -> HashSet<T, RandomState> {
+ HashSet(StdSet::new())
+ }
+
+ #[inline]
+ pub fn with_capacity(capacity: usize) -> HashSet<T, RandomState> {
+ HashSet(StdSet::with_capacity(capacity))
+ }
+}
+
+impl<T, S> HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ #[inline]
+ pub fn with_hasher(hasher: S) -> HashSet<T, S> {
+ HashSet(StdSet::with_hasher(hasher))
+ }
+
+ #[inline]
+ pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashSet<T, S> {
+ HashSet(StdSet::with_capacity_and_hasher(capacity, hasher))
+ }
+
+ #[inline]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), FailedAllocationError> {
+ Ok(self.reserve(additional))
+ }
+
+ #[inline]
+ pub fn try_shrink_to_fit(&mut self) -> Result<(), FailedAllocationError> {
+ Ok(self.shrink_to_fit())
+ }
+
+ #[inline]
+ pub fn try_insert(&mut self, value: T) -> Result<bool, FailedAllocationError> {
+ Ok(self.insert(value))
+ }
+}
+
+// Pass through trait impls
+// We can't derive these since the bounds are not obvious to the derive macro
+
+impl<K: Hash + Eq, V, S: BuildHasher + Default> Default for HashMap<K, V, S> {
+ fn default() -> Self {
+ HashMap(Default::default())
+ }
+}
+
+impl<K, V, S> fmt::Debug for HashMap<K, V, S>
+where
+ K: Eq + Hash + fmt::Debug,
+ V: fmt::Debug,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.0.fmt(f)
+ }
+}
+
+impl<K, V, S> PartialEq for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ V: PartialEq,
+ S: BuildHasher,
+{
+ fn eq(&self, other: &HashMap<K, V, S>) -> bool {
+ self.0.eq(&other.0)
+ }
+}
+
+impl<K, V, S> Eq for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ V: Eq,
+ S: BuildHasher,
+{
+}
+
+impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (&'a K, &'a V);
+ type IntoIter = MapIter<'a, K, V>;
+
+ fn into_iter(self) -> MapIter<'a, K, V> {
+ self.0.iter()
+ }
+}
+
+impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (&'a K, &'a mut V);
+ type IntoIter = MapIterMut<'a, K, V>;
+
+ fn into_iter(self) -> MapIterMut<'a, K, V> {
+ self.0.iter_mut()
+ }
+}
+
+impl<T: Eq + Hash, S: BuildHasher + Default> Default for HashSet<T, S> {
+ fn default() -> Self {
+ HashSet(Default::default())
+ }
+}
+
+impl<T, S> fmt::Debug for HashSet<T, S>
+where
+ T: Eq + Hash + fmt::Debug,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.0.fmt(f)
+ }
+}
+
+impl<T, S> PartialEq for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ fn eq(&self, other: &HashSet<T, S>) -> bool {
+ self.0.eq(&other.0)
+ }
+}
+
+impl<T, S> Eq for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+}
+
+impl<'a, T, S> IntoIterator for &'a HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = &'a T;
+ type IntoIter = SetIter<'a, T>;
+
+ fn into_iter(self) -> SetIter<'a, T> {
+ self.0.iter()
+ }
+}
+
+impl<T, S> IntoIterator for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = T;
+ type IntoIter = SetIntoIter<T>;
+
+ fn into_iter(self) -> SetIntoIter<T> {
+ self.0.into_iter()
+ }
+}
diff --git a/servo/components/hashglobe/src/hash_map.rs b/servo/components/hashglobe/src/hash_map.rs
new file mode 100644
index 0000000000..d2893627e1
--- /dev/null
+++ b/servo/components/hashglobe/src/hash_map.rs
@@ -0,0 +1,3087 @@
+// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use self::Entry::*;
+use self::VacantEntryState::*;
+
+use std::borrow::Borrow;
+use std::cmp::max;
+use std::fmt::{self, Debug};
+#[allow(deprecated)]
+use std::hash::{BuildHasher, Hash};
+use std::iter::FromIterator;
+use std::mem::{self, replace};
+use std::ops::{Deref, Index};
+
+use super::table::BucketState::{Empty, Full};
+use super::table::{self, Bucket, EmptyBucket, FullBucket, FullBucketMut, RawTable, SafeHash};
+
+use crate::FailedAllocationError;
+
+const MIN_NONZERO_RAW_CAPACITY: usize = 32; // must be a power of two
+
+/// The default behavior of HashMap implements a maximum load factor of 90.9%.
+#[derive(Clone)]
+struct DefaultResizePolicy;
+
+impl DefaultResizePolicy {
+ fn new() -> DefaultResizePolicy {
+ DefaultResizePolicy
+ }
+
+ /// A hash map's "capacity" is the number of elements it can hold without
+ /// being resized. Its "raw capacity" is the number of slots required to
+ /// provide that capacity, accounting for maximum loading. The raw capacity
+ /// is always zero or a power of two.
+ #[inline]
+ fn raw_capacity(&self, len: usize) -> usize {
+ if len == 0 {
+ 0
+ } else {
+ // 1. Account for loading: `raw_capacity >= len * 1.1`.
+ // 2. Ensure it is a power of two.
+ // 3. Ensure it is at least the minimum size.
+ let mut raw_cap = len * 11 / 10;
+ assert!(raw_cap >= len, "raw_cap overflow");
+ raw_cap = raw_cap
+ .checked_next_power_of_two()
+ .expect("raw_capacity overflow");
+ raw_cap = max(MIN_NONZERO_RAW_CAPACITY, raw_cap);
+ raw_cap
+ }
+ }
+
+ /// The capacity of the given raw capacity.
+ #[inline]
+ fn capacity(&self, raw_cap: usize) -> usize {
+ // This doesn't have to be checked for overflow since allocation size
+ // in bytes will overflow earlier than multiplication by 10.
+ //
+ // As per https://github.com/rust-lang/rust/pull/30991 this is updated
+ // to be: (raw_cap * den + den - 1) / num
+ (raw_cap * 10 + 10 - 1) / 11
+ }
+}
+
+// The main performance trick in this hashmap is called Robin Hood Hashing.
+// It gains its excellent performance from one essential operation:
+//
+// If an insertion collides with an existing element, and that element's
+// "probe distance" (how far away the element is from its ideal location)
+// is higher than how far we've already probed, swap the elements.
+//
+// This massively lowers variance in probe distance, and allows us to get very
+// high load factors with good performance. The 90% load factor I use is rather
+// conservative.
+//
+// > Why a load factor of approximately 90%?
+//
+// In general, all the distances to initial buckets will converge on the mean.
+// At a load factor of α, the odds of finding the target bucket after k
+// probes is approximately 1-α^k. If we set this equal to 50% (since we converge
+// on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round
+// this down to make the math easier on the CPU and avoid its FPU.
+// Since on average we start the probing in the middle of a cache line, this
+// strategy pulls in two cache lines of hashes on every lookup. I think that's
+// pretty good, but if you want to trade off some space, it could go down to one
+// cache line on average with an α of 0.84.
+//
+// > Wait, what? Where did you get 1-α^k from?
+//
+// On the first probe, your odds of a collision with an existing element is α.
+// The odds of doing this twice in a row is approximately α^2. For three times,
+// α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT
+// colliding after k tries is 1-α^k.
+//
+// The paper from 1986 cited below mentions an implementation which keeps track
+// of the distance-to-initial-bucket histogram. This approach is not suitable
+// for modern architectures because it requires maintaining an internal data
+// structure. This allows very good first guesses, but we are most concerned
+// with guessing entire cache lines, not individual indexes. Furthermore, array
+// accesses are no longer linear and in one direction, as we have now. There
+// is also memory and cache pressure that this would entail that would be very
+// difficult to properly see in a microbenchmark.
+//
+// ## Future Improvements (FIXME!)
+//
+// Allow the load factor to be changed dynamically and/or at initialization.
+//
+// Also, would it be possible for us to reuse storage when growing the
+// underlying table? This is exactly the use case for 'realloc', and may
+// be worth exploring.
+//
+// ## Future Optimizations (FIXME!)
+//
+// Another possible design choice that I made without any real reason is
+// parameterizing the raw table over keys and values. Technically, all we need
+// is the size and alignment of keys and values, and the code should be just as
+// efficient (well, we might need one for power-of-two size and one for not...).
+// This has the potential to reduce code bloat in rust executables, without
+// really losing anything except 4 words (key size, key alignment, val size,
+// val alignment) which can be passed in to every call of a `RawTable` function.
+// This would definitely be an avenue worth exploring if people start complaining
+// about the size of rust executables.
+//
+// Annotate exceedingly likely branches in `table::make_hash`
+// and `search_hashed` to reduce instruction cache pressure
+// and mispredictions once it becomes possible (blocked on issue #11092).
+//
+// Shrinking the table could simply reallocate in place after moving buckets
+// to the first half.
+//
+// The growth algorithm (fragment of the Proof of Correctness)
+// --------------------
+//
+// The growth algorithm is basically a fast path of the naive reinsertion-
+// during-resize algorithm. Other paths should never be taken.
+//
+// Consider growing a robin hood hashtable of capacity n. Normally, we do this
+// by allocating a new table of capacity `2n`, and then individually reinsert
+// each element in the old table into the new one. This guarantees that the
+// new table is a valid robin hood hashtable with all the desired statistical
+// properties. Remark that the order we reinsert the elements in should not
+// matter. For simplicity and efficiency, we will consider only linear
+// reinsertions, which consist of reinserting all elements in the old table
+// into the new one by increasing order of index. However we will not be
+// starting our reinsertions from index 0 in general. If we start from index
+// i, for the purpose of reinsertion we will consider all elements with real
+// index j < i to have virtual index n + j.
+//
+// Our hash generation scheme consists of generating a 64-bit hash and
+// truncating the most significant bits. When moving to the new table, we
+// simply introduce a new bit to the front of the hash. Therefore, if an
+// elements has ideal index i in the old table, it can have one of two ideal
+// locations in the new table. If the new bit is 0, then the new ideal index
+// is i. If the new bit is 1, then the new ideal index is n + i. Intuitively,
+// we are producing two independent tables of size n, and for each element we
+// independently choose which table to insert it into with equal probability.
+// However the rather than wrapping around themselves on overflowing their
+// indexes, the first table overflows into the first, and the first into the
+// second. Visually, our new table will look something like:
+//
+// [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy]
+//
+// Where x's are elements inserted into the first table, y's are elements
+// inserted into the second, and _'s are empty sections. We now define a few
+// key concepts that we will use later. Note that this is a very abstract
+// perspective of the table. A real resized table would be at least half
+// empty.
+//
+// Theorem: A linear robin hood reinsertion from the first ideal element
+// produces identical results to a linear naive reinsertion from the same
+// element.
+//
+// FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md
+//
+// Adaptive early resizing
+// ----------------------
+// To protect against degenerate performance scenarios (including DOS attacks),
+// the implementation includes an adaptive behavior that can resize the map
+// early (before its capacity is exceeded) when suspiciously long probe sequences
+// are encountered.
+//
+// With this algorithm in place it would be possible to turn a CPU attack into
+// a memory attack due to the aggressive resizing. To prevent that the
+// adaptive behavior only triggers when the map is at least half full.
+// This reduces the effectiveness of the algorithm but also makes it completely safe.
+//
+// The previous safety measure also prevents degenerate interactions with
+// really bad quality hash algorithms that can make normal inputs look like a
+// DOS attack.
+//
+const DISPLACEMENT_THRESHOLD: usize = 128;
+//
+// The threshold of 128 is chosen to minimize the chance of exceeding it.
+// In particular, we want that chance to be less than 10^-8 with a load of 90%.
+// For displacement, the smallest constant that fits our needs is 90,
+// so we round that up to 128.
+//
+// At a load factor of α, the odds of finding the target bucket after exactly n
+// unsuccessful probes[1] are
+//
+// Pr_α{displacement = n} =
+// (1 - α) / α * ∑_{k≥1} e^(-kα) * (kα)^(k+n) / (k + n)! * (1 - kα / (k + n + 1))
+//
+// We use this formula to find the probability of triggering the adaptive behavior
+//
+// Pr_0.909{displacement > 128} = 1.601 * 10^-11
+//
+// 1. Alfredo Viola (2005). Distributional analysis of Robin Hood linear probing
+// hashing with buckets.
+
+/// A hash map implemented with linear probing and Robin Hood bucket stealing.
+///
+/// By default, `HashMap` uses a hashing algorithm selected to provide
+/// resistance against HashDoS attacks. The algorithm is randomly seeded, and a
+/// reasonable best-effort is made to generate this seed from a high quality,
+/// secure source of randomness provided by the host without blocking the
+/// program. Because of this, the randomness of the seed depends on the output
+/// quality of the system's random number generator when the seed is created.
+/// In particular, seeds generated when the system's entropy pool is abnormally
+/// low such as during system boot may be of a lower quality.
+///
+/// The default hashing algorithm is currently SipHash 1-3, though this is
+/// subject to change at any point in the future. While its performance is very
+/// competitive for medium sized keys, other hashing algorithms will outperform
+/// it for small keys such as integers as well as large keys such as long
+/// strings, though those algorithms will typically *not* protect against
+/// attacks such as HashDoS.
+///
+/// The hashing algorithm can be replaced on a per-`HashMap` basis using the
+/// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many
+/// alternative algorithms are available on crates.io, such as the [`fnv`] crate.
+///
+/// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although
+/// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`.
+/// If you implement these yourself, it is important that the following
+/// property holds:
+///
+/// ```text
+/// k1 == k2 -> hash(k1) == hash(k2)
+/// ```
+///
+/// In other words, if two keys are equal, their hashes must be equal.
+///
+/// It is a logic error for a key to be modified in such a way that the key's
+/// hash, as determined by the [`Hash`] trait, or its equality, as determined by
+/// the [`Eq`] trait, changes while it is in the map. This is normally only
+/// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
+///
+/// Relevant papers/articles:
+///
+/// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf)
+/// 2. Emmanuel Goossaert. ["Robin Hood
+/// hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/)
+/// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift
+/// deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/)
+///
+/// # Examples
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// // type inference lets us omit an explicit type signature (which
+/// // would be `HashMap<&str, &str>` in this example).
+/// let mut book_reviews = HashMap::new();
+///
+/// // review some books.
+/// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.");
+/// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.");
+/// book_reviews.insert("Pride and Prejudice", "Very enjoyable.");
+/// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.");
+///
+/// // check for a specific one.
+/// if !book_reviews.contains_key("Les Misérables") {
+/// println!("We've got {} reviews, but Les Misérables ain't one.",
+/// book_reviews.len());
+/// }
+///
+/// // oops, this review has a lot of spelling mistakes, let's delete it.
+/// book_reviews.remove("The Adventures of Sherlock Holmes");
+///
+/// // look up the values associated with some keys.
+/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
+/// for book in &to_find {
+/// match book_reviews.get(book) {
+/// Some(review) => println!("{}: {}", book, review),
+/// None => println!("{} is unreviewed.", book)
+/// }
+/// }
+///
+/// // iterate over everything.
+/// for (book, review) in &book_reviews {
+/// println!("{}: \"{}\"", book, review);
+/// }
+/// ```
+///
+/// `HashMap` also implements an [`Entry API`](#method.entry), which allows
+/// for more complex methods of getting, setting, updating and removing keys and
+/// their values:
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// // type inference lets us omit an explicit type signature (which
+/// // would be `HashMap<&str, u8>` in this example).
+/// let mut player_stats = HashMap::new();
+///
+/// fn random_stat_buff() -> u8 {
+/// // could actually return some random value here - let's just return
+/// // some fixed value for now
+/// 42
+/// }
+///
+/// // insert a key only if it doesn't already exist
+/// player_stats.entry("health").or_insert(100);
+///
+/// // insert a key using a function that provides a new value only if it
+/// // doesn't already exist
+/// player_stats.entry("defence").or_insert_with(random_stat_buff);
+///
+/// // update a key, guarding against the key possibly not being set
+/// let stat = player_stats.entry("attack").or_insert(100);
+/// *stat += random_stat_buff();
+/// ```
+///
+/// The easiest way to use `HashMap` with a custom type as key is to derive [`Eq`] and [`Hash`].
+/// We must also derive [`PartialEq`].
+///
+/// [`Eq`]: ../../std/cmp/trait.Eq.html
+/// [`Hash`]: ../../std/hash/trait.Hash.html
+/// [`PartialEq`]: ../../std/cmp/trait.PartialEq.html
+/// [`RefCell`]: ../../std/cell/struct.RefCell.html
+/// [`Cell`]: ../../std/cell/struct.Cell.html
+/// [`default`]: #method.default
+/// [`with_hasher`]: #method.with_hasher
+/// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher
+/// [`fnv`]: https://crates.io/crates/fnv
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// #[derive(Hash, Eq, PartialEq, Debug)]
+/// struct Viking {
+/// name: String,
+/// country: String,
+/// }
+///
+/// impl Viking {
+/// /// Create a new Viking.
+/// fn new(name: &str, country: &str) -> Viking {
+/// Viking { name: name.to_string(), country: country.to_string() }
+/// }
+/// }
+///
+/// // Use a HashMap to store the vikings' health points.
+/// let mut vikings = HashMap::new();
+///
+/// vikings.insert(Viking::new("Einar", "Norway"), 25);
+/// vikings.insert(Viking::new("Olaf", "Denmark"), 24);
+/// vikings.insert(Viking::new("Harald", "Iceland"), 12);
+///
+/// // Use derived implementation to print the status of the vikings.
+/// for (viking, health) in &vikings {
+/// println!("{:?} has {} hp", viking, health);
+/// }
+/// ```
+///
+/// A `HashMap` with fixed list of elements can be initialized from an array:
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// fn main() {
+/// let timber_resources: HashMap<&str, i32> =
+/// [("Norway", 100),
+/// ("Denmark", 50),
+/// ("Iceland", 10)]
+/// .iter().cloned().collect();
+/// // use the values stored in map
+/// }
+/// ```
+
+#[derive(Clone)]
+pub struct HashMap<K, V, S = RandomState> {
+ // All hashes are keyed on these values, to prevent hash collision attacks.
+ hash_builder: S,
+
+ table: RawTable<K, V>,
+
+ resize_policy: DefaultResizePolicy,
+}
+
+/// Search for a pre-hashed key.
+#[inline]
+fn search_hashed<K, V, M, F>(table: M, hash: SafeHash, mut is_match: F) -> InternalEntry<K, V, M>
+where
+ M: Deref<Target = RawTable<K, V>>,
+ F: FnMut(&K) -> bool,
+{
+ // This is the only function where capacity can be zero. To avoid
+ // undefined behavior when Bucket::new gets the raw bucket in this
+ // case, immediately return the appropriate search result.
+ if table.capacity() == 0 {
+ return InternalEntry::TableIsEmpty;
+ }
+
+ let size = table.size();
+ let mut probe = Bucket::new(table, hash);
+ let mut displacement = 0;
+
+ loop {
+ let full = match probe.peek() {
+ Empty(bucket) => {
+ // Found a hole!
+ return InternalEntry::Vacant {
+ hash,
+ elem: NoElem(bucket, displacement),
+ };
+ },
+ Full(bucket) => bucket,
+ };
+
+ let probe_displacement = full.displacement();
+
+ if probe_displacement < displacement {
+ // Found a luckier bucket than me.
+ // We can finish the search early if we hit any bucket
+ // with a lower distance to initial bucket than we've probed.
+ return InternalEntry::Vacant {
+ hash,
+ elem: NeqElem(full, probe_displacement),
+ };
+ }
+
+ // If the hash doesn't match, it can't be this one..
+ if hash == full.hash() {
+ // If the key doesn't match, it can't be this one..
+ if is_match(full.read().0) {
+ return InternalEntry::Occupied { elem: full };
+ }
+ }
+ displacement += 1;
+ probe = full.next();
+ debug_assert!(displacement <= size);
+ }
+}
+
+fn pop_internal<K, V>(starting_bucket: FullBucketMut<K, V>) -> (K, V, &mut RawTable<K, V>) {
+ let (empty, retkey, retval) = starting_bucket.take();
+ let mut gap = match empty.gap_peek() {
+ Ok(b) => b,
+ Err(b) => return (retkey, retval, b.into_table()),
+ };
+
+ while gap.full().displacement() != 0 {
+ gap = match gap.shift() {
+ Ok(b) => b,
+ Err(b) => {
+ return (retkey, retval, b.into_table());
+ },
+ };
+ }
+
+ // Now we've done all our shifting. Return the value we grabbed earlier.
+ (retkey, retval, gap.into_table())
+}
+
+/// Perform robin hood bucket stealing at the given `bucket`. You must
+/// also pass that bucket's displacement so we don't have to recalculate it.
