summaryrefslogtreecommitdiffstats
path: root/third_party/rust/bit-vec/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/bit-vec/src/lib.rs')
-rw-r--r--third_party/rust/bit-vec/src/lib.rs2478
1 files changed, 2478 insertions, 0 deletions
diff --git a/third_party/rust/bit-vec/src/lib.rs b/third_party/rust/bit-vec/src/lib.rs
new file mode 100644
index 0000000000..0d33aff847
--- /dev/null
+++ b/third_party/rust/bit-vec/src/lib.rs
@@ -0,0 +1,2478 @@
+// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+// FIXME(Gankro): BitVec and BitSet are very tightly coupled. Ideally (for
+// maintenance), they should be in separate files/modules, with BitSet only
+// using BitVec's public API. This will be hard for performance though, because
+// `BitVec` will not want to leak its internal representation while its internal
+// representation as `u32`s must be assumed for best performance.
+
+// (1) Be careful, most things can overflow here because the amount of bits in
+// memory can overflow `usize`.
+// (2) Make sure that the underlying vector has no excess length:
+// E. g. `nbits == 16`, `storage.len() == 2` would be excess length,
+// because the last word isn't used at all. This is important because some
+// methods rely on it (for *CORRECTNESS*).
+// (3) Make sure that the unused bits in the last word are zeroed out, again
+// other methods rely on it for *CORRECTNESS*.
+// (4) `BitSet` is tightly coupled with `BitVec`, so any changes you make in
+// `BitVec` will need to be reflected in `BitSet`.
+
+//! Collections implemented with bit vectors.
+//!
+//! # Examples
+//!
+//! This is a simple example of the [Sieve of Eratosthenes][sieve]
+//! which calculates prime numbers up to a given limit.
+//!
+//! [sieve]: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
+//!
+//! ```
+//! use bit_vec::BitVec;
+//!
+//! let max_prime = 10000;
+//!
+//! // Store the primes as a BitVec
+//! let primes = {
+//! // Assume all numbers are prime to begin, and then we
+//! // cross off non-primes progressively
+//! let mut bv = BitVec::from_elem(max_prime, true);
+//!
+//! // Neither 0 nor 1 are prime
+//! bv.set(0, false);
+//! bv.set(1, false);
+//!
+//! for i in 2.. 1 + (max_prime as f64).sqrt() as usize {
+//! // if i is a prime
+//! if bv[i] {
+//! // Mark all multiples of i as non-prime (any multiples below i * i
+//! // will have been marked as non-prime previously)
+//! for j in i.. {
+//! if i * j >= max_prime {
+//! break;
+//! }
+//! bv.set(i * j, false)
+//! }
+//! }
+//! }
+//! bv
+//! };
+//!
+//! // Simple primality tests below our max bound
+//! let print_primes = 20;
+//! print!("The primes below {} are: ", print_primes);
+//! for x in 0..print_primes {
+//! if primes.get(x).unwrap_or(false) {
+//! print!("{} ", x);
+//! }
+//! }
+//! println!();
+//!