+///
+/// `hash`, `key`, and `val` are the elements to "robin hood" into the hashtable.
+fn robin_hood<'a, K: 'a, V: 'a>(
+ bucket: FullBucketMut<'a, K, V>,
+ mut displacement: usize,
+ mut hash: SafeHash,
+ mut key: K,
+ mut val: V,
+) -> FullBucketMut<'a, K, V> {
+ let size = bucket.table().size();
+ let raw_capacity = bucket.table().capacity();
+ // There can be at most `size - dib` buckets to displace, because
+ // in the worst case, there are `size` elements and we already are
+ // `displacement` buckets away from the initial one.
+ let idx_end = (bucket.index() + size - bucket.displacement()) % raw_capacity;
+ // Save the *starting point*.
+ let mut bucket = bucket.stash();
+
+ loop {
+ let (old_hash, old_key, old_val) = bucket.replace(hash, key, val);
+ hash = old_hash;
+ key = old_key;
+ val = old_val;
+
+ loop {
+ displacement += 1;
+ let probe = bucket.next();
+ debug_assert_ne!(probe.index(), idx_end);
+
+ let full_bucket = match probe.peek() {
+ Empty(bucket) => {
+ // Found a hole!
+ let bucket = bucket.put(hash, key, val);
+ // Now that it's stolen, just read the value's pointer
+ // right out of the table! Go back to the *starting point*.
+ //
+ // This use of `into_table` is misleading. It turns the
+ // bucket, which is a FullBucket on top of a
+ // FullBucketMut, into just one FullBucketMut. The "table"
+ // refers to the inner FullBucketMut in this context.
+ return bucket.into_table();
+ },
+ Full(bucket) => bucket,
+ };
+
+ let probe_displacement = full_bucket.displacement();
+
+ bucket = full_bucket;
+
+ // Robin hood! Steal the spot.
+ if probe_displacement < displacement {
+ displacement = probe_displacement;
+ break;
+ }
+ }
+ }
+}
+
+impl<K, V, S> HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ fn make_hash<X: ?Sized>(&self, x: &X) -> SafeHash
+ where
+ X: Hash,
+ {
+ table::make_hash(&self.hash_builder, x)
+ }
+
+ /// Search for a key, yielding the index if it's found in the hashtable.
+ /// If you already have the hash for the key lying around, use
+ /// search_hashed.
+ #[inline]
+ fn search<'a, Q: ?Sized>(&'a self, q: &Q) -> InternalEntry<K, V, &'a RawTable<K, V>>
+ where
+ K: Borrow<Q>,
+ Q: Eq + Hash,
+ {
+ let hash = self.make_hash(q);
+ search_hashed(&self.table, hash, |k| q.eq(k.borrow()))
+ }
+
+ #[inline]
+ fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) -> InternalEntry<K, V, &'a mut RawTable<K, V>>
+ where
+ K: Borrow<Q>,
+ Q: Eq + Hash,
+ {
+ let hash = self.make_hash(q);
+ search_hashed(&mut self.table, hash, |k| q.eq(k.borrow()))
+ }
+
+ // The caller should ensure that invariants by Robin Hood Hashing hold
+ // and that there's space in the underlying table.
+ fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) {
+ let mut buckets = Bucket::new(&mut self.table, hash);
+ let start_index = buckets.index();
+
+ loop {
+ // We don't need to compare hashes for value swap.
+ // Not even DIBs for Robin Hood.
+ buckets = match buckets.peek() {
+ Empty(empty) => {
+ empty.put(hash, k, v);
+ return;
+ },
+ Full(b) => b.into_bucket(),
+ };
+ buckets.next();
+ debug_assert_ne!(buckets.index(), start_index);
+ }
+ }
+}
+
+impl<K, V, S> HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ /// Creates an empty `HashMap` which will use the given hash builder to hash
+ /// keys.
+ ///
+ /// The created map has the default initial capacity.
+ ///
+ /// Warning: `hash_builder` is normally randomly generated, and
+ /// is designed to allow HashMaps to be resistant to attacks that
+ /// cause many collisions and very poor performance. Setting it
+ /// manually using this function can expose a DoS attack vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::RandomState;
+ ///
+ /// let s = RandomState::new();
+ /// let mut map = HashMap::with_hasher(s);
+ /// map.insert(1, 2);
+ /// ```
+ #[inline]
+ pub fn try_with_hasher(hash_builder: S) -> Result<HashMap<K, V, S>, FailedAllocationError> {
+ Ok(HashMap {
+ hash_builder,
+ resize_policy: DefaultResizePolicy::new(),
+ table: RawTable::new(0)?,
+ })
+ }
+
+ #[inline]
+ pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S> {
+ Self::try_with_hasher(hash_builder).unwrap()
+ }
+
+ /// Creates an empty `HashMap` with the specified capacity, using `hash_builder`
+ /// to hash the keys.
+ ///
+ /// The hash map will be able to hold at least `capacity` elements without
+ /// reallocating. If `capacity` is 0, the hash map will not allocate.
+ ///
+ /// Warning: `hash_builder` is normally randomly generated, and
+ /// is designed to allow HashMaps to be resistant to attacks that
+ /// cause many collisions and very poor performance. Setting it
+ /// manually using this function can expose a DoS attack vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::RandomState;
+ ///
+ /// let s = RandomState::new();
+ /// let mut map = HashMap::with_capacity_and_hasher(10, s);
+ /// map.insert(1, 2);
+ /// ```
+ #[inline]
+ pub fn try_with_capacity_and_hasher(
+ capacity: usize,
+ hash_builder: S,
+ ) -> Result<HashMap<K, V, S>, FailedAllocationError> {
+ let resize_policy = DefaultResizePolicy::new();
+ let raw_cap = resize_policy.raw_capacity(capacity);
+ Ok(HashMap {
+ hash_builder,
+ resize_policy,
+ table: RawTable::new(raw_cap)?,
+ })
+ }
+
+ pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> HashMap<K, V, S> {
+ Self::try_with_capacity_and_hasher(capacity, hash_builder).unwrap()
+ }
+
+ /// Returns a reference to the map's [`BuildHasher`].
+ ///
+ /// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html
+ pub fn hasher(&self) -> &S {
+ &self.hash_builder
+ }
+
+ /// Returns the number of elements the map can hold without reallocating.
+ ///
+ /// This number is a lower bound; the `HashMap<K, V>` might be able to hold
+ /// more, but is guaranteed to be able to hold at least this many.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// let map: HashMap<isize, isize> = HashMap::with_capacity(100);
+ /// assert!(map.capacity() >= 100);
+ /// ```
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.resize_policy.capacity(self.raw_capacity())
+ }
+
+ /// Returns the hash map's raw capacity.
+ #[inline]
+ fn raw_capacity(&self) -> usize {
+ self.table.capacity()
+ }
+
+ /// Reserves capacity for at least `additional` more elements to be inserted
+ /// in the `HashMap`. The collection may reserve more space to avoid
+ /// frequent reallocations.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new allocation size overflows [`usize`].
+ ///
+ /// [`usize`]: ../../std/primitive.usize.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// let mut map: HashMap<&str, isize> = HashMap::new();
+ /// map.reserve(10);
+ /// ```
+ pub fn reserve(&mut self, additional: usize) {
+ self.try_reserve(additional).unwrap();
+ }
+
+ #[inline]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), FailedAllocationError> {
+ let remaining = self.capacity() - self.len(); // this can't overflow
+ if remaining < additional {
+ let min_cap = self
+ .len()
+ .checked_add(additional)
+ .expect("reserve overflow");
+ let raw_cap = self.resize_policy.raw_capacity(min_cap);
+ self.try_resize(raw_cap)?;
+ } else if self.table.tag() && remaining <= self.len() {
+ // Probe sequence is too long and table is half full,
+ // resize early to reduce probing length.
+ let new_capacity = self.table.capacity() * 2;
+ self.try_resize(new_capacity)?;
+ }
+ Ok(())
+ }
+
+ #[cold]
+ #[inline(never)]
+ fn try_resize(&mut self, new_raw_cap: usize) -> Result<(), FailedAllocationError> {
+ assert!(self.table.size() <= new_raw_cap);
+ assert!(new_raw_cap.is_power_of_two() || new_raw_cap == 0);
+
+ let mut old_table = replace(&mut self.table, RawTable::new(new_raw_cap)?);
+ let old_size = old_table.size();
+
+ if old_table.size() == 0 {
+ return Ok(());
+ }
+
+ let mut bucket = Bucket::head_bucket(&mut old_table);
+
+ // This is how the buckets might be laid out in memory:
+ // ($ marks an initialized bucket)
+ // ________________
+ // |$$$_$$$$$$_$$$$$|
+ //
+ // But we've skipped the entire initial cluster of buckets
+ // and will continue iteration in this order:
+ // ________________
+ // |$$$$$$_$$$$$
+ // ^ wrap around once end is reached
+ // ________________
+ // $$$_____________|
+ // ^ exit once table.size == 0
+ loop {
+ bucket = match bucket.peek() {
+ Full(bucket) => {
+ let h = bucket.hash();
+ let (b, k, v) = bucket.take();
+ self.insert_hashed_ordered(h, k, v);
+ if b.table().size() == 0 {
+ break;
+ }
+ b.into_bucket()
+ },
+ Empty(b) => b.into_bucket(),
+ };
+ bucket.next();
+ }
+
+ assert_eq!(self.table.size(), old_size);
+ Ok(())
+ }
+
+ /// Shrinks the capacity of the map as much as possible. It will drop
+ /// down as much as possible while maintaining the internal rules
+ /// and possibly leaving some space in accordance with the resize policy.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<isize, isize> = HashMap::with_capacity(100);
+ /// map.insert(1, 2);
+ /// map.insert(3, 4);
+ /// assert!(map.capacity() >= 100);
+ /// map.shrink_to_fit();
+ /// assert!(map.capacity() >= 2);
+ /// ```
+ pub fn shrink_to_fit(&mut self) {
+ self.try_shrink_to_fit().unwrap();
+ }
+
+ pub fn try_shrink_to_fit(&mut self) -> Result<(), FailedAllocationError> {
+ let new_raw_cap = self.resize_policy.raw_capacity(self.len());
+ if self.raw_capacity() != new_raw_cap {
+ let old_table = replace(&mut self.table, RawTable::new(new_raw_cap)?);
+ let old_size = old_table.size();
+
+ // Shrink the table. Naive algorithm for resizing:
+ for (h, k, v) in old_table.into_iter() {
+ self.insert_hashed_nocheck(h, k, v);
+ }
+
+ debug_assert_eq!(self.table.size(), old_size);
+ }
+ Ok(())
+ }
+
+ /// Insert a pre-hashed key-value pair, without first checking
+ /// that there's enough room in the buckets. Returns a reference to the
+ /// newly insert value.
+ ///
+ /// If the key already exists, the hashtable will be returned untouched
+ /// and a reference to the existing element will be returned.
+ fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> Option<V> {
+ let entry = search_hashed(&mut self.table, hash, |key| *key == k).into_entry(k);
+ match entry {
+ Some(Occupied(mut elem)) => Some(elem.insert(v)),
+ Some(Vacant(elem)) => {
+ elem.insert(v);
+ None
+ },
+ None => unreachable!(),
+ }
+ }
+
+ /// An iterator visiting all keys in arbitrary order.
+ /// The iterator element type is `&'a K`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for key in map.keys() {
+ /// println!("{}", key);
+ /// }
+ /// ```
+ pub fn keys(&self) -> Keys<K, V> {
+ Keys { inner: self.iter() }
+ }
+
+ /// An iterator visiting all values in arbitrary order.
+ /// The iterator element type is `&'a V`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for val in map.values() {
+ /// println!("{}", val);
+ /// }
+ /// ```
+ pub fn values(&self) -> Values<K, V> {
+ Values { inner: self.iter() }
+ }
+
+ /// An iterator visiting all values mutably in arbitrary order.
+ /// The iterator element type is `&'a mut V`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ ///
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for val in map.values_mut() {
+ /// *val = *val + 10;
+ /// }
+ ///
+ /// for val in map.values() {
+ /// println!("{}", val);
+ /// }
+ /// ```
+ pub fn values_mut(&mut self) -> ValuesMut<K, V> {
+ ValuesMut {
+ inner: self.iter_mut(),
+ }
+ }
+
+ /// An iterator visiting all key-value pairs in arbitrary order.
+ /// The iterator element type is `(&'a K, &'a V)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for (key, val) in map.iter() {
+ /// println!("key: {} val: {}", key, val);
+ /// }
+ /// ```
+ pub fn iter(&self) -> Iter<K, V> {
+ Iter {
+ inner: self.table.iter(),
+ }
+ }
+
+ /// An iterator visiting all key-value pairs in arbitrary order,
+ /// with mutable references to the values.
+ /// The iterator element type is `(&'a K, &'a mut V)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// // Update all values
+ /// for (_, val) in map.iter_mut() {
+ /// *val *= 2;
+ /// }
+ ///
+ /// for (key, val) in &map {
+ /// println!("key: {} val: {}", key, val);
+ /// }
+ /// ```
+ pub fn iter_mut(&mut self) -> IterMut<K, V> {
+ IterMut {
+ inner: self.table.iter_mut(),
+ }
+ }
+
+ /// Gets the given key's corresponding entry in the map for in-place manipulation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut letters = HashMap::new();
+ ///
+ /// for ch in "a short treatise on fungi".chars() {
+ /// let counter = letters.entry(ch).or_insert(0);
+ /// *counter += 1;
+ /// }
+ ///
+ /// assert_eq!(letters[&'s'], 2);
+ /// assert_eq!(letters[&'t'], 3);
+ /// assert_eq!(letters[&'u'], 1);
+ /// assert_eq!(letters.get(&'y'), None);
+ /// ```
+ pub fn entry(&mut self, key: K) -> Entry<K, V> {
+ self.try_entry(key).unwrap()
+ }
+
+ #[inline(always)]
+ pub fn try_entry(&mut self, key: K) -> Result<Entry<K, V>, FailedAllocationError> {
+ // Gotta resize now.
+ self.try_reserve(1)?;
+ let hash = self.make_hash(&key);
+ Ok(search_hashed(&mut self.table, hash, |q| q.eq(&key))
+ .into_entry(key)
+ .expect("unreachable"))
+ }
+
+ /// Returns the number of elements in the map.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// assert_eq!(a.len(), 0);
+ /// a.insert(1, "a");
+ /// assert_eq!(a.len(), 1);
+ /// ```
+ pub fn len(&self) -> usize {
+ self.table.size()
+ }
+
+ /// Returns true if the map contains no elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// assert!(a.is_empty());
+ /// a.insert(1, "a");
+ /// assert!(!a.is_empty());
+ /// ```
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Clears the map, returning all key-value pairs as an iterator. Keeps the
+ /// allocated memory for reuse.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// a.insert(1, "a");
+ /// a.insert(2, "b");
+ ///
+ /// for (k, v) in a.drain().take(1) {
+ /// assert!(k == 1 || k == 2);
+ /// assert!(v == "a" || v == "b");
+ /// }
+ ///
+ /// assert!(a.is_empty());
+ /// ```
+ #[inline]
+ pub fn drain(&mut self) -> Drain<K, V>
+ where
+ K: 'static,
+ V: 'static,
+ {
+ Drain {
+ inner: self.table.drain(),
+ }
+ }
+
+ /// Clears the map, removing all key-value pairs. Keeps the allocated memory
+ /// for reuse.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// a.insert(1, "a");
+ /// a.clear();
+ /// assert!(a.is_empty());
+ /// ```
+ #[inline]
+ pub fn clear(&mut self)
+ where
+ K: 'static,
+ V: 'static,
+ {
+ self.drain();
+ }
+
+ /// Returns a reference to the value corresponding to the key.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// assert_eq!(map.get(&1), Some(&"a"));
+ /// assert_eq!(map.get(&2), None);
+ /// ```
+ pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.search(k)
+ .into_occupied_bucket()
+ .map(|bucket| bucket.into_refs().1)
+ }
+
+ /// Returns true if the map contains a value for the specified key.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// assert_eq!(map.contains_key(&1), true);
+ /// assert_eq!(map.contains_key(&2), false);
+ /// ```
+ pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.search(k).into_occupied_bucket().is_some()
+ }
+
+ /// Returns a mutable reference to the value corresponding to the key.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// if let Some(x) = map.get_mut(&1) {
+ /// *x = "b";
+ /// }
+ /// assert_eq!(map[&1], "b");
+ /// ```
+ pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.search_mut(k)
+ .into_occupied_bucket()
+ .map(|bucket| bucket.into_mut_refs().1)
+ }
+
+ /// Inserts a key-value pair into the map.
+ ///
+ /// If the map did not have this key present, [`None`] is returned.
+ ///
+ /// If the map did have this key present, the value is updated, and the old
+ /// value is returned. The key is not updated, though; this matters for
+ /// types that can be `==` without being identical. See the [module-level
+ /// documentation] for more.
+ ///
+ /// [`None`]: ../../std/option/enum.Option.html#variant.None
+ /// [module-level documentation]: index.html#insert-and-complex-keys
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// assert_eq!(map.insert(37, "a"), None);
+ /// assert_eq!(map.is_empty(), false);
+ ///
+ /// map.insert(37, "b");
+ /// assert_eq!(map.insert(37, "c"), Some("b"));
+ /// assert_eq!(map[&37], "c");
+ /// ```
+ pub fn insert(&mut self, k: K, v: V) -> Option<V> {
+ self.try_insert(k, v).unwrap()
+ }
+
+ #[inline]
+ pub fn try_insert(&mut self, k: K, v: V) -> Result<Option<V>, FailedAllocationError> {
+ let hash = self.make_hash(&k);
+ self.try_reserve(1)?;
+ Ok(self.insert_hashed_nocheck(hash, k, v))
+ }
+
+ /// Removes a key from the map, returning the value at the key if the key
+ /// was previously in the map.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// assert_eq!(map.remove(&1), Some("a"));
+ /// assert_eq!(map.remove(&1), None);
+ /// ```
+ pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ if self.table.size() == 0 {
+ return None;
+ }
+
+ self.search_mut(k)
+ .into_occupied_bucket()
+ .map(|bucket| pop_internal(bucket).1)
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<isize, isize> = (0..8).map(|x|(x, x*10)).collect();
+ /// map.retain(|&k, _| k % 2 == 0);
+ /// assert_eq!(map.len(), 4);
+ /// ```
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&K, &mut V) -> bool,
+ {
+ if self.table.size() == 0 {
+ return;
+ }
+ let mut elems_left = self.table.size();
+ let mut bucket = Bucket::head_bucket(&mut self.table);
+ bucket.prev();
+ let start_index = bucket.index();
+ while elems_left != 0 {
+ bucket = match bucket.peek() {
+ Full(mut full) => {
+ elems_left -= 1;
+ let should_remove = {
+ let (k, v) = full.read_mut();
+ !f(k, v)
+ };
+ if should_remove {
+ let prev_raw = full.raw();
+ let (_, _, t) = pop_internal(full);
+ Bucket::new_from(prev_raw, t)
+ } else {
+ full.into_bucket()
+ }
+ },
+ Empty(b) => b.into_bucket(),
+ };
+ bucket.prev(); // reverse iteration
+ debug_assert!(elems_left == 0 || bucket.index() != start_index);
+ }
+ }
+}
+
+impl<K, V, S> PartialEq for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ V: PartialEq,
+ S: BuildHasher,
+{
+ fn eq(&self, other: &HashMap<K, V, S>) -> bool {
+ if self.len() != other.len() {
+ return false;
+ }
+
+ self.iter()
+ .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
+ }
+}
+
+impl<K, V, S> Eq for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ V: Eq,
+ S: BuildHasher,
+{
+}
+
+impl<K, V, S> Debug for HashMap<K, V, S>
+where
+ K: Eq + Hash + Debug,
+ V: Debug,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_map().entries(self.iter()).finish()
+ }
+}
+
+impl<K, V, S> Default for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher + Default,
+{
+ /// Creates an empty `HashMap<K, V, S>`, with the `Default` value for the hasher.
+ fn default() -> HashMap<K, V, S> {
+ HashMap::with_hasher(Default::default())
+ }
+}
+
+impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S>
+where
+ K: Eq + Hash + Borrow<Q>,
+ Q: Eq + Hash,
+ S: BuildHasher,
+{
+ type Output = V;
+
+ #[inline]
+ fn index(&self, index: &Q) -> &V {
+ self.get(index).expect("no entry found for key")
+ }
+}
+
+/// An iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`iter`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`iter`]: struct.HashMap.html#method.iter
+/// [`HashMap`]: struct.HashMap.html
+pub struct Iter<'a, K: 'a, V: 'a> {
+ inner: table::Iter<'a, K, V>,
+}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for Iter<'a, K, V> {
+ fn clone(&self) -> Iter<'a, K, V> {
+ Iter {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+impl<'a, K: Debug, V: Debug> fmt::Debug for Iter<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+/// A mutable iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`iter_mut`]: struct.HashMap.html#method.iter_mut
+/// [`HashMap`]: struct.HashMap.html
+pub struct IterMut<'a, K: 'a, V: 'a> {
+ inner: table::IterMut<'a, K, V>,
+}
+
+/// An owning iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`into_iter`] method on [`HashMap`][`HashMap`]
+/// (provided by the `IntoIterator` trait). See its documentation for more.
+///
+/// [`into_iter`]: struct.HashMap.html#method.into_iter
+/// [`HashMap`]: struct.HashMap.html
+pub struct IntoIter<K, V> {
+ pub(super) inner: table::IntoIter<K, V>,
+}
+
+/// An iterator over the keys of a `HashMap`.
+///
+/// This `struct` is created by the [`keys`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`keys`]: struct.HashMap.html#method.keys
+/// [`HashMap`]: struct.HashMap.html
+pub struct Keys<'a, K: 'a, V: 'a> {
+ inner: Iter<'a, K, V>,
+}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for Keys<'a, K, V> {
+ fn clone(&self) -> Keys<'a, K, V> {
+ Keys {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+impl<'a, K: Debug, V> fmt::Debug for Keys<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+/// An iterator over the values of a `HashMap`.
+///
+/// This `struct` is created by the [`values`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`values`]: struct.HashMap.html#method.values
+/// [`HashMap`]: struct.HashMap.html
+pub struct Values<'a, K: 'a, V: 'a> {
+ inner: Iter<'a, K, V>,
+}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for Values<'a, K, V> {
+ fn clone(&self) -> Values<'a, K, V> {
+ Values {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+impl<'a, K, V: Debug> fmt::Debug for Values<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+/// A draining iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`drain`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`drain`]: struct.HashMap.html#method.drain
+/// [`HashMap`]: struct.HashMap.html
+pub struct Drain<'a, K: 'static, V: 'static> {
+ pub(super) inner: table::Drain<'a, K, V>,
+}
+
+/// A mutable iterator over the values of a `HashMap`.
+///
+/// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`values_mut`]: struct.HashMap.html#method.values_mut
+/// [`HashMap`]: struct.HashMap.html
+pub struct ValuesMut<'a, K: 'a, V: 'a> {
+ inner: IterMut<'a, K, V>,
+}
+
+enum InternalEntry<K, V, M> {
+ Occupied {
+ elem: FullBucket<K, V, M>,
+ },
+ Vacant {
+ hash: SafeHash,
+ elem: VacantEntryState<K, V, M>,
+ },
+ TableIsEmpty,
+}
+
+impl<K, V, M> InternalEntry<K, V, M> {
+ #[inline]
+ fn into_occupied_bucket(self) -> Option<FullBucket<K, V, M>> {
+ match self {
+ InternalEntry::Occupied { elem } => Some(elem),
+ _ => None,
+ }
+ }
+}
+
+impl<'a, K, V> InternalEntry<K, V, &'a mut RawTable<K, V>> {
+ #[inline]
+ fn into_entry(self, key: K) -> Option<Entry<'a, K, V>> {
+ match self {
+ InternalEntry::Occupied { elem } => Some(Occupied(OccupiedEntry {
+ key: Some(key),
+ elem,
+ })),
+ InternalEntry::Vacant { hash, elem } => Some(Vacant(VacantEntry { hash, key, elem })),
+ InternalEntry::TableIsEmpty => None,
+ }
+ }
+}
+
+/// A view into a single entry in a map, which may either be vacant or occupied.
+///
+/// This `enum` is constructed from the [`entry`] method on [`HashMap`].
+///
+/// [`HashMap`]: struct.HashMap.html
+/// [`entry`]: struct.HashMap.html#method.entry
+pub enum Entry<'a, K: 'a, V: 'a> {
+ /// An occupied entry.
+ Occupied(OccupiedEntry<'a, K, V>),
+
+ /// A vacant entry.
+ Vacant(VacantEntry<'a, K, V>),
+}
+
+impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for Entry<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match *self {
+ Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(),
+ Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(),
+ }
+ }
+}
+
+/// A view into an occupied entry in a `HashMap`.
+/// It is part of the [`Entry`] enum.
+///
+/// [`Entry`]: enum.Entry.html
+pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
+ key: Option<K>,
+ elem: FullBucket<K, V, &'a mut RawTable<K, V>>,
+}
+
+impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for OccupiedEntry<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_struct("OccupiedEntry")
+ .field("key", self.key())
+ .field("value", self.get())
+ .finish()
+ }
+}
+
+/// A view into a vacant entry in a `HashMap`.
+/// It is part of the [`Entry`] enum.
+///
+/// [`Entry`]: enum.Entry.html
+pub struct VacantEntry<'a, K: 'a, V: 'a> {
+ hash: SafeHash,
+ key: K,
+ elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>,
+}
+
+impl<'a, K: 'a + Debug, V: 'a> Debug for VacantEntry<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_tuple("VacantEntry").field(self.key()).finish()
+ }
+}
+
+/// Possible states of a VacantEntry.
+enum VacantEntryState<K, V, M> {
+ /// The index is occupied, but the key to insert has precedence,
+ /// and will kick the current one out on insertion.
+ NeqElem(FullBucket<K, V, M>, usize),
+ /// The index is genuinely vacant.
+ NoElem(EmptyBucket<K, V, M>, usize),
+}
+
+impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (&'a K, &'a V);
+ type IntoIter = Iter<'a, K, V>;
+
+ fn into_iter(self) -> Iter<'a, K, V> {
+ self.iter()
+ }
+}
+
+impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (&'a K, &'a mut V);
+ type IntoIter = IterMut<'a, K, V>;
+
+ fn into_iter(self) -> IterMut<'a, K, V> {
+ self.iter_mut()
+ }
+}
+
+impl<K, V, S> IntoIterator for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (K, V);
+ type IntoIter = IntoIter<K, V>;
+
+ /// Creates a consuming iterator, that is, one that moves each key-value
+ /// pair out of the map in arbitrary order. The map cannot be used after
+ /// calling this.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// // Not possible with .iter()
+ /// let vec: Vec<(&str, isize)> = map.into_iter().collect();
+ /// ```
+ fn into_iter(self) -> IntoIter<K, V> {
+ IntoIter {
+ inner: self.table.into_iter(),
+ }
+ }
+}
+
+impl<'a, K, V> Iterator for Iter<'a, K, V> {
+ type Item = (&'a K, &'a V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(&'a K, &'a V)> {
+ self.inner.next()
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> Iterator for IterMut<'a, K, V> {
+ type Item = (&'a K, &'a mut V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
+ self.inner.next()
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> fmt::Debug for IterMut<'a, K, V>
+where
+ K: fmt::Debug,
+ V: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.iter()).finish()
+ }
+}
+
+impl<K, V> Iterator for IntoIter<K, V> {
+ type Item = (K, V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(K, V)> {
+ self.inner.next().map(|(_, k, v)| (k, v))
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<K, V> ExactSizeIterator for IntoIter<K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<K: Debug, V: Debug> fmt::Debug for IntoIter<K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.iter()).finish()
+ }
+}
+
+impl<'a, K, V> Iterator for Keys<'a, K, V> {
+ type Item = &'a K;
+
+ #[inline]
+ fn next(&mut self) -> Option<&'a K> {
+ self.inner.next().map(|(k, _)| k)
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> Iterator for Values<'a, K, V> {
+ type Item = &'a V;
+
+ #[inline]
+ fn next(&mut self) -> Option<&'a V> {
+ self.inner.next().map(|(_, v)| v)
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
+ type Item = &'a mut V;
+
+ #[inline]
+ fn next(&mut self) -> Option<&'a mut V> {
+ self.inner.next().map(|(_, v)| v)
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for ValuesMut<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> fmt::Debug for ValuesMut<'a, K, V>
+where
+ K: fmt::Debug,
+ V: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.inner.iter()).finish()
+ }
+}
+
+impl<'a, K, V> Iterator for Drain<'a, K, V> {
+ type Item = (K, V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(K, V)> {
+ self.inner.next().map(|(_, k, v)| (k, v))
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> fmt::Debug for Drain<'a, K, V>
+where
+ K: fmt::Debug,
+ V: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.iter()).finish()
+ }
+}
+
+// FORK NOTE: Removed Placer impl
+
+impl<'a, K, V> Entry<'a, K, V> {
+ /// Ensures a value is in the entry by inserting the default if empty, and returns
+ /// a mutable reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// assert_eq!(map["poneyland"], 12);
+ ///
+ /// *map.entry("poneyland").or_insert(12) += 10;
+ /// assert_eq!(map["poneyland"], 22);
+ /// ```
+ pub fn or_insert(self, default: V) -> &'a mut V {
+ match self {
+ Occupied(entry) => entry.into_mut(),
+ Vacant(entry) => entry.insert(default),
+ }
+ }
+
+ /// Ensures a value is in the entry by inserting the result of the default function if empty,
+ /// and returns a mutable reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, String> = HashMap::new();
+ /// let s = "hoho".to_string();
+ ///
+ /// map.entry("poneyland").or_insert_with(|| s);
+ ///
+ /// assert_eq!(map["poneyland"], "hoho".to_string());
+ /// ```
+ pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
+ match self {
+ Occupied(entry) => entry.into_mut(),
+ Vacant(entry) => entry.insert(default()),
+ }
+ }
+
+ /// Returns a reference to this entry's key.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// assert_eq!(map.entry("poneyland").key(), &"poneyland");
+ /// ```
+ pub fn key(&self) -> &K {
+ match *self {
+ Occupied(ref entry) => entry.key(),
+ Vacant(ref entry) => entry.key(),
+ }
+ }
+}
+
+impl<'a, K, V> OccupiedEntry<'a, K, V> {
+ /// Gets a reference to the key in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ /// assert_eq!(map.entry("poneyland").key(), &"poneyland");
+ /// ```
+ pub fn key(&self) -> &K {
+ self.elem.read().0
+ }
+
+ /// Take the ownership of the key and value from the map.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// // We delete the entry from the map.
+ /// o.remove_entry();
+ /// }
+ ///
+ /// assert_eq!(map.contains_key("poneyland"), false);
+ /// ```
+ pub fn remove_entry(self) -> (K, V) {
+ let (k, v, _) = pop_internal(self.elem);
+ (k, v)
+ }
+
+ /// Gets a reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// assert_eq!(o.get(), &12);
+ /// }
+ /// ```
+ pub fn get(&self) -> &V {
+ self.elem.read().1
+ }
+
+ /// Gets a mutable reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// assert_eq!(map["poneyland"], 12);
+ /// if let Entry::Occupied(mut o) = map.entry("poneyland") {
+ /// *o.get_mut() += 10;
+ /// }
+ ///
+ /// assert_eq!(map["poneyland"], 22);
+ /// ```
+ pub fn get_mut(&mut self) -> &mut V {
+ self.elem.read_mut().1
+ }
+
+ /// Converts the OccupiedEntry into a mutable reference to the value in the entry
+ /// with a lifetime bound to the map itself.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// assert_eq!(map["poneyland"], 12);
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// *o.into_mut() += 10;
+ /// }
+ ///
+ /// assert_eq!(map["poneyland"], 22);
+ /// ```
+ pub fn into_mut(self) -> &'a mut V {
+ self.elem.into_mut_refs().1
+ }
+
+ /// Sets the value of the entry, and returns the entry's old value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(mut o) = map.entry("poneyland") {
+ /// assert_eq!(o.insert(15), 12);
+ /// }
+ ///
+ /// assert_eq!(map["poneyland"], 15);
+ /// ```
+ pub fn insert(&mut self, mut value: V) -> V {
+ let old_value = self.get_mut();
+ mem::swap(&mut value, old_value);
+ value
+ }
+
+ /// Takes the value out of the entry, and returns it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// assert_eq!(o.remove(), 12);
+ /// }
+ ///
+ /// assert_eq!(map.contains_key("poneyland"), false);
+ /// ```
+ pub fn remove(self) -> V {
+ pop_internal(self.elem).1
+ }
+
+ /// Returns a key that was used for search.
+ ///
+ /// The key was retained for further use.
+ fn take_key(&mut self) -> Option<K> {
+ self.key.take()
+ }
+}
+
+impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> {
+ /// Gets a reference to the key that would be used when inserting a value
+ /// through the `VacantEntry`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// assert_eq!(map.entry("poneyland").key(), &"poneyland");
+ /// ```
+ pub fn key(&self) -> &K {
+ &self.key
+ }
+
+ /// Take ownership of the key.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ ///
+ /// if let Entry::Vacant(v) = map.entry("poneyland") {
+ /// v.into_key();
+ /// }
+ /// ```
+ pub fn into_key(self) -> K {
+ self.key
+ }
+
+ /// Sets the value of the entry with the VacantEntry's key,
+ /// and returns a mutable reference to it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ ///
+ /// if let Entry::Vacant(o) = map.entry("poneyland") {
+ /// o.insert(37);
+ /// }
+ /// assert_eq!(map["poneyland"], 37);
+ /// ```
+ pub fn insert(self, value: V) -> &'a mut V {
+ let b = match self.elem {
+ NeqElem(mut bucket, disp) => {
+ if disp >= DISPLACEMENT_THRESHOLD {
+ bucket.table_mut().set_tag(true);
+ }
+ robin_hood(bucket, disp, self.hash, self.key, value)
+ },
+ NoElem(mut bucket, disp) => {
+ if disp >= DISPLACEMENT_THRESHOLD {
+ bucket.table_mut().set_tag(true);
+ }
+ bucket.put(self.hash, self.key, value)
+ },
+ };
+ b.into_mut_refs().1
+ }
+}
+
+impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher + Default,
+{
+ fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> HashMap<K, V, S> {
+ let mut map = HashMap::with_hasher(Default::default());
+ map.extend(iter);
+ map
+ }
+}
+
+impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
+ // Keys may be already present or show multiple times in the iterator.
+ // Reserve the entire hint lower bound if the map is empty.
+ // Otherwise reserve half the hint (rounded up), so the map
+ // will only resize twice in the worst case.
+ let iter = iter.into_iter();
+ let reserve = if self.is_empty() {
+ iter.size_hint().0
+ } else {
+ (iter.size_hint().0 + 1) / 2
+ };
+ self.reserve(reserve);
+ for (k, v) in iter {
+ self.insert(k, v);
+ }
+ }
+}
+
+impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S>
+where
+ K: Eq + Hash + Copy,
+ V: Copy,
+ S: BuildHasher,
+{
+ fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) {
+ self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
+ }
+}
+
+// FORK NOTE: These can be reused
+pub use std::collections::hash_map::{DefaultHasher, RandomState};
+
+impl<K, S, Q: ?Sized> super::Recover<Q> for HashMap<K, (), S>
+where
+ K: Eq + Hash + Borrow<Q>,
+ S: BuildHasher,
+ Q: Eq + Hash,
+{
+ type Key = K;
+
+ fn get(&self, key: &Q) -> Option<&K> {
+ self.search(key)
+ .into_occupied_bucket()
+ .map(|bucket| bucket.into_refs().0)
+ }
+
+ fn take(&mut self, key: &Q) -> Option<K> {
+ if self.table.size() == 0 {
+ return None;
+ }
+
+ self.search_mut(key)
+ .into_occupied_bucket()
+ .map(|bucket| pop_internal(bucket).0)
+ }
+
+ fn replace(&mut self, key: K) -> Option<K> {
+ self.reserve(1);
+
+ match self.entry(key) {
+ Occupied(mut occupied) => {
+ let key = occupied.take_key().unwrap();
+ Some(mem::replace(occupied.elem.read_mut().0, key))
+ },
+ Vacant(vacant) => {
+ vacant.insert(());
+ None
+ },
+ }
+ }
+}
+
+#[allow(dead_code)]
+fn assert_covariance() {
+ fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> {
+ v
+ }
+ fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> {
+ v
+ }
+ fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> {
+ v
+ }
+ fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> {
+ v
+ }
+ fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> {
+ v
+ }
+ fn into_iter_val<'new>(v: IntoIter<u8, &'static str>) -> IntoIter<u8, &'new str> {
+ v
+ }
+ fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> {
+ v
+ }
+ fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> {
+ v
+ }
+ fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> {
+ v
+ }
+ fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> {
+ v
+ }
+ fn drain<'new>(
+ d: Drain<'static, &'static str, &'static str>,
+ ) -> Drain<'new, &'new str, &'new str> {
+ d
+ }
+}
+
+#[cfg(test)]
+mod test_map {
+ extern crate rand;
+ use self::rand::{thread_rng, Rng};
+ use super::Entry::{Occupied, Vacant};
+ use super::HashMap;
+ use super::RandomState;
+ use cell::RefCell;
+
+ #[test]
+ fn test_zero_capacities() {
+ type HM = HashMap<i32, i32>;
+
+ let m = HM::new();
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::default();
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::with_hasher(RandomState::new());
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::with_capacity(0);
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::with_capacity_and_hasher(0, RandomState::new());
+ assert_eq!(m.capacity(), 0);
+
+ let mut m = HM::new();
+ m.insert(1, 1);
+ m.insert(2, 2);
+ m.remove(&1);
+ m.remove(&2);
+ m.shrink_to_fit();
+ assert_eq!(m.capacity(), 0);
+
+ let mut m = HM::new();
+ m.reserve(0);
+ assert_eq!(m.capacity(), 0);
+ }
+
+ #[test]
+ fn test_create_capacity_zero() {
+ let mut m = HashMap::with_capacity(0);
+
+ assert!(m.insert(1, 1).is_none());
+
+ assert!(m.contains_key(&1));
+ assert!(!m.contains_key(&0));
+ }
+
+ #[test]
+ fn test_insert() {
+ let mut m = HashMap::new();
+ assert_eq!(m.len(), 0);
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(m.len(), 1);
+ assert!(m.insert(2, 4).is_none());
+ assert_eq!(m.len(), 2);
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert_eq!(*m.get(&2).unwrap(), 4);
+ }
+
+ #[test]
+ fn test_clone() {
+ let mut m = HashMap::new();
+ assert_eq!(m.len(), 0);
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(m.len(), 1);
+ assert!(m.insert(2, 4).is_none());
+ assert_eq!(m.len(), 2);
+ let m2 = m.clone();
+ assert_eq!(*m2.get(&1).unwrap(), 2);
+ assert_eq!(*m2.get(&2).unwrap(), 4);
+ assert_eq!(m2.len(), 2);
+ }
+
+ thread_local! { static DROP_VECTOR: RefCell<Vec<isize>> = RefCell::new(Vec::new()) }
+
+ #[derive(Hash, PartialEq, Eq)]
+ struct Dropable {
+ k: usize,
+ }
+
+ impl Dropable {
+ fn new(k: usize) -> Dropable {
+ DROP_VECTOR.with(|slot| {
+ slot.borrow_mut()[k] += 1;
+ });
+
+ Dropable { k: k }
+ }
+ }
+
+ impl Drop for Dropable {
+ fn drop(&mut self) {
+ DROP_VECTOR.with(|slot| {
+ slot.borrow_mut()[self.k] -= 1;
+ });
+ }
+ }
+
+ impl Clone for Dropable {
+ fn clone(&self) -> Dropable {
+ Dropable::new(self.k)
+ }
+ }
+
+ #[test]
+ fn test_drops() {
+ DROP_VECTOR.with(|slot| {
+ *slot.borrow_mut() = vec![0; 200];
+ });
+
+ {
+ let mut m = HashMap::new();
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+
+ for i in 0..100 {
+ let d1 = Dropable::new(i);
+ let d2 = Dropable::new(i + 100);
+ m.insert(d1, d2);
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 1);
+ }
+ });
+
+ for i in 0..50 {
+ let k = Dropable::new(i);
+ let v = m.remove(&k);
+
+ assert!(v.is_some());
+
+ DROP_VECTOR.with(|v| {
+ assert_eq!(v.borrow()[i], 1);
+ assert_eq!(v.borrow()[i + 100], 1);
+ });
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..50 {
+ assert_eq!(v.borrow()[i], 0);
+ assert_eq!(v.borrow()[i + 100], 0);
+ }
+
+ for i in 50..100 {
+ assert_eq!(v.borrow()[i], 1);
+ assert_eq!(v.borrow()[i + 100], 1);
+ }
+ });
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+ }
+
+ #[test]
+ fn test_into_iter_drops() {
+ DROP_VECTOR.with(|v| {
+ *v.borrow_mut() = vec![0; 200];
+ });
+
+ let hm = {
+ let mut hm = HashMap::new();
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+
+ for i in 0..100 {
+ let d1 = Dropable::new(i);
+ let d2 = Dropable::new(i + 100);
+ hm.insert(d1, d2);
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 1);
+ }
+ });
+
+ hm
+ };
+
+ // By the way, ensure that cloning doesn't screw up the dropping.