+//! let num_primes = primes.iter().filter(|x| *x).count();
+//! println!("There are {} primes below {}", num_primes, max_prime);
+//! assert_eq!(num_primes, 1_229);
+//! ```
+
+#![no_std]
+
+#[cfg(any(test, feature = "std"))]
+#[macro_use]
+extern crate std;
+#[cfg(feature="std")]
+use std::vec::Vec;
+
+#[cfg(feature="serde")]
+extern crate serde;
+#[cfg(feature="serde")]
+use serde::{Serialize, Deserialize};
+
+#[cfg(not(feature="std"))]
+#[macro_use]
+extern crate alloc;
+#[cfg(not(feature="std"))]
+use alloc::vec::Vec;
+
+use core::cmp::Ordering;
+use core::cmp;
+use core::fmt;
+use core::hash;
+use core::mem;
+use core::iter::FromIterator;
+use core::slice;
+use core::{u8, usize};
+use core::iter::repeat;
+use core::ops::*;
+
+type MutBlocks<'a, B> = slice::IterMut<'a, B>;
+
+/// Abstracts over a pile of bits (basically unsigned primitives)
+pub trait BitBlock:
+ Copy +
+ Add<Self, Output=Self> +
+ Sub<Self, Output=Self> +
+ Shl<usize, Output=Self> +
+ Shr<usize, Output=Self> +
+ Not<Output=Self> +
+ BitAnd<Self, Output=Self> +
+ BitOr<Self, Output=Self> +
+ BitXor<Self, Output=Self> +
+ Rem<Self, Output=Self> +
+ Eq +
+ Ord +
+ hash::Hash
+{
+ /// How many bits it has
+ fn bits() -> usize;
+ /// How many bytes it has
+ #[inline]
+ fn bytes() -> usize { Self::bits() / 8 }
+ /// Convert a byte into this type (lowest-order bits set)
+ fn from_byte(byte: u8) -> Self;
+ /// Count the number of 1's in the bitwise repr
+ fn count_ones(self) -> usize;
+ /// Get `0`
+ fn zero() -> Self;
+ /// Get `1`
+ fn one() -> Self;
+}
+
+macro_rules! bit_block_impl {
+ ($(($t: ident, $size: expr)),*) => ($(
+ impl BitBlock for $t {
+ #[inline]
+ fn bits() -> usize { $size }
+ #[inline]
+ fn from_byte(byte: u8) -> Self { $t::from(byte) }
+ #[inline]
+ fn count_ones(self) -> usize { self.count_ones() as usize }
+ #[inline]
+ fn one() -> Self { 1 }
+ #[inline]
+ fn zero() -> Self { 0 }
+ }
+ )*)
+}
+
+bit_block_impl!{
+ (u8, 8),
+ (u16, 16),
+ (u32, 32),
+ (u64, 64),
+ (usize, core::mem::size_of::<usize>() * 8)
+}
+
+fn reverse_bits(byte: u8) -> u8 {
+ let mut result = 0;
+ for i in 0..u8::bits() {
+ result |= ((byte >> i) & 1) << (u8::bits() - 1 - i);
+ }
+ result
+}
+
+static TRUE: bool = true;
+static FALSE: bool = false;
+
+/// The bitvector type.
+///
+/// # Examples
+///
+/// ```
+/// use bit_vec::BitVec;
+///
+/// let mut bv = BitVec::from_elem(10, false);
+///
+/// // insert all primes less than 10
+/// bv.set(2, true);
+/// bv.set(3, true);
+/// bv.set(5, true);
+/// bv.set(7, true);
+/// println!("{:?}", bv);
+/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count());
+///
+/// // flip all values in bitvector, producing non-primes less than 10
+/// bv.negate();
+/// println!("{:?}", bv);
+/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count());
+///
+/// // reset bitvector to empty
+/// bv.clear();
+/// println!("{:?}", bv);
+/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count());
+/// ```
+#[cfg_attr(feature="serde", derive(Serialize, Deserialize))]
+pub struct BitVec<B=u32> {
+ /// Internal representation of the bit vector
+ storage: Vec<B>,
+ /// The number of valid bits in the internal representation
+ nbits: usize
+}
+
+// FIXME(Gankro): NopeNopeNopeNopeNope (wait for IndexGet to be a thing)
+impl<B: BitBlock> Index<usize> for BitVec<B> {
+ type Output = bool;
+
+ #[inline]
+ fn index(&self, i: usize) -> &bool {
+ if self.get(i).expect("index out of bounds") {
+ &TRUE
+ } else {
+ &FALSE
+ }
+ }
+}
+
+/// Computes how many blocks are needed to store that many bits
+fn blocks_for_bits<B: BitBlock>(bits: usize) -> usize {
+ // If we want 17 bits, dividing by 32 will produce 0. So we add 1 to make sure we
+ // reserve enough. But if we want exactly a multiple of 32, this will actually allocate
+ // one too many. So we need to check if that's the case. We can do that by computing if
+ // bitwise AND by `32 - 1` is 0. But LLVM should be able to optimize the semantically
+ // superior modulo operator on a power of two to this.
+ //
+ // Note that we can technically avoid this branch with the expression
+ // `(nbits + U32_BITS - 1) / 32::BITS`, but if nbits is almost usize::MAX this will overflow.
+ if bits % B::bits() == 0 {
+ bits / B::bits()
+ } else {
+ bits / B::bits() + 1
+ }
+}
+
+/// Computes the bitmask for the final word of the vector
+fn mask_for_bits<B: BitBlock>(bits: usize) -> B {
+ // Note especially that a perfect multiple of U32_BITS should mask all 1s.
+ (!B::zero()) >> ((B::bits() - bits % B::bits()) % B::bits())
+}
+
+type B = u32;
+
+impl BitVec<u32> {
+
+ /// Creates an empty `BitVec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ /// let mut bv = BitVec::new();
+ /// ```
+ #[inline]
+ pub fn new() -> Self {
+ Default::default()
+ }
+
+ /// Creates a `BitVec` that holds `nbits` elements, setting each element
+ /// to `bit`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(10, false);
+ /// assert_eq!(bv.len(), 10);
+ /// for x in bv.iter() {
+ /// assert_eq!(x, false);
+ /// }
+ /// ```
+ #[inline]
+ pub fn from_elem(nbits: usize, bit: bool) -> Self {
+ let nblocks = blocks_for_bits::<B>(nbits);
+ let mut bit_vec = BitVec {
+ storage: vec![if bit { !B::zero() } else { B::zero() }; nblocks],
+ nbits,
+ };
+ bit_vec.fix_last_block();
+ bit_vec
+ }
+
+ /// Constructs a new, empty `BitVec` with the specified capacity.
+ ///
+ /// The bitvector will be able to hold at least `capacity` bits without
+ /// reallocating. If `capacity` is 0, it will not allocate.
+ ///
+ /// It is important to note that this function does not specify the
+ /// *length* of the returned bitvector, but only the *capacity*.
+ #[inline]
+ pub fn with_capacity(nbits: usize) -> Self {
+ BitVec {
+ storage: Vec::with_capacity(blocks_for_bits::<B>(nbits)),
+ nbits: 0,
+ }
+ }
+
+ /// Transforms a byte-vector into a `BitVec`. Each byte becomes eight bits,
+ /// with the most significant bits of each byte coming first. Each
+ /// bit becomes `true` if equal to 1 or `false` if equal to 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let bv = BitVec::from_bytes(&[0b10100000, 0b00010010]);
+ /// assert!(bv.eq_vec(&[true, false, true, false,
+ /// false, false, false, false,
+ /// false, false, false, true,
+ /// false, false, true, false]));
+ /// ```
+ pub fn from_bytes(bytes: &[u8]) -> Self {
+ let len = bytes.len().checked_mul(u8::bits()).expect("capacity overflow");
+ let mut bit_vec = BitVec::with_capacity(len);
+ let complete_words = bytes.len() / B::bytes();
+ let extra_bytes = bytes.len() % B::bytes();
+
+ bit_vec.nbits = len;
+
+ for i in 0..complete_words {
+ let mut accumulator = B::zero();
+ for idx in 0..B::bytes() {
+ accumulator |=
+ B::from_byte(reverse_bits(bytes[i * B::bytes() + idx])) << (idx * 8)
+ }
+ bit_vec.storage.push(accumulator);
+ }
+
+ if extra_bytes > 0 {
+ let mut last_word = B::zero();
+ for (i, &byte) in bytes[complete_words * B::bytes()..].iter().enumerate() {
+ last_word |=
+ B::from_byte(reverse_bits(byte)) << (i * 8);
+ }
+ bit_vec.storage.push(last_word);
+ }
+
+ bit_vec
+ }
+
+ /// Creates a `BitVec` of the specified length where the value at each index
+ /// is `f(index)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let bv = BitVec::from_fn(5, |i| { i % 2 == 0 });
+ /// assert!(bv.eq_vec(&[true, false, true, false, true]));
+ /// ```
+ #[inline]
+ pub fn from_fn<F>(len: usize, mut f: F) -> Self
+ where F: FnMut(usize) -> bool
+ {
+ let mut bit_vec = BitVec::from_elem(len, false);
+ for i in 0..len {
+ bit_vec.set(i, f(i));
+ }
+ bit_vec
+ }
+}
+
+impl<B: BitBlock> BitVec<B> {
+ /// Applies the given operation to the blocks of self and other, and sets
+ /// self to be the result. This relies on the caller not to corrupt the
+ /// last word.