+ drop(hm.clone());
+
+ {
+ let mut half = hm.into_iter().take(50);
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 1);
+ }
+ });
+
+ for _ in half.by_ref() {}
+
+ DROP_VECTOR.with(|v| {
+ let nk = (0..100).filter(|&i| v.borrow()[i] == 1).count();
+
+ let nv = (0..100).filter(|&i| v.borrow()[i + 100] == 1).count();
+
+ assert_eq!(nk, 50);
+ assert_eq!(nv, 50);
+ });
+ };
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+ }
+
+ #[test]
+ fn test_empty_remove() {
+ let mut m: HashMap<isize, bool> = HashMap::new();
+ assert_eq!(m.remove(&0), None);
+ }
+
+ #[test]
+ fn test_empty_entry() {
+ let mut m: HashMap<isize, bool> = HashMap::new();
+ match m.entry(0) {
+ Occupied(_) => panic!(),
+ Vacant(_) => {},
+ }
+ assert!(*m.entry(0).or_insert(true));
+ assert_eq!(m.len(), 1);
+ }
+
+ #[test]
+ fn test_empty_iter() {
+ let mut m: HashMap<isize, bool> = HashMap::new();
+ assert_eq!(m.drain().next(), None);
+ assert_eq!(m.keys().next(), None);
+ assert_eq!(m.values().next(), None);
+ assert_eq!(m.values_mut().next(), None);
+ assert_eq!(m.iter().next(), None);
+ assert_eq!(m.iter_mut().next(), None);
+ assert_eq!(m.len(), 0);
+ assert!(m.is_empty());
+ assert_eq!(m.into_iter().next(), None);
+ }
+
+ #[test]
+ fn test_lots_of_insertions() {
+ let mut m = HashMap::new();
+
+ // Try this a few times to make sure we never screw up the hashmap's
+ // internal state.
+ for _ in 0..10 {
+ assert!(m.is_empty());
+
+ for i in 1..1001 {
+ assert!(m.insert(i, i).is_none());
+
+ for j in 1..i + 1 {
+ let r = m.get(&j);
+ assert_eq!(r, Some(&j));
+ }
+
+ for j in i + 1..1001 {
+ let r = m.get(&j);
+ assert_eq!(r, None);
+ }
+ }
+
+ for i in 1001..2001 {
+ assert!(!m.contains_key(&i));
+ }
+
+ // remove forwards
+ for i in 1..1001 {
+ assert!(m.remove(&i).is_some());
+
+ for j in 1..i + 1 {
+ assert!(!m.contains_key(&j));
+ }
+
+ for j in i + 1..1001 {
+ assert!(m.contains_key(&j));
+ }
+ }
+
+ for i in 1..1001 {
+ assert!(!m.contains_key(&i));
+ }
+
+ for i in 1..1001 {
+ assert!(m.insert(i, i).is_none());
+ }
+
+ // remove backwards
+ for i in (1..1001).rev() {
+ assert!(m.remove(&i).is_some());
+
+ for j in i..1001 {
+ assert!(!m.contains_key(&j));
+ }
+
+ for j in 1..i {
+ assert!(m.contains_key(&j));
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_find_mut() {
+ let mut m = HashMap::new();
+ assert!(m.insert(1, 12).is_none());
+ assert!(m.insert(2, 8).is_none());
+ assert!(m.insert(5, 14).is_none());
+ let new = 100;
+ match m.get_mut(&5) {
+ None => panic!(),
+ Some(x) => *x = new,
+ }
+ assert_eq!(m.get(&5), Some(&new));
+ }
+
+ #[test]
+ fn test_insert_overwrite() {
+ let mut m = HashMap::new();
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert!(!m.insert(1, 3).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 3);
+ }
+
+ #[test]
+ fn test_insert_conflicts() {
+ let mut m = HashMap::with_capacity(4);
+ assert!(m.insert(1, 2).is_none());
+ assert!(m.insert(5, 3).is_none());
+ assert!(m.insert(9, 4).is_none());
+ assert_eq!(*m.get(&9).unwrap(), 4);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ }
+
+ #[test]
+ fn test_conflict_remove() {
+ let mut m = HashMap::with_capacity(4);
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert!(m.insert(5, 3).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ assert!(m.insert(9, 4).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ assert_eq!(*m.get(&9).unwrap(), 4);
+ assert!(m.remove(&1).is_some());
+ assert_eq!(*m.get(&9).unwrap(), 4);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ }
+
+ #[test]
+ fn test_is_empty() {
+ let mut m = HashMap::with_capacity(4);
+ assert!(m.insert(1, 2).is_none());
+ assert!(!m.is_empty());
+ assert!(m.remove(&1).is_some());
+ assert!(m.is_empty());
+ }
+
+ #[test]
+ fn test_pop() {
+ let mut m = HashMap::new();
+ m.insert(1, 2);
+ assert_eq!(m.remove(&1), Some(2));
+ assert_eq!(m.remove(&1), None);
+ }
+
+ #[test]
+ fn test_iterate() {
+ let mut m = HashMap::with_capacity(4);
+ for i in 0..32 {
+ assert!(m.insert(i, i * 2).is_none());
+ }
+ assert_eq!(m.len(), 32);
+
+ let mut observed: u32 = 0;
+
+ for (k, v) in &m {
+ assert_eq!(*v, *k * 2);
+ observed |= 1 << *k;
+ }
+ assert_eq!(observed, 0xFFFF_FFFF);
+ }
+
+ #[test]
+ fn test_keys() {
+ let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
+ let map: HashMap<_, _> = vec.into_iter().collect();
+ let keys: Vec<_> = map.keys().cloned().collect();
+ assert_eq!(keys.len(), 3);
+ assert!(keys.contains(&1));
+ assert!(keys.contains(&2));
+ assert!(keys.contains(&3));
+ }
+
+ #[test]
+ fn test_values() {
+ let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
+ let map: HashMap<_, _> = vec.into_iter().collect();
+ let values: Vec<_> = map.values().cloned().collect();
+ assert_eq!(values.len(), 3);
+ assert!(values.contains(&'a'));
+ assert!(values.contains(&'b'));
+ assert!(values.contains(&'c'));
+ }
+
+ #[test]
+ fn test_values_mut() {
+ let vec = vec![(1, 1), (2, 2), (3, 3)];
+ let mut map: HashMap<_, _> = vec.into_iter().collect();
+ for value in map.values_mut() {
+ *value = (*value) * 2
+ }
+ let values: Vec<_> = map.values().cloned().collect();
+ assert_eq!(values.len(), 3);
+ assert!(values.contains(&2));
+ assert!(values.contains(&4));
+ assert!(values.contains(&6));
+ }
+
+ #[test]
+ fn test_find() {
+ let mut m = HashMap::new();
+ assert!(m.get(&1).is_none());
+ m.insert(1, 2);
+ match m.get(&1) {
+ None => panic!(),
+ Some(v) => assert_eq!(*v, 2),
+ }
+ }
+
+ #[test]
+ fn test_eq() {
+ let mut m1 = HashMap::new();
+ m1.insert(1, 2);
+ m1.insert(2, 3);
+ m1.insert(3, 4);
+
+ let mut m2 = HashMap::new();
+ m2.insert(1, 2);
+ m2.insert(2, 3);
+
+ assert_ne!(m1, m2);
+
+ m2.insert(3, 4);
+
+ assert_eq!(m1, m2);
+ }
+
+ #[test]
+ fn test_show() {
+ let mut map = HashMap::new();
+ let empty: HashMap<i32, i32> = HashMap::new();
+
+ map.insert(1, 2);
+ map.insert(3, 4);
+
+ let map_str = format!("{:?}", map);
+
+ assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}");
+ assert_eq!(format!("{:?}", empty), "{}");
+ }
+
+ #[test]
+ fn test_expand() {
+ let mut m = HashMap::new();
+
+ assert_eq!(m.len(), 0);
+ assert!(m.is_empty());
+
+ let mut i = 0;
+ let old_raw_cap = m.raw_capacity();
+ while old_raw_cap == m.raw_capacity() {
+ m.insert(i, i);
+ i += 1;
+ }
+
+ assert_eq!(m.len(), i);
+ assert!(!m.is_empty());
+ }
+
+ #[test]
+ fn test_behavior_resize_policy() {
+ let mut m = HashMap::new();
+
+ assert_eq!(m.len(), 0);
+ assert_eq!(m.raw_capacity(), 0);
+ assert!(m.is_empty());
+
+ m.insert(0, 0);
+ m.remove(&0);
+ assert!(m.is_empty());
+ let initial_raw_cap = m.raw_capacity();
+ m.reserve(initial_raw_cap);
+ let raw_cap = m.raw_capacity();
+
+ assert_eq!(raw_cap, initial_raw_cap * 2);
+
+ let mut i = 0;
+ for _ in 0..raw_cap * 3 / 4 {
+ m.insert(i, i);
+ i += 1;
+ }
+ // three quarters full
+
+ assert_eq!(m.len(), i);
+ assert_eq!(m.raw_capacity(), raw_cap);
+
+ for _ in 0..raw_cap / 4 {
+ m.insert(i, i);
+ i += 1;
+ }
+ // half full
+
+ let new_raw_cap = m.raw_capacity();
+ assert_eq!(new_raw_cap, raw_cap * 2);
+
+ for _ in 0..raw_cap / 2 - 1 {
+ i -= 1;
+ m.remove(&i);
+ assert_eq!(m.raw_capacity(), new_raw_cap);
+ }
+ // A little more than one quarter full.
+ m.shrink_to_fit();
+ assert_eq!(m.raw_capacity(), raw_cap);
+ // again, a little more than half full
+ for _ in 0..raw_cap / 2 - 1 {
+ i -= 1;
+ m.remove(&i);
+ }
+ m.shrink_to_fit();
+
+ assert_eq!(m.len(), i);
+ assert!(!m.is_empty());
+ assert_eq!(m.raw_capacity(), initial_raw_cap);
+ }
+
+ #[test]
+ fn test_reserve_shrink_to_fit() {
+ let mut m = HashMap::new();
+ m.insert(0, 0);
+ m.remove(&0);
+ assert!(m.capacity() >= m.len());
+ for i in 0..128 {
+ m.insert(i, i);
+ }
+ m.reserve(256);
+
+ let usable_cap = m.capacity();
+ for i in 128..(128 + 256) {
+ m.insert(i, i);
+ assert_eq!(m.capacity(), usable_cap);
+ }
+
+ for i in 100..(128 + 256) {
+ assert_eq!(m.remove(&i), Some(i));
+ }
+ m.shrink_to_fit();
+
+ assert_eq!(m.len(), 100);
+ assert!(!m.is_empty());
+ assert!(m.capacity() >= m.len());
+
+ for i in 0..100 {
+ assert_eq!(m.remove(&i), Some(i));
+ }
+ m.shrink_to_fit();
+ m.insert(0, 0);
+
+ assert_eq!(m.len(), 1);
+ assert!(m.capacity() >= m.len());
+ assert_eq!(m.remove(&0), Some(0));
+ }
+
+ #[test]
+ fn test_from_iter() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ for &(k, v) in &xs {
+ assert_eq!(map.get(&k), Some(&v));
+ }
+ }
+
+ #[test]
+ fn test_size_hint() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.size_hint(), (3, Some(3)));
+ }
+
+ #[test]
+ fn test_iter_len() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.len(), 3);
+ }
+
+ #[test]
+ fn test_mut_size_hint() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let mut map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter_mut();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.size_hint(), (3, Some(3)));
+ }
+
+ #[test]
+ fn test_iter_mut_len() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let mut map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter_mut();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.len(), 3);
+ }
+
+ #[test]
+ fn test_index() {
+ let mut map = HashMap::new();
+
+ map.insert(1, 2);
+ map.insert(2, 1);
+ map.insert(3, 4);
+
+ assert_eq!(map[&2], 1);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_index_nonexistent() {
+ let mut map = HashMap::new();
+
+ map.insert(1, 2);
+ map.insert(2, 1);
+ map.insert(3, 4);
+
+ map[&4];
+ }
+
+ #[test]
+ fn test_entry() {
+ let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)];
+
+ let mut map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ // Existing key (insert)
+ match map.entry(1) {
+ Vacant(_) => unreachable!(),
+ Occupied(mut view) => {
+ assert_eq!(view.get(), &10);
+ assert_eq!(view.insert(100), 10);
+ },
+ }
+ assert_eq!(map.get(&1).unwrap(), &100);
+ assert_eq!(map.len(), 6);
+
+ // Existing key (update)
+ match map.entry(2) {
+ Vacant(_) => unreachable!(),
+ Occupied(mut view) => {
+ let v = view.get_mut();
+ let new_v = (*v) * 10;
+ *v = new_v;
+ },
+ }
+ assert_eq!(map.get(&2).unwrap(), &200);
+ assert_eq!(map.len(), 6);
+
+ // Existing key (take)
+ match map.entry(3) {
+ Vacant(_) => unreachable!(),
+ Occupied(view) => {
+ assert_eq!(view.remove(), 30);
+ },
+ }
+ assert_eq!(map.get(&3), None);
+ assert_eq!(map.len(), 5);
+
+ // Inexistent key (insert)
+ match map.entry(10) {
+ Occupied(_) => unreachable!(),
+ Vacant(view) => {
+ assert_eq!(*view.insert(1000), 1000);
+ },
+ }
+ assert_eq!(map.get(&10).unwrap(), &1000);
+ assert_eq!(map.len(), 6);
+ }
+
+ #[test]
+ fn test_entry_take_doesnt_corrupt() {
+ #![allow(deprecated)] //rand
+ // Test for #19292
+ fn check(m: &HashMap<isize, ()>) {
+ for k in m.keys() {
+ assert!(m.contains_key(k), "{} is in keys() but not in the map?", k);
+ }
+ }
+
+ let mut m = HashMap::new();
+ let mut rng = thread_rng();
+
+ // Populate the map with some items.
+ for _ in 0..50 {
+ let x = rng.gen_range(-10, 10);
+ m.insert(x, ());
+ }
+
+ for i in 0..1000 {
+ let x = rng.gen_range(-10, 10);
+ match m.entry(x) {
+ Vacant(_) => {},
+ Occupied(e) => {
+ println!("{}: remove {}", i, x);
+ e.remove();
+ },
+ }
+
+ check(&m);
+ }
+ }
+
+ #[test]
+ fn test_extend_ref() {
+ let mut a = HashMap::new();
+ a.insert(1, "one");
+ let mut b = HashMap::new();
+ b.insert(2, "two");
+ b.insert(3, "three");
+
+ a.extend(&b);
+
+ assert_eq!(a.len(), 3);
+ assert_eq!(a[&1], "one");
+ assert_eq!(a[&2], "two");
+ assert_eq!(a[&3], "three");
+ }
+
+ #[test]
+ fn test_capacity_not_less_than_len() {
+ let mut a = HashMap::new();
+ let mut item = 0;
+
+ for _ in 0..116 {
+ a.insert(item, 0);
+ item += 1;
+ }
+
+ assert!(a.capacity() > a.len());
+
+ let free = a.capacity() - a.len();
+ for _ in 0..free {
+ a.insert(item, 0);
+ item += 1;
+ }
+
+ assert_eq!(a.len(), a.capacity());
+
+ // Insert at capacity should cause allocation.
+ a.insert(item, 0);
+ assert!(a.capacity() > a.len());
+ }
+
+ #[test]
+ fn test_occupied_entry_key() {
+ let mut a = HashMap::new();
+ let key = "hello there";
+ let value = "value goes here";
+ assert!(a.is_empty());
+ a.insert(key.clone(), value.clone());
+ assert_eq!(a.len(), 1);
+ assert_eq!(a[key], value);
+
+ match a.entry(key.clone()) {
+ Vacant(_) => panic!(),
+ Occupied(e) => assert_eq!(key, *e.key()),
+ }
+ assert_eq!(a.len(), 1);
+ assert_eq!(a[key], value);
+ }
+
+ #[test]
+ fn test_vacant_entry_key() {
+ let mut a = HashMap::new();
+ let key = "hello there";
+ let value = "value goes here";
+
+ assert!(a.is_empty());
+ match a.entry(key.clone()) {
+ Occupied(_) => panic!(),
+ Vacant(e) => {
+ assert_eq!(key, *e.key());
+ e.insert(value.clone());
+ },
+ }
+ assert_eq!(a.len(), 1);
+ assert_eq!(a[key], value);
+ }
+
+ #[test]
+ fn test_retain() {
+ let mut map: HashMap<isize, isize> = (0..100).map(|x| (x, x * 10)).collect();
+
+ map.retain(|&k, _| k % 2 == 0);
+ assert_eq!(map.len(), 50);
+ assert_eq!(map[&2], 20);
+ assert_eq!(map[&4], 40);
+ assert_eq!(map[&6], 60);
+ }
+
+ #[test]
+ fn test_adaptive() {
+ const TEST_LEN: usize = 5000;
+ // by cloning we get maps with the same hasher seed
+ let mut first = HashMap::new();
+ let mut second = first.clone();
+ first.extend((0..TEST_LEN).map(|i| (i, i)));
+ second.extend((TEST_LEN..TEST_LEN * 2).map(|i| (i, i)));
+
+ for (&k, &v) in &second {
+ let prev_cap = first.capacity();
+ let expect_grow = first.len() == prev_cap;
+ first.insert(k, v);
+ if !expect_grow && first.capacity() != prev_cap {
+ return;
+ }
+ }
+ panic!("Adaptive early resize failed");
+ }
+}
diff --git a/servo/components/hashglobe/src/hash_set.rs b/servo/components/hashglobe/src/hash_set.rs
new file mode 100644
index 0000000000..ef373ae371
--- /dev/null
+++ b/servo/components/hashglobe/src/hash_set.rs
@@ -0,0 +1,1648 @@
+// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use std::borrow::Borrow;
+use std::fmt;
+use std::hash::{BuildHasher, Hash};
+use std::iter::{Chain, FromIterator};
+use std::ops::{BitAnd, BitOr, BitXor, Sub};
+
+use super::hash_map::{self, HashMap, Keys, RandomState};
+use super::Recover;
+
+use crate::FailedAllocationError;
+
+// Future Optimization (FIXME!)
+// =============================
+//
+// Iteration over zero sized values is a noop. There is no need
+// for `bucket.val` in the case of HashSet. I suppose we would need HKT
+// to get rid of it properly.
+
+/// A hash set implemented as a `HashMap` where the value is `()`.
+///
+/// As with the [`HashMap`] type, a `HashSet` requires that the elements
+/// implement the [`Eq`] and [`Hash`] traits. This can frequently be achieved by
+/// using `#[derive(PartialEq, Eq, Hash)]`. If you implement these yourself,
+/// it is important that the following property holds:
+///
+/// ```text
+/// k1 == k2 -> hash(k1) == hash(k2)
+/// ```
+///
+/// In other words, if two keys are equal, their hashes must be equal.
+///
+///
+/// It is a logic error for an item to be modified in such a way that the
+/// item's hash, as determined by the [`Hash`] trait, or its equality, as
+/// determined by the [`Eq`] trait, changes while it is in the set. This is
+/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or
+/// unsafe code.
+///
+/// # Examples
+///
+/// ```
+/// use std::collections::HashSet;
+/// // Type inference lets us omit an explicit type signature (which
+/// // would be `HashSet<&str>` in this example).
+/// let mut books = HashSet::new();
+///
+/// // Add some books.
+/// books.insert("A Dance With Dragons");
+/// books.insert("To Kill a Mockingbird");
+/// books.insert("The Odyssey");
+/// books.insert("The Great Gatsby");
+///
+/// // Check for a specific one.
+/// if !books.contains("The Winds of Winter") {
+/// println!("We have {} books, but The Winds of Winter ain't one.",
+/// books.len());
+/// }
+///
+/// // Remove a book.
+/// books.remove("The Odyssey");
+///
+/// // Iterate over everything.
+/// for book in &books {
+/// println!("{}", book);
+/// }
+/// ```
+///
+/// The easiest way to use `HashSet` with a custom type is to derive
+/// [`Eq`] and [`Hash`]. We must also derive [`PartialEq`], this will in the
+/// future be implied by [`Eq`].
+///
+/// ```
+/// use std::collections::HashSet;
+/// #[derive(Hash, Eq, PartialEq, Debug)]
+/// struct Viking<'a> {
+/// name: &'a str,
+/// power: usize,
+/// }
+///
+/// let mut vikings = HashSet::new();
+///
+/// vikings.insert(Viking { name: "Einar", power: 9 });
+/// vikings.insert(Viking { name: "Einar", power: 9 });
+/// vikings.insert(Viking { name: "Olaf", power: 4 });
+/// vikings.insert(Viking { name: "Harald", power: 8 });
+///
+/// // Use derived implementation to print the vikings.