+ #[inline]
+ fn process<F>(&mut self, other: &BitVec<B>, mut op: F) -> bool
+ where F: FnMut(B, B) -> B {
+ assert_eq!(self.len(), other.len());
+ debug_assert_eq!(self.storage.len(), other.storage.len());
+ let mut changed_bits = B::zero();
+ for (a, b) in self.blocks_mut().zip(other.blocks()) {
+ let w = op(*a, b);
+ changed_bits = changed_bits | (*a ^ w);
+ *a = w;
+ }
+ changed_bits != B::zero()
+ }
+
+ /// Iterator over mutable refs to the underlying blocks of data.
+ #[inline]
+ fn blocks_mut(&mut self) -> MutBlocks<B> {
+ // (2)
+ self.storage.iter_mut()
+ }
+
+ /// Iterator over the underlying blocks of data
+ #[inline]
+ pub fn blocks(&self) -> Blocks<B> {
+ // (2)
+ Blocks{iter: self.storage.iter()}
+ }
+
+ /// Exposes the raw block storage of this BitVec
+ ///
+ /// Only really intended for BitSet.
+ #[inline]
+ pub fn storage(&self) -> &[B] {
+ &self.storage
+ }
+
+ /// Exposes the raw block storage of this BitVec
+ ///
+ /// Can probably cause unsafety. Only really intended for BitSet.
+ #[inline]
+ pub unsafe fn storage_mut(&mut self) -> &mut Vec<B> {
+ &mut self.storage
+ }
+
+ /// Helper for procedures involving spare space in the last block.
+ #[inline]
+ fn last_block_with_mask(&self) -> Option<(B, B)> {
+ let extra_bits = self.len() % B::bits();
+ if extra_bits > 0 {
+ let mask = (B::one() << extra_bits) - B::one();
+ let storage_len = self.storage.len();
+ Some((self.storage[storage_len - 1], mask))
+ } else {
+ None
+ }
+ }
+
+ /// Helper for procedures involving spare space in the last block.
+ #[inline]
+ fn last_block_mut_with_mask(&mut self) -> Option<(&mut B, B)> {
+ let extra_bits = self.len() % B::bits();
+ if extra_bits > 0 {
+ let mask = (B::one() << extra_bits) - B::one();
+ let storage_len = self.storage.len();
+ Some((&mut self.storage[storage_len - 1], mask))
+ } else {
+ None
+ }
+ }
+
+ /// An operation might screw up the unused bits in the last block of the
+ /// `BitVec`. As per (3), it's assumed to be all 0s. This method fixes it up.
+ fn fix_last_block(&mut self) {
+ if let Some((last_block, used_bits)) = self.last_block_mut_with_mask() {
+ *last_block = *last_block & used_bits;
+ }
+ }
+
+ /// Operations such as change detection for xnor, nor and nand are easiest
+ /// to implement when unused bits are all set to 1s.
+ fn fix_last_block_with_ones(&mut self) {
+ if let Some((last_block, used_bits)) = self.last_block_mut_with_mask() {
+ *last_block = *last_block | !used_bits;
+ }
+ }
+
+ /// Check whether last block's invariant is fine.
+ fn is_last_block_fixed(&self) -> bool {
+ if let Some((last_block, used_bits)) = self.last_block_with_mask() {
+ last_block & !used_bits == B::zero()
+ } else {
+ true
+ }
+ }
+
+ /// Ensure the invariant for the last block.
+ ///
+ /// An operation might screw up the unused bits in the last block of the
+ /// `BitVec`.
+ ///
+ /// This method fails in case the last block is not fixed. The check
+ /// is skipped outside testing.
+ #[inline]
+ fn ensure_invariant(&self) {
+ if cfg!(test) {
+ debug_assert!(self.is_last_block_fixed());
+ }
+ }
+
+ /// Retrieves the value at index `i`, or `None` if the index is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let bv = BitVec::from_bytes(&[0b01100000]);
+ /// assert_eq!(bv.get(0), Some(false));
+ /// assert_eq!(bv.get(1), Some(true));
+ /// assert_eq!(bv.get(100), None);
+ ///
+ /// // Can also use array indexing
+ /// assert_eq!(bv[1], true);
+ /// ```
+ #[inline]
+ pub fn get(&self, i: usize) -> Option<bool> {
+ self.ensure_invariant();
+ if i >= self.nbits {
+ return None;
+ }
+ let w = i / B::bits();
+ let b = i % B::bits();
+ self.storage.get(w).map(|&block|
+ (block & (B::one() << b)) != B::zero()
+ )
+ }
+
+ /// Sets the value of a bit at an index `i`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `i` is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(5, false);
+ /// bv.set(3, true);
+ /// assert_eq!(bv[3], true);
+ /// ```
+ #[inline]
+ pub fn set(&mut self, i: usize, x: bool) {
+ self.ensure_invariant();
+ assert!(i < self.nbits, "index out of bounds: {:?} >= {:?}", i, self.nbits);
+ let w = i / B::bits();
+ let b = i % B::bits();
+ let flag = B::one() << b;
+ let val = if x { self.storage[w] | flag }
+ else { self.storage[w] & !flag };
+ self.storage[w] = val;
+ }
+
+ /// Sets all bits to 1.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let before = 0b01100000;
+ /// let after = 0b11111111;
+ ///
+ /// let mut bv = BitVec::from_bytes(&[before]);
+ /// bv.set_all();
+ /// assert_eq!(bv, BitVec::from_bytes(&[after]));
+ /// ```
+ #[inline]
+ pub fn set_all(&mut self) {
+ self.ensure_invariant();
+ for w in &mut self.storage { *w = !B::zero(); }
+ self.fix_last_block();
+ }
+
+ /// Flips all bits.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let before = 0b01100000;
+ /// let after = 0b10011111;
+ ///
+ /// let mut bv = BitVec::from_bytes(&[before]);
+ /// bv.negate();
+ /// assert_eq!(bv, BitVec::from_bytes(&[after]));
+ /// ```
+ #[inline]
+ pub fn negate(&mut self) {
+ self.ensure_invariant();
+ for w in &mut self.storage { *w = !*w; }
+ self.fix_last_block();
+ }
+
+ /// Calculates the union of two bitvectors. This acts like the bitwise `or`
+ /// function.
+ ///
+ /// Sets `self` to the union of `self` and `other`. Both bitvectors must be
+ /// the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different lengths.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100100;
+ /// let b = 0b01011010;
+ /// let res = 0b01111110;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.union(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[deprecated(
+ since = "0.7.0",
+ note = "Please use the 'or' function instead"
+ )]
+ #[inline]
+ pub fn union(&mut self, other: &Self) -> bool {
+ self.or(other)
+ }
+
+ /// Calculates the intersection of two bitvectors. This acts like the
+ /// bitwise `and` function.
+ ///
+ /// Sets `self` to the intersection of `self` and `other`. Both bitvectors
+ /// must be the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different lengths.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100100;
+ /// let b = 0b01011010;
+ /// let res = 0b01000000;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.intersect(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[deprecated(
+ since = "0.7.0",
+ note = "Please use the 'and' function instead"
+ )]
+ #[inline]
+ pub fn intersect(&mut self, other: &Self) -> bool {
+ self.and(other)
+ }
+
+ /// Calculates the bitwise `or` of two bitvectors.
+ ///
+ /// Sets `self` to the union of `self` and `other`. Both bitvectors must be
+ /// the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different lengths.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100100;
+ /// let b = 0b01011010;
+ /// let res = 0b01111110;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.or(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[inline]
+ pub fn or(&mut self, other: &Self) -> bool {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ self.process(other, |w1, w2| (w1 | w2))
+ }
+
+ /// Calculates the bitwise `and` of two bitvectors.
+ ///
+ /// Sets `self` to the intersection of `self` and `other`. Both bitvectors
+ /// must be the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different lengths.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100100;
+ /// let b = 0b01011010;
+ /// let res = 0b01000000;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.and(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[inline]
+ pub fn and(&mut self, other: &Self) -> bool {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ self.process(other, |w1, w2| (w1 & w2))
+ }
+
+ /// Calculates the difference between two bitvectors.
+ ///
+ /// Sets each element of `self` to the value of that element minus the
+ /// element of `other` at the same index. Both bitvectors must be the same
+ /// length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100100;
+ /// let b = 0b01011010;
+ /// let a_b = 0b00100100; // a - b
+ /// let b_a = 0b00011010; // b - a
+ ///
+ /// let mut bva = BitVec::from_bytes(&[a]);
+ /// let bvb = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(bva.difference(&bvb));
+ /// assert_eq!(bva, BitVec::from_bytes(&[a_b]));
+ ///
+ /// let bva = BitVec::from_bytes(&[a]);
+ /// let mut bvb = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(bvb.difference(&bva));
+ /// assert_eq!(bvb, BitVec::from_bytes(&[b_a]));
+ /// ```
+ #[inline]
+ pub fn difference(&mut self, other: &Self) -> bool {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ self.process(other, |w1, w2| (w1 & !w2))
+ }
+
+ /// Calculates the xor of two bitvectors.