+/// for x in &vikings {
+/// println!("{:?}", x);
+/// }
+/// ```
+///
+/// A `HashSet` with fixed list of elements can be initialized from an array:
+///
+/// ```
+/// use std::collections::HashSet;
+///
+/// fn main() {
+/// let viking_names: HashSet<&str> =
+/// [ "Einar", "Olaf", "Harald" ].iter().cloned().collect();
+/// // use the values stored in the set
+/// }
+/// ```
+///
+/// [`Cell`]: ../../std/cell/struct.Cell.html
+/// [`Eq`]: ../../std/cmp/trait.Eq.html
+/// [`Hash`]: ../../std/hash/trait.Hash.html
+/// [`HashMap`]: struct.HashMap.html
+/// [`PartialEq`]: ../../std/cmp/trait.PartialEq.html
+/// [`RefCell`]: ../../std/cell/struct.RefCell.html
+#[derive(Clone)]
+pub struct HashSet<T, S = RandomState> {
+ map: HashMap<T, (), S>,
+}
+
+impl<T, S> HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ /// Creates a new empty hash set which will use the given hasher to hash
+ /// keys.
+ ///
+ /// The hash set is also created with the default initial capacity.
+ ///
+ /// Warning: `hasher` is normally randomly generated, and
+ /// is designed to allow `HashSet`s to be resistant to attacks that
+ /// cause many collisions and very poor performance. Setting it
+ /// manually using this function can expose a DoS attack vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// use std::collections::hash_map::RandomState;
+ ///
+ /// let s = RandomState::new();
+ /// let mut set = HashSet::with_hasher(s);
+ /// set.insert(2);
+ /// ```
+ #[inline]
+ pub fn with_hasher(hasher: S) -> HashSet<T, S> {
+ HashSet {
+ map: HashMap::with_hasher(hasher),
+ }
+ }
+
+ /// Creates an empty `HashSet` with with the specified capacity, using
+ /// `hasher` to hash the keys.
+ ///
+ /// The hash set will be able to hold at least `capacity` elements without
+ /// reallocating. If `capacity` is 0, the hash set will not allocate.
+ ///
+ /// Warning: `hasher` is normally randomly generated, and
+ /// is designed to allow `HashSet`s to be resistant to attacks that
+ /// cause many collisions and very poor performance. Setting it
+ /// manually using this function can expose a DoS attack vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// use std::collections::hash_map::RandomState;
+ ///
+ /// let s = RandomState::new();
+ /// let mut set = HashSet::with_capacity_and_hasher(10, s);
+ /// set.insert(1);
+ /// ```
+ #[inline]
+ pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashSet<T, S> {
+ HashSet {
+ map: HashMap::with_capacity_and_hasher(capacity, hasher),
+ }
+ }
+
+ /// Returns a reference to the set's [`BuildHasher`].
+ ///
+ /// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// use std::collections::hash_map::RandomState;
+ ///
+ /// let hasher = RandomState::new();
+ /// let set: HashSet<i32> = HashSet::with_hasher(hasher);
+ /// let hasher: &RandomState = set.hasher();
+ /// ```
+ pub fn hasher(&self) -> &S {
+ self.map.hasher()
+ }
+
+ /// Returns the number of elements the set can hold without reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let set: HashSet<i32> = HashSet::with_capacity(100);
+ /// assert!(set.capacity() >= 100);
+ /// ```
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.map.capacity()
+ }
+
+ /// Reserves capacity for at least `additional` more elements to be inserted
+ /// in the `HashSet`. The collection may reserve more space to avoid
+ /// frequent reallocations.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new allocation size overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let mut set: HashSet<i32> = HashSet::new();
+ /// set.reserve(10);
+ /// assert!(set.capacity() >= 10);
+ /// ```
+ pub fn reserve(&mut self, additional: usize) {
+ self.map.reserve(additional)
+ }
+
+ /// Shrinks the capacity of the set as much as possible. It will drop
+ /// down as much as possible while maintaining the internal rules
+ /// and possibly leaving some space in accordance with the resize policy.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let mut set = HashSet::with_capacity(100);
+ /// set.insert(1);
+ /// set.insert(2);
+ /// assert!(set.capacity() >= 100);
+ /// set.shrink_to_fit();
+ /// assert!(set.capacity() >= 2);
+ /// ```
+ pub fn shrink_to_fit(&mut self) {
+ self.map.shrink_to_fit()
+ }
+
+ /// An iterator visiting all elements in arbitrary order.
+ /// The iterator element type is `&'a T`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let mut set = HashSet::new();
+ /// set.insert("a");
+ /// set.insert("b");
+ ///
+ /// // Will print in an arbitrary order.
+ /// for x in set.iter() {
+ /// println!("{}", x);
+ /// }
+ /// ```
+ pub fn iter(&self) -> Iter<T> {
+ Iter {
+ iter: self.map.keys(),
+ }
+ }
+
+ /// Visits the values representing the difference,
+ /// i.e. the values that are in `self` but not in `other`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();
+ ///
+ /// // Can be seen as `a - b`.
+ /// for x in a.difference(&b) {
+ /// println!("{}", x); // Print 1
+ /// }
+ ///
+ /// let diff: HashSet<_> = a.difference(&b).collect();
+ /// assert_eq!(diff, [1].iter().collect());
+ ///
+ /// // Note that difference is not symmetric,
+ /// // and `b - a` means something else:
+ /// let diff: HashSet<_> = b.difference(&a).collect();
+ /// assert_eq!(diff, [4].iter().collect());
+ /// ```
+ pub fn difference<'a>(&'a self, other: &'a HashSet<T, S>) -> Difference<'a, T, S> {
+ Difference {
+ iter: self.iter(),
+ other,
+ }
+ }
+
+ /// Visits the values representing the symmetric difference,
+ /// i.e. the values that are in `self` or in `other` but not in both.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();
+ ///
+ /// // Print 1, 4 in arbitrary order.
+ /// for x in a.symmetric_difference(&b) {
+ /// println!("{}", x);
+ /// }
+ ///
+ /// let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
+ /// let diff2: HashSet<_> = b.symmetric_difference(&a).collect();
+ ///
+ /// assert_eq!(diff1, diff2);
+ /// assert_eq!(diff1, [1, 4].iter().collect());
+ /// ```
+ pub fn symmetric_difference<'a>(
+ &'a self,
+ other: &'a HashSet<T, S>,
+ ) -> SymmetricDifference<'a, T, S> {
+ SymmetricDifference {
+ iter: self.difference(other).chain(other.difference(self)),
+ }
+ }
+
+ /// Visits the values representing the intersection,
+ /// i.e. the values that are both in `self` and `other`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();
+ ///
+ /// // Print 2, 3 in arbitrary order.
+ /// for x in a.intersection(&b) {
+ /// println!("{}", x);
+ /// }
+ ///
+ /// let intersection: HashSet<_> = a.intersection(&b).collect();
+ /// assert_eq!(intersection, [2, 3].iter().collect());
+ /// ```
+ pub fn intersection<'a>(&'a self, other: &'a HashSet<T, S>) -> Intersection<'a, T, S> {
+ Intersection {
+ iter: self.iter(),
+ other,
+ }
+ }
+
+ /// Visits the values representing the union,
+ /// i.e. all the values in `self` or `other`, without duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();
+ ///
+ /// // Print 1, 2, 3, 4 in arbitrary order.
+ /// for x in a.union(&b) {
+ /// println!("{}", x);
+ /// }
+ ///
+ /// let union: HashSet<_> = a.union(&b).collect();
+ /// assert_eq!(union, [1, 2, 3, 4].iter().collect());
+ /// ```
+ pub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S> {
+ Union {
+ iter: self.iter().chain(other.difference(self)),
+ }
+ }
+
+ /// Returns the number of elements in the set.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let mut v = HashSet::new();
+ /// assert_eq!(v.len(), 0);
+ /// v.insert(1);
+ /// assert_eq!(v.len(), 1);
+ /// ```
+ pub fn len(&self) -> usize {
+ self.map.len()
+ }
+
+ /// Returns true if the set contains no elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let mut v = HashSet::new();
+ /// assert!(v.is_empty());
+ /// v.insert(1);
+ /// assert!(!v.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ self.map.is_empty()
+ }
+
+ /// Clears the set, returning all elements in an iterator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// assert!(!set.is_empty());
+ ///
+ /// // print 1, 2, 3 in an arbitrary order
+ /// for i in set.drain() {
+ /// println!("{}", i);
+ /// }
+ ///
+ /// assert!(set.is_empty());
+ /// ```
+ #[inline]
+ pub fn drain(&mut self) -> Drain<T> {
+ Drain {
+ iter: self.map.drain(),
+ }
+ }
+
+ /// Clears the set, removing all values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let mut v = HashSet::new();
+ /// v.insert(1);
+ /// v.clear();
+ /// assert!(v.is_empty());
+ /// ```
+ pub fn clear(&mut self)
+ where
+ T: 'static,
+ {
+ self.map.clear()
+ }
+
+ /// Returns `true` if the set contains a value.
+ ///
+ /// The value may be any borrowed form of the set's value type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the value type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// assert_eq!(set.contains(&1), true);
+ /// assert_eq!(set.contains(&4), false);
+ /// ```
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
+ where
+ T: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.map.contains_key(value)
+ }
+
+ /// Returns a reference to the value in the set, if any, that is equal to the given value.
+ ///
+ /// The value may be any borrowed form of the set's value type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the value type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
+ where
+ T: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ Recover::get(&self.map, value)
+ }
+
+ /// Returns `true` if `self` has no elements in common with `other`.
+ /// This is equivalent to checking for an empty intersection.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// let mut b = HashSet::new();
+ ///
+ /// assert_eq!(a.is_disjoint(&b), true);
+ /// b.insert(4);
+ /// assert_eq!(a.is_disjoint(&b), true);
+ /// b.insert(1);
+ /// assert_eq!(a.is_disjoint(&b), false);
+ /// ```
+ pub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool {
+ self.iter().all(|v| !other.contains(v))
+ }
+
+ /// Returns `true` if the set is a subset of another,
+ /// i.e. `other` contains at least all the values in `self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let sup: HashSet<_> = [1, 2, 3].iter().cloned().collect();
+ /// let mut set = HashSet::new();
+ ///
+ /// assert_eq!(set.is_subset(&sup), true);
+ /// set.insert(2);
+ /// assert_eq!(set.is_subset(&sup), true);
+ /// set.insert(4);
+ /// assert_eq!(set.is_subset(&sup), false);
+ /// ```
+ pub fn is_subset(&self, other: &HashSet<T, S>) -> bool {
+ self.iter().all(|v| other.contains(v))
+ }
+
+ /// Returns `true` if the set is a superset of another,
+ /// i.e. `self` contains at least all the values in `other`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let sub: HashSet<_> = [1, 2].iter().cloned().collect();
+ /// let mut set = HashSet::new();
+ ///
+ /// assert_eq!(set.is_superset(&sub), false);
+ ///
+ /// set.insert(0);
+ /// set.insert(1);
+ /// assert_eq!(set.is_superset(&sub), false);
+ ///
+ /// set.insert(2);
+ /// assert_eq!(set.is_superset(&sub), true);
+ /// ```
+ #[inline]
+ pub fn is_superset(&self, other: &HashSet<T, S>) -> bool {
+ other.is_subset(self)
+ }
+
+ /// Adds a value to the set.
+ ///
+ /// If the set did not have this value present, `true` is returned.
+ ///
+ /// If the set did have this value present, `false` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let mut set = HashSet::new();
+ ///
+ /// assert_eq!(set.insert(2), true);
+ /// assert_eq!(set.insert(2), false);
+ /// assert_eq!(set.len(), 1);
+ /// ```
+ pub fn insert(&mut self, value: T) -> bool {
+ self.map.insert(value, ()).is_none()
+ }
+
+ /// Fallible version of `insert`.
+ #[inline]
+ pub fn try_insert(&mut self, value: T) -> Result<bool, FailedAllocationError> {
+ Ok(self.map.try_insert(value, ())?.is_none())
+ }
+
+ /// Adds a value to the set, replacing the existing value, if any, that is equal to the given
+ /// one. Returns the replaced value.
+ pub fn replace(&mut self, value: T) -> Option<T> {
+ Recover::replace(&mut self.map, value)
+ }
+
+ /// Removes a value from the set. Returns `true` if the value was
+ /// present in the set.
+ ///
+ /// The value may be any borrowed form of the set's value type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the value type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let mut set = HashSet::new();
+ ///
+ /// set.insert(2);
+ /// assert_eq!(set.remove(&2), true);
+ /// assert_eq!(set.remove(&2), false);
+ /// ```
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
+ where
+ T: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.map.remove(value).is_some()
+ }
+
+ /// Removes and returns the value in the set, if any, that is equal to the given one.
+ ///
+ /// The value may be any borrowed form of the set's value type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the value type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
+ where
+ T: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ Recover::take(&mut self.map, value)
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let xs = [1,2,3,4,5,6];
+ /// let mut set: HashSet<isize> = xs.iter().cloned().collect();
+ /// set.retain(|&k| k % 2 == 0);
+ /// assert_eq!(set.len(), 3);
+ /// ```
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> bool,
+ {
+ self.map.retain(|k, _| f(k));
+ }
+}
+
+impl<T, S> PartialEq for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ fn eq(&self, other: &HashSet<T, S>) -> bool {
+ if self.len() != other.len() {
+ return false;
+ }
+
+ self.iter().all(|key| other.contains(key))
+ }
+}
+
+impl<T, S> Eq for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+}
+
+impl<T, S> fmt::Debug for HashSet<T, S>
+where
+ T: Eq + Hash + fmt::Debug,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_set().entries(self.iter()).finish()
+ }
+}
+
+impl<T, S> FromIterator<T> for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher + Default,
+{
+ fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> HashSet<T, S> {
+ let mut set = HashSet::with_hasher(Default::default());
+ set.extend(iter);
+ set
+ }
+}
+
+impl<T, S> Extend<T> for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
+ self.map.extend(iter.into_iter().map(|k| (k, ())));
+ }
+}
+
+impl<'a, T, S> Extend<&'a T> for HashSet<T, S>
+where
+ T: 'a + Eq + Hash + Copy,
+ S: BuildHasher,
+{
+ fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
+ self.extend(iter.into_iter().cloned());
+ }
+}
+
+impl<T, S> Default for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher + Default,
+{
+ /// Creates an empty `HashSet<T, S>` with the `Default` value for the hasher.
+ fn default() -> HashSet<T, S> {
+ HashSet {
+ map: HashMap::default(),
+ }
+ }
+}
+
+impl<'a, 'b, T, S> BitOr<&'b HashSet<T, S>> for &'a HashSet<T, S>
+where
+ T: Eq + Hash + Clone,
+ S: BuildHasher + Default,
+{
+ type Output = HashSet<T, S>;
+
+ /// Returns the union of `self` and `rhs` as a new `HashSet<T, S>`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
+ /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();
+ ///
+ /// let set = &a | &b;
+ ///
+ /// let mut i = 0;
+ /// let expected = [1, 2, 3, 4, 5];
+ /// for x in &set {
+ /// assert!(expected.contains(x));
+ /// i += 1;
+ /// }
+ /// assert_eq!(i, expected.len());
+ /// ```
+ fn bitor(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
+ self.union(rhs).cloned().collect()
+ }
+}
+
+impl<'a, 'b, T, S> BitAnd<&'b HashSet<T, S>> for &'a HashSet<T, S>
+where
+ T: Eq + Hash + Clone,
+ S: BuildHasher + Default,
+{
+ type Output = HashSet<T, S>;
+
+ /// Returns the intersection of `self` and `rhs` as a new `HashSet<T, S>`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
+ /// let b: HashSet<_> = vec![2, 3, 4].into_iter().collect();
+ ///
+ /// let set = &a & &b;
+ ///
+ /// let mut i = 0;
+ /// let expected = [2, 3];
+ /// for x in &set {
+ /// assert!(expected.contains(x));
+ /// i += 1;
+ /// }
+ /// assert_eq!(i, expected.len());
+ /// ```
+ fn bitand(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
+ self.intersection(rhs).cloned().collect()
+ }
+}
+
+impl<'a, 'b, T, S> BitXor<&'b HashSet<T, S>> for &'a HashSet<T, S>
+where
+ T: Eq + Hash + Clone,
+ S: BuildHasher + Default,
+{
+ type Output = HashSet<T, S>;
+
+ /// Returns the symmetric difference of `self` and `rhs` as a new `HashSet<T, S>`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
+ /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();
+ ///
+ /// let set = &a ^ &b;
+ ///
+ /// let mut i = 0;
+ /// let expected = [1, 2, 4, 5];
+ /// for x in &set {
+ /// assert!(expected.contains(x));
+ /// i += 1;
+ /// }
+ /// assert_eq!(i, expected.len());
+ /// ```
+ fn bitxor(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
+ self.symmetric_difference(rhs).cloned().collect()
+ }
+}
+
+impl<'a, 'b, T, S> Sub<&'b HashSet<T, S>> for &'a HashSet<T, S>
+where
+ T: Eq + Hash + Clone,
+ S: BuildHasher + Default,
+{
+ type Output = HashSet<T, S>;
+
+ /// Returns the difference of `self` and `rhs` as a new `HashSet<T, S>`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ ///
+ /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
+ /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();
+ ///
+ /// let set = &a - &b;
+ ///
+ /// let mut i = 0;
+ /// let expected = [1, 2];
+ /// for x in &set {
+ /// assert!(expected.contains(x));
+ /// i += 1;
+ /// }
+ /// assert_eq!(i, expected.len());
+ /// ```
+ fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
+ self.difference(rhs).cloned().collect()
+ }
+}
+
+/// An iterator over the items of a `HashSet`.
+///
+/// This `struct` is created by the [`iter`] method on [`HashSet`].
+/// See its documentation for more.
+///
+/// [`HashSet`]: struct.HashSet.html
+/// [`iter`]: struct.HashSet.html#method.iter
+pub struct Iter<'a, K: 'a> {
+ iter: Keys<'a, K, ()>,
+}
+
+/// An owning iterator over the items of a `HashSet`.
+///
+/// This `struct` is created by the [`into_iter`] method on [`HashSet`][`HashSet`]
+/// (provided by the `IntoIterator` trait). See its documentation for more.
+///
+/// [`HashSet`]: struct.HashSet.html
+/// [`into_iter`]: struct.HashSet.html#method.into_iter
+pub struct IntoIter<K> {
+ iter: hash_map::IntoIter<K, ()>,
+}
+
+/// A draining iterator over the items of a `HashSet`.
+///
+/// This `struct` is created by the [`drain`] method on [`HashSet`].
+/// See its documentation for more.
+///
+/// [`HashSet`]: struct.HashSet.html
+/// [`drain`]: struct.HashSet.html#method.drain
+pub struct Drain<'a, K: 'static> {
+ iter: hash_map::Drain<'a, K, ()>,
+}
+
+/// A lazy iterator producing elements in the intersection of `HashSet`s.
+///
+/// This `struct` is created by the [`intersection`] method on [`HashSet`].
+/// See its documentation for more.
+///
+/// [`HashSet`]: struct.HashSet.html
+/// [`intersection`]: struct.HashSet.html#method.intersection
+pub struct Intersection<'a, T: 'a, S: 'a> {
+ // iterator of the first set
+ iter: Iter<'a, T>,
+ // the second set
+ other: &'a HashSet<T, S>,
+}
+
+/// A lazy iterator producing elements in the difference of `HashSet`s.
+///
+/// This `struct` is created by the [`difference`] method on [`HashSet`].
+/// See its documentation for more.
+///
+/// [`HashSet`]: struct.HashSet.html
+/// [`difference`]: struct.HashSet.html#method.difference
+pub struct Difference<'a, T: 'a, S: 'a> {
+ // iterator of the first set
+ iter: Iter<'a, T>,
+ // the second set
+ other: &'a HashSet<T, S>,
+}
+
+/// A lazy iterator producing elements in the symmetric difference of `HashSet`s.
+///
+/// This `struct` is created by the [`symmetric_difference`] method on
+/// [`HashSet`]. See its documentation for more.
+///
+/// [`HashSet`]: struct.HashSet.html
+/// [`symmetric_difference`]: struct.HashSet.html#method.symmetric_difference
+pub struct SymmetricDifference<'a, T: 'a, S: 'a> {
+ iter: Chain<Difference<'a, T, S>, Difference<'a, T, S>>,
+}
+
+/// A lazy iterator producing elements in the union of `HashSet`s.
+///
+/// This `struct` is created by the [`union`] method on [`HashSet`].
+/// See its documentation for more.
+///
+/// [`HashSet`]: struct.HashSet.html
+/// [`union`]: struct.HashSet.html#method.union
+pub struct Union<'a, T: 'a, S: 'a> {
+ iter: Chain<Iter<'a, T>, Difference<'a, T, S>>,
+}
+
+impl<'a, T, S> IntoIterator for &'a HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = &'a T;
+ type IntoIter = Iter<'a, T>;
+
+ fn into_iter(self) -> Iter<'a, T> {
+ self.iter()
+ }
+}
+
+impl<T, S> IntoIterator for HashSet<T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = T;
+ type IntoIter = IntoIter<T>;
+
+ /// Creates a consuming iterator, that is, one that moves each value out
+ /// of the set in arbitrary order. The set cannot be used after calling
+ /// this.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashSet;
+ /// let mut set = HashSet::new();
+ /// set.insert("a".to_string());
+ /// set.insert("b".to_string());
+ ///
+ /// // Not possible to collect to a Vec<String> with a regular `.iter()`.
+ /// let v: Vec<String> = set.into_iter().collect();
+ ///
+ /// // Will print in an arbitrary order.
+ /// for x in &v {
+ /// println!("{}", x);
+ /// }
+ /// ```
+ fn into_iter(self) -> IntoIter<T> {
+ IntoIter {
+ iter: self.map.into_iter(),
+ }
+ }
+}
+
+impl<'a, K> Clone for Iter<'a, K> {
+ fn clone(&self) -> Iter<'a, K> {
+ Iter {
+ iter: self.iter.clone(),
+ }
+ }
+}
+impl<'a, K> Iterator for Iter<'a, K> {
+ type Item = &'a K;
+
+ fn next(&mut self) -> Option<&'a K> {
+ self.iter.next()
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+impl<'a, K> ExactSizeIterator for Iter<'a, K> {
+ fn len(&self) -> usize {
+ self.iter.len()
+ }
+}
+
+impl<'a, K: fmt::Debug> fmt::Debug for Iter<'a, K> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+impl<K> Iterator for IntoIter<K> {
+ type Item = K;
+
+ fn next(&mut self) -> Option<K> {
+ self.iter.next().map(|(k, _)| k)
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+impl<K> ExactSizeIterator for IntoIter<K> {
+ fn len(&self) -> usize {
+ self.iter.len()
+ }
+}
+
+impl<K: fmt::Debug> fmt::Debug for IntoIter<K> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let entries_iter = self.iter.inner.iter().map(|(k, _)| k);
+ f.debug_list().entries(entries_iter).finish()
+ }
+}
+
+impl<'a, K> Iterator for Drain<'a, K> {
+ type Item = K;
+
+ fn next(&mut self) -> Option<K> {
+ self.iter.next().map(|(k, _)| k)
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+impl<'a, K> ExactSizeIterator for Drain<'a, K> {
+ fn len(&self) -> usize {
+ self.iter.len()
+ }
+}
+
+impl<'a, K: fmt::Debug> fmt::Debug for Drain<'a, K> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let entries_iter = self.iter.inner.iter().map(|(k, _)| k);
+ f.debug_list().entries(entries_iter).finish()
+ }
+}
+
+impl<'a, T, S> Clone for Intersection<'a, T, S> {
+ fn clone(&self) -> Intersection<'a, T, S> {
+ Intersection {
+ iter: self.iter.clone(),
+ ..*self
+ }
+ }
+}
+
+impl<'a, T, S> Iterator for Intersection<'a, T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = &'a T;
+
+ fn next(&mut self) -> Option<&'a T> {
+ loop {
+ let elt = self.iter.next()?;
+ if self.other.contains(elt) {
+ return Some(elt);
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (_, upper) = self.iter.size_hint();
+ (0, upper)
+ }
+}
+
+impl<'a, T, S> fmt::Debug for Intersection<'a, T, S>
+where
+ T: fmt::Debug + Eq + Hash,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+impl<'a, T, S> Clone for Difference<'a, T, S> {
+ fn clone(&self) -> Difference<'a, T, S> {
+ Difference {
+ iter: self.iter.clone(),
+ ..*self
+ }
+ }
+}
+
+impl<'a, T, S> Iterator for Difference<'a, T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = &'a T;
+
+ fn next(&mut self) -> Option<&'a T> {
+ loop {
+ let elt = self.iter.next()?;
+ if !self.other.contains(elt) {
+ return Some(elt);
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (_, upper) = self.iter.size_hint();
+ (0, upper)
+ }
+}
+
+impl<'a, T, S> fmt::Debug for Difference<'a, T, S>
+where
+ T: fmt::Debug + Eq + Hash,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+impl<'a, T, S> Clone for SymmetricDifference<'a, T, S> {
+ fn clone(&self) -> SymmetricDifference<'a, T, S> {
+ SymmetricDifference {
+ iter: self.iter.clone(),
+ }
+ }
+}
+
+impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = &'a T;
+
+ fn next(&mut self) -> Option<&'a T> {
+ self.iter.next()
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<'a, T, S> fmt::Debug for SymmetricDifference<'a, T, S>
+where
+ T: fmt::Debug + Eq + Hash,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+impl<'a, T, S> Clone for Union<'a, T, S> {
+ fn clone(&self) -> Union<'a, T, S> {
+ Union {
+ iter: self.iter.clone(),
+ }
+ }
+}
+
+impl<'a, T, S> fmt::Debug for Union<'a, T, S>
+where
+ T: fmt::Debug + Eq + Hash,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+impl<'a, T, S> Iterator for Union<'a, T, S>
+where
+ T: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = &'a T;
+
+ fn next(&mut self) -> Option<&'a T> {
+ self.iter.next()
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+#[allow(dead_code)]
+fn assert_covariance() {
+ fn set<'new>(v: HashSet<&'static str>) -> HashSet<&'new str> {
+ v
+ }
+ fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> {
+ v
+ }
+ fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> {
+ v
+ }
+ fn difference<'a, 'new>(
+ v: Difference<'a, &'static str, RandomState>,
+ ) -> Difference<'a, &'new str, RandomState> {
+ v
+ }
+ fn symmetric_difference<'a, 'new>(
+ v: SymmetricDifference<'a, &'static str, RandomState>,
+ ) -> SymmetricDifference<'a, &'new str, RandomState> {
+ v
+ }
+ fn intersection<'a, 'new>(
+ v: Intersection<'a, &'static str, RandomState>,
+ ) -> Intersection<'a, &'new str, RandomState> {
+ v
+ }
+ fn union<'a, 'new>(
+ v: Union<'a, &'static str, RandomState>,
+ ) -> Union<'a, &'new str, RandomState> {
+ v
+ }
+ fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> {
+ d
+ }
+}
+
+#[cfg(test)]
+mod test_set {
+ use super::hash_map::RandomState;
+ use super::HashSet;
+
+ #[test]
+ fn test_zero_capacities() {
+ type HS = HashSet<i32>;
+
+ let s = HS::new();
+ assert_eq!(s.capacity(), 0);
+
+ let s = HS::default();
+ assert_eq!(s.capacity(), 0);
+
+ let s = HS::with_hasher(RandomState::new());
+ assert_eq!(s.capacity(), 0);
+
+ let s = HS::with_capacity(0);
+ assert_eq!(s.capacity(), 0);
+
+ let s = HS::with_capacity_and_hasher(0, RandomState::new());
+ assert_eq!(s.capacity(), 0);
+
+ let mut s = HS::new();
+ s.insert(1);
+ s.insert(2);
+ s.remove(&1);
+ s.remove(&2);
+ s.shrink_to_fit();
+ assert_eq!(s.capacity(), 0);
+
+ let mut s = HS::new();
+ s.reserve(0);
+ assert_eq!(s.capacity(), 0);
+ }
+
+ #[test]
+ fn test_disjoint() {
+ let mut xs = HashSet::new();
+ let mut ys = HashSet::new();
+ assert!(xs.is_disjoint(&ys));
+ assert!(ys.is_disjoint(&xs));
+ assert!(xs.insert(5));
+ assert!(ys.insert(11));
+ assert!(xs.is_disjoint(&ys));
+ assert!(ys.is_disjoint(&xs));
+ assert!(xs.insert(7));
+ assert!(xs.insert(19));
+ assert!(xs.insert(4));
+ assert!(ys.insert(2));
+ assert!(ys.insert(-11));
+ assert!(xs.is_disjoint(&ys));
+ assert!(ys.is_disjoint(&xs));
+ assert!(ys.insert(7));
+ assert!(!xs.is_disjoint(&ys));
+ assert!(!ys.is_disjoint(&xs));
+ }
+
+ #[test]
+ fn test_subset_and_superset() {
+ let mut a = HashSet::new();
+ assert!(a.insert(0));
+ assert!(a.insert(5));
+ assert!(a.insert(11));
+ assert!(a.insert(7));
+
+ let mut b = HashSet::new();
+ assert!(b.insert(0));
+ assert!(b.insert(7));
+ assert!(b.insert(19));
+ assert!(b.insert(250));
+ assert!(b.insert(11));
+ assert!(b.insert(200));
+
+ assert!(!a.is_subset(&b));
+ assert!(!a.is_superset(&b));
+ assert!(!b.is_subset(&a));
+ assert!(!b.is_superset(&a));
+
+ assert!(b.insert(5));
+
+ assert!(a.is_subset(&b));
+ assert!(!a.is_superset(&b));
+ assert!(!b.is_subset(&a));
+ assert!(b.is_superset(&a));
+ }
+
+ #[test]
+ fn test_iterate() {
+ let mut a = HashSet::new();
+ for i in 0..32 {
+ assert!(a.insert(i));
+ }
+ let mut observed: u32 = 0;
+ for k in &a {
+ observed |= 1 << *k;
+ }
+ assert_eq!(observed, 0xFFFF_FFFF);
+ }
+
+ #[test]
+ fn test_intersection() {
+ let mut a = HashSet::new();
+ let mut b = HashSet::new();
+
+ assert!(a.insert(11));
+ assert!(a.insert(1));
+ assert!(a.insert(3));
+ assert!(a.insert(77));
+ assert!(a.insert(103));
+ assert!(a.insert(5));
+ assert!(a.insert(-5));
+
+ assert!(b.insert(2));
+ assert!(b.insert(11));
+ assert!(b.insert(77));
+ assert!(b.insert(-9));
+ assert!(b.insert(-42));
+ assert!(b.insert(5));
+ assert!(b.insert(3));
+
+ let mut i = 0;
+ let expected = [3, 5, 11, 77];
+ for x in a.intersection(&b) {
+ assert!(expected.contains(x));
+ i += 1
+ }
+ assert_eq!(i, expected.len());
+ }
+
+ #[test]
+ fn test_difference() {
+ let mut a = HashSet::new();
+ let mut b = HashSet::new();
+
+ assert!(a.insert(1));
+ assert!(a.insert(3));
+ assert!(a.insert(5));
+ assert!(a.insert(9));
+ assert!(a.insert(11));
+
+ assert!(b.insert(3));
+ assert!(b.insert(9));
+
+ let mut i = 0;
+ let expected = [1, 5, 11];
+ for x in a.difference(&b) {
+ assert!(expected.contains(x));
+ i += 1
+ }
+ assert_eq!(i, expected.len());
+ }
+
+ #[test]
+ fn test_symmetric_difference() {
+ let mut a = HashSet::new();
+ let mut b = HashSet::new();
+
+ assert!(a.insert(1));
+ assert!(a.insert(3));
+ assert!(a.insert(5));
+ assert!(a.insert(9));
+ assert!(a.insert(11));
+
+ assert!(b.insert(-2));
+ assert!(b.insert(3));
+ assert!(b.insert(9));
+ assert!(b.insert(14));
+ assert!(b.insert(22));
+
+ let mut i = 0;
+ let expected = [-2, 1, 5, 11, 14, 22];
+ for x in a.symmetric_difference(&b) {
+ assert!(expected.contains(x));
+ i += 1
+ }
+ assert_eq!(i, expected.len());
+ }
+
+ #[test]
+ fn test_union() {
+ let mut a = HashSet::new();
+ let mut b = HashSet::new();
+
+ assert!(a.insert(1));
+ assert!(a.insert(3));
+ assert!(a.insert(5));
+ assert!(a.insert(9));
+ assert!(a.insert(11));
+ assert!(a.insert(16));
+ assert!(a.insert(19));
+ assert!(a.insert(24));
+
+ assert!(b.insert(-2));
+ assert!(b.insert(1));
+ assert!(b.insert(5));
+ assert!(b.insert(9));
+ assert!(b.insert(13));
+ assert!(b.insert(19));
+
+ let mut i = 0;
+ let expected = [-2, 1, 3, 5, 9, 11, 13, 16, 19, 24];
+ for x in a.union(&b) {
+ assert!(expected.contains(x));
+ i += 1
+ }
+ assert_eq!(i, expected.len());
+ }
+
+ #[test]
+ fn test_from_iter() {
+ let xs = [1, 2, 3, 4, 5, 6, 7, 8, 9];
+
+ let set: HashSet<_> = xs.iter().cloned().collect();
+
+ for x in &xs {
+ assert!(set.contains(x));
+ }
+ }
+
+ #[test]
+ fn test_move_iter() {
+ let hs = {
+ let mut hs = HashSet::new();
+
+ hs.insert('a');
+ hs.insert('b');
+
+ hs
+ };
+
+ let v = hs.into_iter().collect::<Vec<char>>();
+ assert!(v == ['a', 'b'] || v == ['b', 'a']);
+ }
+
+ #[test]
+ fn test_eq() {
+ // These constants once happened to expose a bug in insert().
+ // I'm keeping them around to prevent a regression.
+ let mut s1 = HashSet::new();
+
+ s1.insert(1);
+ s1.insert(2);
+ s1.insert(3);
+
+ let mut s2 = HashSet::new();
+
+ s2.insert(1);
+ s2.insert(2);
+
+ assert_ne!(s1, s2);
+
+ s2.insert(3);
+
+ assert_eq!(s1, s2);
+ }
+
+ #[test]
+ fn test_show() {
+ let mut set = HashSet::new();
+ let empty = HashSet::<i32>::new();
+
+ set.insert(1);
+ set.insert(2);
+
+ let set_str = format!("{:?}", set);
+
+ assert!(set_str == "{1, 2}" || set_str == "{2, 1}");
+ assert_eq!(format!("{:?}", empty), "{}");
+ }
+
+ #[test]
+ fn test_trivial_drain() {
+ let mut s = HashSet::<i32>::new();
+ for _ in s.drain() {}
+ assert!(s.is_empty());
+ drop(s);
+
+ let mut s = HashSet::<i32>::new();
+ drop(s.drain());
+ assert!(s.is_empty());
+ }
+
+ #[test]
+ fn test_drain() {
+ let mut s: HashSet<_> = (1..100).collect();
+
+ // try this a bunch of times to make sure we don't screw up internal state.
+ for _ in 0..20 {
+ assert_eq!(s.len(), 99);
+
+ {
+ let mut last_i = 0;
+ let mut d = s.drain();
+ for (i, x) in d.by_ref().take(50).enumerate() {
+ last_i = i;
+ assert_ne!(x, 0);
+ }
+ assert_eq!(last_i, 49);
+ }
+
+ for _ in &s {
+ panic!("s should be empty!");
+ }
+
+ // reset to try again.
+ s.extend(1..100);
+ }
+ }
+
+ #[test]
+ fn test_replace() {
+ use hash;
+
+ #[derive(Debug)]
+ struct Foo(&'static str, i32);
+
+ impl PartialEq for Foo {
+ fn eq(&self, other: &Self) -> bool {
+ self.0 == other.0
+ }
+ }
+
+ impl Eq for Foo {}
+
+ impl hash::Hash for Foo {
+ fn hash<H: hash::Hasher>(&self, h: &mut H) {
+ self.0.hash(h);
+ }
+ }
+
+ let mut s = HashSet::new();
+ assert_eq!(s.replace(Foo("a", 1)), None);
+ assert_eq!(s.len(), 1);
+ assert_eq!(s.replace(Foo("a", 2)), Some(Foo("a", 1)));
+ assert_eq!(s.len(), 1);
+
+ let mut it = s.iter();
+ assert_eq!(it.next(), Some(&Foo("a", 2)));
+ assert_eq!(it.next(), None);
+ }
+
+ #[test]
+ fn test_extend_ref() {
+ let mut a = HashSet::new();
+ a.insert(1);
+
+ a.extend(&[2, 3, 4]);
+
+ assert_eq!(a.len(), 4);
+ assert!(a.contains(&1));
+ assert!(a.contains(&2));
+ assert!(a.contains(&3));
+ assert!(a.contains(&4));
+
+ let mut b = HashSet::new();
+ b.insert(5);
+ b.insert(6);
+
+ a.extend(&b);
+
+ assert_eq!(a.len(), 6);
+ assert!(a.contains(&1));
+ assert!(a.contains(&2));
+ assert!(a.contains(&3));
+ assert!(a.contains(&4));
+ assert!(a.contains(&5));
+ assert!(a.contains(&6));
+ }
+
+ #[test]
+ fn test_retain() {
+ let xs = [1, 2, 3, 4, 5, 6];
+ let mut set: HashSet<isize> = xs.iter().cloned().collect();
+ set.retain(|&k| k % 2 == 0);
+ assert_eq!(set.len(), 3);
+ assert!(set.contains(&2));
+ assert!(set.contains(&4));
+ assert!(set.contains(&6));
+ }
+}
diff --git a/servo/components/hashglobe/src/lib.rs b/servo/components/hashglobe/src/lib.rs
new file mode 100644
index 0000000000..cf6e9710f5
--- /dev/null
+++ b/servo/components/hashglobe/src/lib.rs
@@ -0,0 +1,71 @@
+// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+pub mod alloc;
+pub mod hash_map;
+pub mod hash_set;
+mod shim;
+mod table;
+
+pub mod fake;
+
+use std::{error, fmt};
+
+trait Recover<Q: ?Sized> {
+ type Key;
+
+ fn get(&self, key: &Q) -> Option<&Self::Key>;
+ fn take(&mut self, key: &Q) -> Option<Self::Key>;
+ fn replace(&mut self, key: Self::Key) -> Option<Self::Key>;
+}
+
+#[derive(Debug)]
+pub struct AllocationInfo {
+ /// The size we are requesting.
+ size: usize,
+ /// The alignment we are requesting.
+ alignment: usize,
+}
+
+#[derive(Debug)]
+pub struct FailedAllocationError {
+ reason: &'static str,
+ /// The allocation info we are requesting, if needed.
+ allocation_info: Option<AllocationInfo>,
+}
+
+impl FailedAllocationError {
+ #[inline]
+ pub fn new(reason: &'static str) -> Self {
+ Self {
+ reason,
+ allocation_info: None,
+ }
+ }
+}
+
+impl error::Error for FailedAllocationError {
+ fn description(&self) -> &str {
+ self.reason
+ }
+}
+
+impl fmt::Display for FailedAllocationError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self.allocation_info {
+ Some(ref info) => write!(
+ f,
+ "{}, allocation: (size: {}, alignment: {})",
+ self.reason, info.size, info.alignment
+ ),
+ None => self.reason.fmt(f),
+ }
+ }
+}
diff --git a/servo/components/hashglobe/src/shim.rs b/servo/components/hashglobe/src/shim.rs
new file mode 100644
index 0000000000..855dbdcfa1
--- /dev/null
+++ b/servo/components/hashglobe/src/shim.rs
@@ -0,0 +1,61 @@
+use std::marker::PhantomData;
+
+// FIXME: remove this and use std::ptr::NonNull when Firefox requires Rust 1.25+
+pub struct NonZeroPtr<T: 'static>(&'static T);
+
+impl<T: 'static> NonZeroPtr<T> {
+ pub unsafe fn new_unchecked(ptr: *mut T) -> Self {
+ NonZeroPtr(&*ptr)
+ }
+ pub fn as_ptr(&self) -> *mut T {
+ self.0 as *const T as *mut T
+ }
+}
+
+pub struct Unique<T: 'static> {
+ ptr: NonZeroPtr<T>,
+ _marker: PhantomData<T>,
+}
+
+impl<T: 'static> Unique<T> {
+ pub unsafe fn new_unchecked(ptr: *mut T) -> Self {
+ Unique {
+ ptr: NonZeroPtr::new_unchecked(ptr),
+ _marker: PhantomData,
+ }
+ }
+ pub fn as_ptr(&self) -> *mut T {
+ self.ptr.as_ptr()
+ }
+}
+
+unsafe impl<T: Send + 'static> Send for Unique<T> {}
+
+unsafe impl<T: Sync + 'static> Sync for Unique<T> {}
+
+pub struct Shared<T: 'static> {
+ ptr: NonZeroPtr<T>,
+ _marker: PhantomData<T>,
+ // force it to be !Send/!Sync
+ _marker2: PhantomData<*const u8>,
+}
+
+impl<T: 'static> Shared<T> {
+ pub unsafe fn new_unchecked(ptr: *mut T) -> Self {
+ Shared {
+ ptr: NonZeroPtr::new_unchecked(ptr),
+ _marker: PhantomData,
+ _marker2: PhantomData,
+ }
+ }
+
+ pub unsafe fn as_mut(&self) -> &mut T {
+ &mut *self.ptr.as_ptr()
+ }
+}
+
+impl<'a, T> From<&'a mut T> for Shared<T> {
+ fn from(reference: &'a mut T) -> Self {
+ unsafe { Shared::new_unchecked(reference) }
+ }
+}
diff --git a/servo/components/hashglobe/src/table.rs b/servo/components/hashglobe/src/table.rs
new file mode 100644
index 0000000000..0fe08f2b05
--- /dev/null
+++ b/servo/components/hashglobe/src/table.rs
@@ -0,0 +1,1230 @@
+// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use crate::alloc::{alloc, dealloc};
+use crate::shim::{Shared, Unique};
+use std::cmp;
+use std::hash::{BuildHasher, Hash, Hasher};
+use std::marker;
+use std::mem::{self, align_of, size_of};
+use std::ops::{Deref, DerefMut};
+use std::ptr;
+
+use self::BucketState::*;
+use crate::FailedAllocationError;
+
+/// Integer type used for stored hash values.