+ ///
+ /// Sets `self` to the xor of `self` and `other`. Both bitvectors must be
+ /// the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100110;
+ /// let b = 0b01010100;
+ /// let res = 0b00110010;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.xor(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[inline]
+ pub fn xor(&mut self, other: &Self) -> bool {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ self.process(other, |w1, w2| (w1 ^ w2))
+ }
+
+ /// Calculates the nand of two bitvectors.
+ ///
+ /// Sets `self` to the nand of `self` and `other`. Both bitvectors must be
+ /// the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100110;
+ /// let b = 0b01010100;
+ /// let res = 0b10111011;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.nand(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[inline]
+ pub fn nand(&mut self, other: &Self) -> bool {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ self.fix_last_block_with_ones();
+ let result = self.process(other, |w1, w2| !(w1 & w2));
+ self.fix_last_block();
+ result
+ }
+
+ /// Calculates the nor of two bitvectors.
+ ///
+ /// Sets `self` to the nor of `self` and `other`. Both bitvectors must be
+ /// the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100110;
+ /// let b = 0b01010100;
+ /// let res = 0b10001001;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.nor(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[inline]
+ pub fn nor(&mut self, other: &Self) -> bool {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ self.fix_last_block_with_ones();
+ let result = self.process(other, |w1, w2| !(w1 | w2));
+ self.fix_last_block();
+ result
+ }
+
+ /// Calculates the xnor of two bitvectors.
+ ///
+ /// Sets `self` to the xnor of `self` and `other`. Both bitvectors must be
+ /// the same length. Returns `true` if `self` changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the bitvectors are of different length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let a = 0b01100110;
+ /// let b = 0b01010100;
+ /// let res = 0b11001101;
+ ///
+ /// let mut a = BitVec::from_bytes(&[a]);
+ /// let b = BitVec::from_bytes(&[b]);
+ ///
+ /// assert!(a.xnor(&b));
+ /// assert_eq!(a, BitVec::from_bytes(&[res]));
+ /// ```
+ #[inline]
+ pub fn xnor(&mut self, other: &Self) -> bool {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ self.fix_last_block_with_ones();
+ let result = self.process(other, |w1, w2| !(w1 ^ w2));
+ self.fix_last_block();
+ result
+ }
+
+ /// Returns `true` if all bits are 1.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(5, true);
+ /// assert_eq!(bv.all(), true);
+ ///
+ /// bv.set(1, false);
+ /// assert_eq!(bv.all(), false);
+ /// ```
+ #[inline]
+ pub fn all(&self) -> bool {
+ self.ensure_invariant();
+ let mut last_word = !B::zero();
+ // Check that every block but the last is all-ones...