+///
+/// No more than bit_width(usize) bits are needed to select a bucket.
+///
+/// The most significant bit is ours to use for tagging `SafeHash`.
+///
+/// (Even if we could have usize::MAX bytes allocated for buckets,
+/// each bucket stores at least a `HashUint`, so there can be no more than
+/// usize::MAX / size_of(usize) buckets.)
+type HashUint = usize;
+
+const EMPTY_BUCKET: HashUint = 0;
+const EMPTY: usize = 1;
+
+/// Special `Unique<HashUint>` that uses the lower bit of the pointer
+/// to expose a boolean tag.
+/// Note: when the pointer is initialized to EMPTY `.ptr()` will return
+/// null and the tag functions shouldn't be used.
+struct TaggedHashUintPtr(Unique<HashUint>);
+
+impl TaggedHashUintPtr {
+ #[inline]
+ unsafe fn new(ptr: *mut HashUint) -> Self {
+ debug_assert!(ptr as usize & 1 == 0 || ptr as usize == EMPTY as usize);
+ TaggedHashUintPtr(Unique::new_unchecked(ptr))
+ }
+
+ #[inline]
+ fn set_tag(&mut self, value: bool) {
+ let mut usize_ptr = self.0.as_ptr() as usize;
+ unsafe {
+ if value {
+ usize_ptr |= 1;
+ } else {
+ usize_ptr &= !1;
+ }
+ self.0 = Unique::new_unchecked(usize_ptr as *mut HashUint)
+ }
+ }
+
+ #[inline]
+ fn tag(&self) -> bool {
+ (self.0.as_ptr() as usize) & 1 == 1
+ }
+
+ #[inline]
+ fn ptr(&self) -> *mut HashUint {
+ (self.0.as_ptr() as usize & !1) as *mut HashUint
+ }
+}
+
+/// The raw hashtable, providing safe-ish access to the unzipped and highly
+/// optimized arrays of hashes, and key-value pairs.
+///
+/// This design is a lot faster than the naive
+/// `Vec<Option<(u64, K, V)>>`, because we don't pay for the overhead of an
+/// option on every element, and we get a generally more cache-aware design.
+///
+/// Essential invariants of this structure:
+///
+/// - if t.hashes[i] == EMPTY_BUCKET, then `Bucket::at_index(&t, i).raw`
+/// points to 'undefined' contents. Don't read from it. This invariant is
+/// enforced outside this module with the `EmptyBucket`, `FullBucket`,
+/// and `SafeHash` types.
+///
+/// - An `EmptyBucket` is only constructed at an index with
+/// a hash of EMPTY_BUCKET.
+///
+/// - A `FullBucket` is only constructed at an index with a
+/// non-EMPTY_BUCKET hash.
+///
+/// - A `SafeHash` is only constructed for non-`EMPTY_BUCKET` hash. We get
+/// around hashes of zero by changing them to 0x8000_0000_0000_0000,
+/// which will likely map to the same bucket, while not being confused
+/// with "empty".
+///
+/// - Both "arrays represented by pointers" are the same length:
+/// `capacity`. This is set at creation and never changes. The arrays
+/// are unzipped and are more cache aware (scanning through 8 hashes
+/// brings in at most 2 cache lines, since they're all right beside each
+/// other). This layout may waste space in padding such as in a map from
+/// u64 to u8, but is a more cache conscious layout as the key-value pairs
+/// are only very shortly probed and the desired value will be in the same
+/// or next cache line.
+///
+/// You can kind of think of this module/data structure as a safe wrapper
+/// around just the "table" part of the hashtable. It enforces some
+/// invariants at the type level and employs some performance trickery,
+/// but in general is just a tricked out `Vec<Option<(u64, K, V)>>`.
+///
+/// The hashtable also exposes a special boolean tag. The tag defaults to false
+/// when the RawTable is created and is accessible with the `tag` and `set_tag`
+/// functions.
+pub struct RawTable<K, V> {
+ capacity_mask: usize,
+ size: usize,
+ hashes: TaggedHashUintPtr,
+
+ // Because K/V do not appear directly in any of the types in the struct,
+ // inform rustc that in fact instances of K and V are reachable from here.
+ marker: marker::PhantomData<(K, V)>,
+}
+
+unsafe impl<K: Send, V: Send> Send for RawTable<K, V> {}
+unsafe impl<K: Sync, V: Sync> Sync for RawTable<K, V> {}
+
+// An unsafe view of a RawTable bucket
+// Valid indexes are within [0..table_capacity)
+pub struct RawBucket<K, V> {
+ hash_start: *mut HashUint,
+ // We use *const to ensure covariance with respect to K and V
+ pair_start: *const (K, V),
+ idx: usize,
+ _marker: marker::PhantomData<(K, V)>,
+}
+
+impl<K, V> Copy for RawBucket<K, V> {}
+impl<K, V> Clone for RawBucket<K, V> {
+ fn clone(&self) -> RawBucket<K, V> {
+ *self
+ }
+}
+
+pub struct Bucket<K, V, M> {
+ raw: RawBucket<K, V>,
+ table: M,
+}
+
+impl<K, V, M: Copy> Copy for Bucket<K, V, M> {}
+impl<K, V, M: Copy> Clone for Bucket<K, V, M> {
+ fn clone(&self) -> Bucket<K, V, M> {
+ *self
+ }
+}
+
+pub struct EmptyBucket<K, V, M> {
+ raw: RawBucket<K, V>,
+ table: M,
+}
+
+pub struct FullBucket<K, V, M> {
+ raw: RawBucket<K, V>,
+ table: M,
+}
+
+pub type FullBucketMut<'table, K, V> = FullBucket<K, V, &'table mut RawTable<K, V>>;
+
+pub enum BucketState<K, V, M> {
+ Empty(EmptyBucket<K, V, M>),
+ Full(FullBucket<K, V, M>),
+}
+
+// A GapThenFull encapsulates the state of two consecutive buckets at once.
+// The first bucket, called the gap, is known to be empty.
+// The second bucket is full.
+pub struct GapThenFull<K, V, M> {
+ gap: EmptyBucket<K, V, ()>,
+ full: FullBucket<K, V, M>,
+}
+
+/// A hash that is not zero, since we use a hash of zero to represent empty
+/// buckets.
+#[derive(PartialEq, Copy, Clone)]
+pub struct SafeHash {
+ hash: HashUint,
+}
+
+impl SafeHash {
+ /// Peek at the hash value, which is guaranteed to be non-zero.
+ #[inline(always)]
+ pub fn inspect(&self) -> HashUint {
+ self.hash
+ }
+
+ #[inline(always)]
+ pub fn new(hash: u64) -> Self {
+ // We need to avoid 0 in order to prevent collisions with
+ // EMPTY_HASH. We can maintain our precious uniform distribution
+ // of initial indexes by unconditionally setting the MSB,
+ // effectively reducing the hashes by one bit.
+ //
+ // Truncate hash to fit in `HashUint`.
+ let hash_bits = size_of::<HashUint>() * 8;
+ SafeHash {
+ hash: (1 << (hash_bits - 1)) | (hash as HashUint),
+ }
+ }
+}
+
+/// We need to remove hashes of 0. That's reserved for empty buckets.
+/// This function wraps up `hash_keyed` to be the only way outside this
+/// module to generate a SafeHash.
+pub fn make_hash<T: ?Sized, S>(hash_state: &S, t: &T) -> SafeHash
+where
+ T: Hash,
+ S: BuildHasher,
+{
+ let mut state = hash_state.build_hasher();
+ t.hash(&mut state);
+ SafeHash::new(state.finish())
+}
+
+// `replace` casts a `*HashUint` to a `*SafeHash`. Since we statically
+// ensure that a `FullBucket` points to an index with a non-zero hash,
+// and a `SafeHash` is just a `HashUint` with a different name, this is
+// safe.
+//
+// This test ensures that a `SafeHash` really IS the same size as a
+// `HashUint`. If you need to change the size of `SafeHash` (and
+// consequently made this test fail), `replace` needs to be
+// modified to no longer assume this.
+#[test]
+fn can_alias_safehash_as_hash() {
+ assert_eq!(size_of::<SafeHash>(), size_of::<HashUint>())
+}
+
+// RawBucket methods are unsafe as it's possible to
+// make a RawBucket point to invalid memory using safe code.
+impl<K, V> RawBucket<K, V> {
+ unsafe fn hash(&self) -> *mut HashUint {
+ self.hash_start.offset(self.idx as isize)
+ }
+ unsafe fn pair(&self) -> *mut (K, V) {
+ self.pair_start.offset(self.idx as isize) as *mut (K, V)
+ }
+ unsafe fn hash_pair(&self) -> (*mut HashUint, *mut (K, V)) {
+ (self.hash(), self.pair())
+ }
+}
+
+// Buckets hold references to the table.
+impl<K, V, M> FullBucket<K, V, M> {
+ /// Borrow a reference to the table.
+ pub fn table(&self) -> &M {
+ &self.table
+ }
+ /// Borrow a mutable reference to the table.
+ pub fn table_mut(&mut self) -> &mut M {
+ &mut self.table
+ }
+ /// Move out the reference to the table.
+ pub fn into_table(self) -> M {
+ self.table
+ }
+ /// Get the raw index.
+ pub fn index(&self) -> usize {
+ self.raw.idx
+ }
+ /// Get the raw bucket.
+ pub fn raw(&self) -> RawBucket<K, V> {
+ self.raw
+ }
+}
+
+impl<K, V, M> EmptyBucket<K, V, M> {
+ /// Borrow a reference to the table.
+ pub fn table(&self) -> &M {
+ &self.table
+ }
+ /// Borrow a mutable reference to the table.
+ pub fn table_mut(&mut self) -> &mut M {
+ &mut self.table
+ }
+}
+
+impl<K, V, M> Bucket<K, V, M> {
+ /// Get the raw index.
+ pub fn index(&self) -> usize {
+ self.raw.idx
+ }
+ /// get the table.
+ pub fn into_table(self) -> M {
+ self.table
+ }
+}
+
+impl<K, V, M> Deref for FullBucket<K, V, M>
+where
+ M: Deref<Target = RawTable<K, V>>,
+{
+ type Target = RawTable<K, V>;
+ fn deref(&self) -> &RawTable<K, V> {
+ &self.table
+ }
+}
+
+/// `Put` is implemented for types which provide access to a table and cannot be invalidated
+/// by filling a bucket. A similar implementation for `Take` is possible.
+pub trait Put<K, V> {
+ unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V>;
+}
+
+impl<'t, K, V> Put<K, V> for &'t mut RawTable<K, V> {
+ unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> {
+ *self
+ }
+}
+
+impl<K, V, M> Put<K, V> for Bucket<K, V, M>
+where
+ M: Put<K, V>,
+{
+ unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> {
+ self.table.borrow_table_mut()
+ }
+}
+
+impl<K, V, M> Put<K, V> for FullBucket<K, V, M>
+where
+ M: Put<K, V>,
+{
+ unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> {
+ self.table.borrow_table_mut()
+ }
+}
+
+impl<K, V, M: Deref<Target = RawTable<K, V>>> Bucket<K, V, M> {
+ pub fn new(table: M, hash: SafeHash) -> Bucket<K, V, M> {
+ Bucket::at_index(table, hash.inspect() as usize)
+ }
+
+ pub fn new_from(r: RawBucket<K, V>, t: M) -> Bucket<K, V, M> {
+ Bucket { raw: r, table: t }
+ }
+
+ pub fn at_index(table: M, ib_index: usize) -> Bucket<K, V, M> {
+ // if capacity is 0, then the RawBucket will be populated with bogus pointers.
+ // This is an uncommon case though, so avoid it in release builds.
+ debug_assert!(
+ table.capacity() > 0,
+ "Table should have capacity at this point"
+ );
+ let ib_index = ib_index & table.capacity_mask;
+ Bucket {
+ raw: table.raw_bucket_at(ib_index),
+ table,
+ }
+ }
+
+ pub fn first(table: M) -> Bucket<K, V, M> {
+ Bucket {
+ raw: table.raw_bucket_at(0),
+ table,
+ }
+ }
+
+ // "So a few of the first shall be last: for many be called,
+ // but few chosen."
+ //
+ // We'll most likely encounter a few buckets at the beginning that
+ // have their initial buckets near the end of the table. They were
+ // placed at the beginning as the probe wrapped around the table
+ // during insertion. We must skip forward to a bucket that won't
+ // get reinserted too early and won't unfairly steal others spot.
+ // This eliminates the need for robin hood.
+ pub fn head_bucket(table: M) -> Bucket<K, V, M> {
+ let mut bucket = Bucket::first(table);
+
+ loop {
+ bucket = match bucket.peek() {
+ Full(full) => {
+ if full.displacement() == 0 {
+ // This bucket occupies its ideal spot.
+ // It indicates the start of another "cluster".
+ bucket = full.into_bucket();
+ break;
+ }
+ // Leaving this bucket in the last cluster for later.
+ full.into_bucket()
+ },
+ Empty(b) => {
+ // Encountered a hole between clusters.
+ b.into_bucket()
+ },
+ };
+ bucket.next();
+ }
+ bucket
+ }
+
+ /// Reads a bucket at a given index, returning an enum indicating whether
+ /// it's initialized or not. You need to match on this enum to get
+ /// the appropriate types to call most of the other functions in
+ /// this module.
+ pub fn peek(self) -> BucketState<K, V, M> {
+ match unsafe { *self.raw.hash() } {
+ EMPTY_BUCKET => Empty(EmptyBucket {
+ raw: self.raw,
+ table: self.table,
+ }),
+ _ => Full(FullBucket {
+ raw: self.raw,
+ table: self.table,
+ }),
+ }
+ }
+
+ /// Modifies the bucket in place to make it point to the next slot.
+ pub fn next(&mut self) {
+ self.raw.idx = self.raw.idx.wrapping_add(1) & self.table.capacity_mask;
+ }
+
+ /// Modifies the bucket in place to make it point to the previous slot.
+ pub fn prev(&mut self) {
+ self.raw.idx = self.raw.idx.wrapping_sub(1) & self.table.capacity_mask;
+ }
+}
+
+impl<K, V, M: Deref<Target = RawTable<K, V>>> EmptyBucket<K, V, M> {
+ #[inline]
+ pub fn next(self) -> Bucket<K, V, M> {
+ let mut bucket = self.into_bucket();
+ bucket.next();
+ bucket
+ }
+
+ #[inline]
+ pub fn into_bucket(self) -> Bucket<K, V, M> {
+ Bucket {
+ raw: self.raw,
+ table: self.table,
+ }
+ }
+
+ pub fn gap_peek(self) -> Result<GapThenFull<K, V, M>, Bucket<K, V, M>> {
+ let gap = EmptyBucket {
+ raw: self.raw,
+ table: (),
+ };
+
+ match self.next().peek() {
+ Full(bucket) => Ok(GapThenFull { gap, full: bucket }),
+ Empty(e) => Err(e.into_bucket()),
+ }
+ }
+}
+
+impl<K, V, M> EmptyBucket<K, V, M>
+where
+ M: Put<K, V>,
+{
+ /// Puts given key and value pair, along with the key's hash,
+ /// into this bucket in the hashtable. Note how `self` is 'moved' into
+ /// this function, because this slot will no longer be empty when
+ /// we return! A `FullBucket` is returned for later use, pointing to
+ /// the newly-filled slot in the hashtable.
+ ///
+ /// Use `make_hash` to construct a `SafeHash` to pass to this function.
+ pub fn put(mut self, hash: SafeHash, key: K, value: V) -> FullBucket<K, V, M> {
+ unsafe {
+ *self.raw.hash() = hash.inspect();
+ ptr::write(self.raw.pair(), (key, value));
+
+ self.table.borrow_table_mut().size += 1;
+ }
+
+ FullBucket {
+ raw: self.raw,
+ table: self.table,
+ }
+ }
+}
+
+impl<K, V, M: Deref<Target = RawTable<K, V>>> FullBucket<K, V, M> {
+ #[inline]
+ pub fn next(self) -> Bucket<K, V, M> {
+ let mut bucket = self.into_bucket();
+ bucket.next();
+ bucket
+ }
+
+ #[inline]
+ pub fn into_bucket(self) -> Bucket<K, V, M> {
+ Bucket {
+ raw: self.raw,
+ table: self.table,
+ }
+ }
+
+ /// Duplicates the current position. This can be useful for operations
+ /// on two or more buckets.
+ pub fn stash(self) -> FullBucket<K, V, Self> {
+ FullBucket {
+ raw: self.raw,
+ table: self,
+ }
+ }
+
+ /// Get the distance between this bucket and the 'ideal' location
+ /// as determined by the key's hash stored in it.
+ ///
+ /// In the cited blog posts above, this is called the "distance to
+ /// initial bucket", or DIB. Also known as "probe count".
+ pub fn displacement(&self) -> usize {
+ // Calculates the distance one has to travel when going from
+ // `hash mod capacity` onwards to `idx mod capacity`, wrapping around
+ // if the destination is not reached before the end of the table.
+ (self.raw.idx.wrapping_sub(self.hash().inspect() as usize)) & self.table.capacity_mask
+ }
+
+ #[inline]
+ pub fn hash(&self) -> SafeHash {
+ unsafe {
+ SafeHash {
+ hash: *self.raw.hash(),
+ }
+ }
+ }
+
+ /// Gets references to the key and value at a given index.
+ pub fn read(&self) -> (&K, &V) {
+ unsafe {
+ let pair_ptr = self.raw.pair();
+ (&(*pair_ptr).0, &(*pair_ptr).1)
+ }
+ }
+}
+
+// We take a mutable reference to the table instead of accepting anything that
+// implements `DerefMut` to prevent fn `take` from being called on `stash`ed
+// buckets.
+impl<'t, K, V> FullBucket<K, V, &'t mut RawTable<K, V>> {
+ /// Removes this bucket's key and value from the hashtable.
+ ///
+ /// This works similarly to `put`, building an `EmptyBucket` out of the
+ /// taken bucket.
+ pub fn take(self) -> (EmptyBucket<K, V, &'t mut RawTable<K, V>>, K, V) {
+ self.table.size -= 1;
+
+ unsafe {
+ *self.raw.hash() = EMPTY_BUCKET;
+ let (k, v) = ptr::read(self.raw.pair());
+ (
+ EmptyBucket {
+ raw: self.raw,
+ table: self.table,
+ },
+ k,
+ v,
+ )
+ }
+ }
+}
+
+// This use of `Put` is misleading and restrictive, but safe and sufficient for our use cases
+// where `M` is a full bucket or table reference type with mutable access to the table.
+impl<K, V, M> FullBucket<K, V, M>
+where
+ M: Put<K, V>,
+{
+ pub fn replace(&mut self, h: SafeHash, k: K, v: V) -> (SafeHash, K, V) {
+ unsafe {
+ let old_hash = ptr::replace(self.raw.hash() as *mut SafeHash, h);
+ let (old_key, old_val) = ptr::replace(self.raw.pair(), (k, v));
+
+ (old_hash, old_key, old_val)
+ }
+ }
+}
+
+impl<K, V, M> FullBucket<K, V, M>
+where
+ M: Deref<Target = RawTable<K, V>> + DerefMut,
+{
+ /// Gets mutable references to the key and value at a given index.
+ pub fn read_mut(&mut self) -> (&mut K, &mut V) {
+ unsafe {
+ let pair_ptr = self.raw.pair();
+ (&mut (*pair_ptr).0, &mut (*pair_ptr).1)
+ }
+ }
+}
+
+impl<'t, K, V, M> FullBucket<K, V, M>
+where
+ M: Deref<Target = RawTable<K, V>> + 't,
+{
+ /// Exchange a bucket state for immutable references into the table.
+ /// Because the underlying reference to the table is also consumed,
+ /// no further changes to the structure of the table are possible;
+ /// in exchange for this, the returned references have a longer lifetime
+ /// than the references returned by `read()`.
+ pub fn into_refs(self) -> (&'t K, &'t V) {
+ unsafe {
+ let pair_ptr = self.raw.pair();
+ (&(*pair_ptr).0, &(*pair_ptr).1)
+ }
+ }
+}
+
+impl<'t, K, V, M> FullBucket<K, V, M>
+where
+ M: Deref<Target = RawTable<K, V>> + DerefMut + 't,
+{
+ /// This works similarly to `into_refs`, exchanging a bucket state
+ /// for mutable references into the table.
+ pub fn into_mut_refs(self) -> (&'t mut K, &'t mut V) {
+ unsafe {
+ let pair_ptr = self.raw.pair();
+ (&mut (*pair_ptr).0, &mut (*pair_ptr).1)
+ }
+ }
+}
+
+impl<K, V, M> GapThenFull<K, V, M>
+where
+ M: Deref<Target = RawTable<K, V>>,
+{
+ #[inline]
+ pub fn full(&self) -> &FullBucket<K, V, M> {
+ &self.full
+ }
+
+ pub fn into_table(self) -> M {
+ self.full.into_table()
+ }
+
+ pub fn shift(mut self) -> Result<GapThenFull<K, V, M>, Bucket<K, V, M>> {
+ unsafe {
+ let (gap_hash, gap_pair) = self.gap.raw.hash_pair();
+ let (full_hash, full_pair) = self.full.raw.hash_pair();
+ *gap_hash = mem::replace(&mut *full_hash, EMPTY_BUCKET);
+ ptr::copy_nonoverlapping(full_pair, gap_pair, 1);
+ }
+
+ let FullBucket { raw: prev_raw, .. } = self.full;
+
+ match self.full.next().peek() {
+ Full(bucket) => {
+ self.gap.raw = prev_raw;
+
+ self.full = bucket;
+
+ Ok(self)
+ },
+ Empty(b) => Err(b.into_bucket()),
+ }
+ }
+}
+
+/// Rounds up to a multiple of a power of two. Returns the closest multiple
+/// of `target_alignment` that is higher or equal to `unrounded`.
+///
+/// # Panics
+///
+/// Panics if `target_alignment` is not a power of two.
+#[inline]
+fn round_up_to_next(unrounded: usize, target_alignment: usize) -> usize {
+ assert!(target_alignment.is_power_of_two());
+ (unrounded + target_alignment - 1) & !(target_alignment - 1)
+}
+
+#[test]
+fn test_rounding() {
+ assert_eq!(round_up_to_next(0, 4), 0);
+ assert_eq!(round_up_to_next(1, 4), 4);
+ assert_eq!(round_up_to_next(2, 4), 4);
+ assert_eq!(round_up_to_next(3, 4), 4);
+ assert_eq!(round_up_to_next(4, 4), 4);
+ assert_eq!(round_up_to_next(5, 4), 8);
+}
+
+// Returns a tuple of (pairs_offset, end_of_pairs_offset),
+// from the start of a mallocated array.
+#[inline]
+fn calculate_offsets(
+ hashes_size: usize,
+ pairs_size: usize,
+ pairs_align: usize,
+) -> (usize, usize, bool) {
+ let pairs_offset = round_up_to_next(hashes_size, pairs_align);
+ let (end_of_pairs, oflo) = pairs_offset.overflowing_add(pairs_size);
+
+ (pairs_offset, end_of_pairs, oflo)
+}
+
+// Returns a tuple of (minimum required malloc alignment, hash_offset,
+// array_size), from the start of a mallocated array.
+fn calculate_allocation(
+ hash_size: usize,
+ hash_align: usize,
+ pairs_size: usize,
+ pairs_align: usize,
+) -> (usize, usize, usize, bool) {
+ let hash_offset = 0;
+ let (_, end_of_pairs, oflo) = calculate_offsets(hash_size, pairs_size, pairs_align);
+
+ let align = cmp::max(hash_align, pairs_align);
+
+ (align, hash_offset, end_of_pairs, oflo)
+}
+
+#[test]
+fn test_offset_calculation() {
+ assert_eq!(calculate_allocation(128, 8, 16, 8), (8, 0, 144, false));
+ assert_eq!(calculate_allocation(3, 1, 2, 1), (1, 0, 5, false));
+ assert_eq!(calculate_allocation(6, 2, 12, 4), (4, 0, 20, false));
+ assert_eq!(calculate_offsets(128, 15, 4), (128, 143, false));
+ assert_eq!(calculate_offsets(3, 2, 4), (4, 6, false));
+ assert_eq!(calculate_offsets(6, 12, 4), (8, 20, false));
+}
+
+impl<K, V> RawTable<K, V> {
+ unsafe fn new_uninitialized(capacity: usize) -> RawTable<K, V> {
+ extern crate libc;
+ if let Ok(table) = Self::try_new_uninitialized(capacity) {
+ table
+ } else {
+ libc::abort();
+ }
+ }
+
+ /// Does not initialize the buckets. The caller should ensure they,
+ /// at the very least, set every hash to EMPTY_BUCKET.
+ unsafe fn try_new_uninitialized(
+ capacity: usize,
+ ) -> Result<RawTable<K, V>, FailedAllocationError> {
+ if capacity == 0 {
+ return Ok(RawTable {
+ size: 0,
+ capacity_mask: capacity.wrapping_sub(1),
+ hashes: TaggedHashUintPtr::new(EMPTY as *mut HashUint),
+ marker: marker::PhantomData,
+ });
+ }
+
+ // No need for `checked_mul` before a more restrictive check performed
+ // later in this method.
+ let hashes_size = capacity.wrapping_mul(size_of::<HashUint>());
+ let pairs_size = capacity.wrapping_mul(size_of::<(K, V)>());
+
+ // Allocating hashmaps is a little tricky. We need to allocate two
+ // arrays, but since we know their sizes and alignments up front,
+ // we just allocate a single array, and then have the subarrays
+ // point into it.
+ //
+ // This is great in theory, but in practice getting the alignment
+ // right is a little subtle. Therefore, calculating offsets has been
+ // factored out into a different function.
+ let (alignment, hash_offset, size, oflo) = calculate_allocation(
+ hashes_size,
+ align_of::<HashUint>(),
+ pairs_size,
+ align_of::<(K, V)>(),
+ );
+
+ if oflo {
+ return Err(FailedAllocationError::new(
+ "capacity overflow when allocating RawTable",
+ ));
+ }
+
+ // One check for overflow that covers calculation and rounding of size.
+ let size_of_bucket = size_of::<HashUint>()
+ .checked_add(size_of::<(K, V)>())
+ .unwrap();
+
+ let cap_bytes = capacity.checked_mul(size_of_bucket);
+
+ if let Some(cap_bytes) = cap_bytes {
+ if size < cap_bytes {
+ return Err(FailedAllocationError::new(
+ "capacity overflow when allocating RawTable",
+ ));
+ }
+ } else {
+ return Err(FailedAllocationError::new(
+ "capacity overflow when allocating RawTable",
+ ));
+ }
+
+ // FORK NOTE: Uses alloc shim instead of Heap.alloc
+ let buffer = alloc(size, alignment);
+
+ if buffer.is_null() {
+ use crate::AllocationInfo;
+ return Err(FailedAllocationError {
+ reason: "out of memory when allocating RawTable",
+ allocation_info: Some(AllocationInfo { size, alignment }),
+ });
+ }
+
+ let hashes = buffer.offset(hash_offset as isize) as *mut HashUint;
+
+ Ok(RawTable {
+ capacity_mask: capacity.wrapping_sub(1),
+ size: 0,
+ hashes: TaggedHashUintPtr::new(hashes),
+ marker: marker::PhantomData,
+ })
+ }
+
+ fn raw_bucket_at(&self, index: usize) -> RawBucket<K, V> {
+ let hashes_size = self.capacity() * size_of::<HashUint>();
+ let pairs_size = self.capacity() * size_of::<(K, V)>();
+
+ let (pairs_offset, _, oflo) =
+ calculate_offsets(hashes_size, pairs_size, align_of::<(K, V)>());
+ debug_assert!(!oflo, "capacity overflow");
+
+ let buffer = self.hashes.ptr() as *mut u8;
+ unsafe {
+ RawBucket {
+ hash_start: buffer as *mut HashUint,
+ pair_start: buffer.offset(pairs_offset as isize) as *const (K, V),
+ idx: index,
+ _marker: marker::PhantomData,
+ }
+ }
+ }
+
+ /// Creates a new raw table from a given capacity. All buckets are
+ /// initially empty.
+ pub fn new(capacity: usize) -> Result<RawTable<K, V>, FailedAllocationError> {
+ unsafe {
+ let ret = RawTable::try_new_uninitialized(capacity)?;
+ ptr::write_bytes(ret.hashes.ptr(), 0, capacity);
+ Ok(ret)
+ }
+ }
+
+ /// The hashtable's capacity, similar to a vector's.
+ pub fn capacity(&self) -> usize {
+ self.capacity_mask.wrapping_add(1)
+ }
+
+ /// The number of elements ever `put` in the hashtable, minus the number
+ /// of elements ever `take`n.
+ pub fn size(&self) -> usize {
+ self.size
+ }
+
+ fn raw_buckets(&self) -> RawBuckets<K, V> {
+ RawBuckets {
+ raw: self.raw_bucket_at(0),
+ elems_left: self.size,
+ marker: marker::PhantomData,
+ }
+ }
+
+ pub fn iter(&self) -> Iter<K, V> {
+ Iter {
+ iter: self.raw_buckets(),
+ }
+ }
+
+ pub fn iter_mut(&mut self) -> IterMut<K, V> {
+ IterMut {
+ iter: self.raw_buckets(),
+ _marker: marker::PhantomData,
+ }
+ }
+
+ pub fn into_iter(self) -> IntoIter<K, V> {
+ let RawBuckets {
+ raw, elems_left, ..
+ } = self.raw_buckets();
+ // Replace the marker regardless of lifetime bounds on parameters.
+ IntoIter {
+ iter: RawBuckets {
+ raw,
+ elems_left,
+ marker: marker::PhantomData,
+ },
+ table: self,
+ }
+ }
+
+ pub fn drain(&mut self) -> Drain<K, V> {
+ let RawBuckets {
+ raw, elems_left, ..
+ } = self.raw_buckets();
+ // Replace the marker regardless of lifetime bounds on parameters.
+ Drain {
+ iter: RawBuckets {
+ raw,
+ elems_left,
+ marker: marker::PhantomData,
+ },
+ table: Shared::from(self),
+ marker: marker::PhantomData,
+ }
+ }
+
+ /// Drops buckets in reverse order. It leaves the table in an inconsistent
+ /// state and should only be used for dropping the table's remaining
+ /// entries. It's used in the implementation of Drop.
+ unsafe fn rev_drop_buckets(&mut self) {
+ // initialize the raw bucket past the end of the table
+ let mut raw = self.raw_bucket_at(self.capacity());
+ let mut elems_left = self.size;
+
+ while elems_left != 0 {
+ raw.idx -= 1;
+
+ if *raw.hash() != EMPTY_BUCKET {
+ elems_left -= 1;
+ ptr::drop_in_place(raw.pair());
+ }
+ }
+ }
+
+ /// Set the table tag
+ pub fn set_tag(&mut self, value: bool) {
+ self.hashes.set_tag(value)
+ }
+
+ /// Get the table tag
+ pub fn tag(&self) -> bool {
+ self.hashes.tag()
+ }
+}
+
+/// A raw iterator. The basis for some other iterators in this module. Although
+/// this interface is safe, it's not used outside this module.
+struct RawBuckets<'a, K, V> {
+ raw: RawBucket<K, V>,
+ elems_left: usize,
+
+ // Strictly speaking, this should be &'a (K,V), but that would
+ // require that K:'a, and we often use RawBuckets<'static...> for
+ // move iterations, so that messes up a lot of other things. So
+ // just use `&'a (K,V)` as this is not a publicly exposed type
+ // anyway.
+ marker: marker::PhantomData<&'a ()>,
+}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for RawBuckets<'a, K, V> {
+ fn clone(&self) -> RawBuckets<'a, K, V> {
+ RawBuckets {
+ raw: self.raw,
+ elems_left: self.elems_left,
+ marker: marker::PhantomData,
+ }
+ }
+}
+
+impl<'a, K, V> Iterator for RawBuckets<'a, K, V> {
+ type Item = RawBucket<K, V>;
+
+ fn next(&mut self) -> Option<RawBucket<K, V>> {
+ if self.elems_left == 0 {
+ return None;
+ }
+
+ loop {
+ unsafe {
+ let item = self.raw;
+ self.raw.idx += 1;
+ if *item.hash() != EMPTY_BUCKET {
+ self.elems_left -= 1;
+ return Some(item);
+ }
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.elems_left, Some(self.elems_left))
+ }
+}
+
+impl<'a, K, V> ExactSizeIterator for RawBuckets<'a, K, V> {
+ fn len(&self) -> usize {
+ self.elems_left
+ }
+}
+
+/// Iterator over shared references to entries in a table.
+pub struct Iter<'a, K: 'a, V: 'a> {
+ iter: RawBuckets<'a, K, V>,
+}
+
+unsafe impl<'a, K: Sync, V: Sync> Sync for Iter<'a, K, V> {}
+unsafe impl<'a, K: Sync, V: Sync> Send for Iter<'a, K, V> {}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for Iter<'a, K, V> {
+ fn clone(&self) -> Iter<'a, K, V> {
+ Iter {
+ iter: self.iter.clone(),
+ }
+ }
+}
+
+/// Iterator over mutable references to entries in a table.
+pub struct IterMut<'a, K: 'a, V: 'a> {
+ iter: RawBuckets<'a, K, V>,
+ // To ensure invariance with respect to V
+ _marker: marker::PhantomData<&'a mut V>,
+}
+
+unsafe impl<'a, K: Sync, V: Sync> Sync for IterMut<'a, K, V> {}
+// Both K: Sync and K: Send are correct for IterMut's Send impl,
+// but Send is the more useful bound
+unsafe impl<'a, K: Send, V: Send> Send for IterMut<'a, K, V> {}
+
+impl<'a, K: 'a, V: 'a> IterMut<'a, K, V> {
+ pub fn iter(&self) -> Iter<K, V> {
+ Iter {
+ iter: self.iter.clone(),
+ }
+ }
+}
+
+/// Iterator over the entries in a table, consuming the table.
+pub struct IntoIter<K, V> {
+ table: RawTable<K, V>,
+ iter: RawBuckets<'static, K, V>,
+}
+
+unsafe impl<K: Sync, V: Sync> Sync for IntoIter<K, V> {}
+unsafe impl<K: Send, V: Send> Send for IntoIter<K, V> {}
+
+impl<K, V> IntoIter<K, V> {
+ pub fn iter(&self) -> Iter<K, V> {
+ Iter {
+ iter: self.iter.clone(),
+ }
+ }
+}
+
+/// Iterator over the entries in a table, clearing the table.
+pub struct Drain<'a, K: 'static, V: 'static> {
+ table: Shared<RawTable<K, V>>,
+ iter: RawBuckets<'static, K, V>,
+ marker: marker::PhantomData<&'a RawTable<K, V>>,
+}
+
+unsafe impl<'a, K: Sync, V: Sync> Sync for Drain<'a, K, V> {}
+unsafe impl<'a, K: Send, V: Send> Send for Drain<'a, K, V> {}
+
+impl<'a, K, V> Drain<'a, K, V> {
+ pub fn iter(&self) -> Iter<K, V> {
+ Iter {
+ iter: self.iter.clone(),
+ }
+ }
+}
+
+impl<'a, K, V> Iterator for Iter<'a, K, V> {
+ type Item = (&'a K, &'a V);
+
+ fn next(&mut self) -> Option<(&'a K, &'a V)> {
+ self.iter.next().map(|raw| unsafe {
+ let pair_ptr = raw.pair();
+ (&(*pair_ptr).0, &(*pair_ptr).1)
+ })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
+ fn len(&self) -> usize {
+ self.iter.len()
+ }
+}
+
+impl<'a, K, V> Iterator for IterMut<'a, K, V> {
+ type Item = (&'a K, &'a mut V);
+
+ fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
+ self.iter.next().map(|raw| unsafe {
+ let pair_ptr = raw.pair();
+ (&(*pair_ptr).0, &mut (*pair_ptr).1)
+ })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
+ fn len(&self) -> usize {
+ self.iter.len()
+ }
+}
+
+impl<K, V> Iterator for IntoIter<K, V> {
+ type Item = (SafeHash, K, V);
+
+ fn next(&mut self) -> Option<(SafeHash, K, V)> {
+ self.iter.next().map(|raw| {
+ self.table.size -= 1;
+ unsafe {
+ let (k, v) = ptr::read(raw.pair());
+ (SafeHash { hash: *raw.hash() }, k, v)
+ }
+ })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<K, V> ExactSizeIterator for IntoIter<K, V> {
+ fn len(&self) -> usize {
+ self.iter().len()
+ }
+}
+
+impl<'a, K, V> Iterator for Drain<'a, K, V> {
+ type Item = (SafeHash, K, V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(SafeHash, K, V)> {
+ self.iter.next().map(|raw| unsafe {
+ self.table.as_mut().size -= 1;
+ let (k, v) = ptr::read(raw.pair());
+ (
+ SafeHash {
+ hash: ptr::replace(&mut *raw.hash(), EMPTY_BUCKET),
+ },
+ k,
+ v,
+ )
+ })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
+ fn len(&self) -> usize {
+ self.iter.len()
+ }
+}
+
+impl<'a, K: 'static, V: 'static> Drop for Drain<'a, K, V> {
+ fn drop(&mut self) {
+ for _ in self {}
+ }
+}
+
+impl<K: Clone, V: Clone> Clone for RawTable<K, V> {
+ fn clone(&self) -> RawTable<K, V> {
+ unsafe {
+ let cap = self.capacity();
+ let mut new_ht = RawTable::new_uninitialized(cap);
+
+ let mut new_buckets = new_ht.raw_bucket_at(0);
+ let mut buckets = self.raw_bucket_at(0);
+ while buckets.idx < cap {
+ *new_buckets.hash() = *buckets.hash();
+ if *new_buckets.hash() != EMPTY_BUCKET {
+ let pair_ptr = buckets.pair();
+ let kv = ((*pair_ptr).0.clone(), (*pair_ptr).1.clone());
+ ptr::write(new_buckets.pair(), kv);
+ }
+ buckets.idx += 1;
+ new_buckets.idx += 1;
+ }
+
+ new_ht.size = self.size();
+
+ new_ht
+ }
+ }
+}
+
+// FORK NOTE: There may be lifetime errors that do not occur on std::HashMap
+// since we removed the may_dangle (which allows more things to compile but has stricter guarantees).
+// Generally we should be fine as long as no borrowed data is stuck into the map.
+impl<K, V> Drop for RawTable<K, V> {
+ fn drop(&mut self) {
+ if self.capacity() == 0 {
+ return;
+ }
+
+ // This is done in reverse because we've likely partially taken
+ // some elements out with `.into_iter()` from the front.
+ // Check if the size is 0, so we don't do a useless scan when
+ // dropping empty tables such as on resize.
+ // Also avoid double drop of elements that have been already moved out.
+ unsafe {
+ // FORK NOTE: Can't needs_drop on stable
+ // if needs_drop::<(K, V)>() {
+ // avoid linear runtime for types that don't need drop
+ self.rev_drop_buckets();
+ // }
+ }
+
+ let hashes_size = self.capacity() * size_of::<HashUint>();
+ let pairs_size = self.capacity() * size_of::<(K, V)>();
+ let (align, _, _, oflo) = calculate_allocation(
+ hashes_size,
+ align_of::<HashUint>(),
+ pairs_size,
+ align_of::<(K, V)>(),
+ );
+
+ debug_assert!(!oflo, "should be impossible");
+
+ unsafe {
+ dealloc(self.hashes.ptr() as *mut u8, align);
+ // Remember how everything was allocated out of one buffer
+ // during initialization? We only need one call to free here.
+ }
+ }
+}