+ self.blocks().all(|elem| {
+ let tmp = last_word;
+ last_word = elem;
+ tmp == !B::zero()
+ // and then check the last one has enough ones
+ }) && (last_word == mask_for_bits(self.nbits))
+ }
+
+ /// Returns an iterator over the elements of the vector in order.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let bv = BitVec::from_bytes(&[0b01110100, 0b10010010]);
+ /// assert_eq!(bv.iter().filter(|x| *x).count(), 7);
+ /// ```
+ #[inline]
+ pub fn iter(&self) -> Iter<B> {
+ self.ensure_invariant();
+ Iter { bit_vec: self, range: 0..self.nbits }
+ }
+
+ /// Moves all bits from `other` into `Self`, leaving `other` empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut a = BitVec::from_bytes(&[0b10000000]);
+ /// let mut b = BitVec::from_bytes(&[0b01100001]);
+ ///
+ /// a.append(&mut b);
+ ///
+ /// assert_eq!(a.len(), 16);
+ /// assert_eq!(b.len(), 0);
+ /// assert!(a.eq_vec(&[true, false, false, false, false, false, false, false,
+ /// false, true, true, false, false, false, false, true]));
+ /// ```
+ pub fn append(&mut self, other: &mut Self) {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+
+ let b = self.len() % B::bits();
+
+ self.nbits += other.len();
+ other.nbits = 0;
+
+ if b == 0 {
+ self.storage.append(&mut other.storage);
+ } else {
+ self.storage.reserve(other.storage.len());
+
+ for block in other.storage.drain(..) {
+ {
+ let last = self.storage.last_mut().unwrap();
+ *last = *last | (block << b);
+ }
+ self.storage.push(block >> (B::bits() - b));
+ }
+ }
+ }
+
+ /// Splits the `BitVec` into two at the given bit,
+ /// retaining the first half in-place and returning the second one.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at` is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ /// let mut a = BitVec::new();
+ /// a.push(true);
+ /// a.push(false);
+ /// a.push(false);
+ /// a.push(true);
+ ///
+ /// let b = a.split_off(2);
+ ///
+ /// assert_eq!(a.len(), 2);
+ /// assert_eq!(b.len(), 2);
+ /// assert!(a.eq_vec(&[true, false]));
+ /// assert!(b.eq_vec(&[false, true]));
+ /// ```
+ pub fn split_off(&mut self, at: usize) -> Self {
+ self.ensure_invariant();
+ assert!(at <= self.len(), "`at` out of bounds");
+
+ let mut other = BitVec::<B>::default();
+
+ if at == 0 {
+ mem::swap(self, &mut other);
+ return other;
+ } else if at == self.len() {
+ return other;
+ }
+
+ let w = at / B::bits();
+ let b = at % B::bits();
+ other.nbits = self.nbits - at;
+ self.nbits = at;
+ if b == 0 {
+ // Split at block boundary
+ other.storage = self.storage.split_off(w);
+ } else {
+ other.storage.reserve(self.storage.len() - w);
+
+ {
+ let mut iter = self.storage[w..].iter();
+ let mut last = *iter.next().unwrap();
+ for &cur in iter {
+ other.storage.push((last >> b) | (cur << (B::bits() - b)));
+ last = cur;
+ }
+ other.storage.push(last >> b);
+ }
+
+ self.storage.truncate(w + 1);
+ self.fix_last_block();
+ }
+
+ other
+ }
+
+ /// Returns `true` if all bits are 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(10, false);
+ /// assert_eq!(bv.none(), true);
+ ///
+ /// bv.set(3, true);
+ /// assert_eq!(bv.none(), false);
+ /// ```
+ #[inline]
+ pub fn none(&self) -> bool {
+ self.blocks().all(|w| w == B::zero())
+ }
+
+ /// Returns `true` if any bit is 1.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(10, false);
+ /// assert_eq!(bv.any(), false);
+ ///
+ /// bv.set(3, true);
+ /// assert_eq!(bv.any(), true);
+ /// ```
+ #[inline]
+ pub fn any(&self) -> bool {
+ !self.none()
+ }
+
+ /// Organises the bits into bytes, such that the first bit in the
+ /// `BitVec` becomes the high-order bit of the first byte. If the
+ /// size of the `BitVec` is not a multiple of eight then trailing bits
+ /// will be filled-in with `false`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(3, true);
+ /// bv.set(1, false);
+ ///
+ /// assert_eq!(bv.to_bytes(), [0b10100000]);
+ ///
+ /// let mut bv = BitVec::from_elem(9, false);
+ /// bv.set(2, true);
+ /// bv.set(8, true);
+ ///
+ /// assert_eq!(bv.to_bytes(), [0b00100000, 0b10000000]);
+ /// ```
+ pub fn to_bytes(&self) -> Vec<u8> {
+ self.ensure_invariant();
+ // Oh lord, we're mapping this to bytes bit-by-bit!
+ fn bit<B: BitBlock>(bit_vec: &BitVec<B>, byte: usize, bit: usize) -> u8 {
+ let offset = byte * 8 + bit;
+ if offset >= bit_vec.nbits {
+ 0
+ } else {
+ (bit_vec[offset] as u8) << (7 - bit)
+ }
+ }
+
+ let len = self.nbits / 8 +
+ if self.nbits % 8 == 0 { 0 } else { 1 };
+ (0..len).map(|i|
+ bit(self, i, 0) |
+ bit(self, i, 1) |
+ bit(self, i, 2) |
+ bit(self, i, 3) |
+ bit(self, i, 4) |
+ bit(self, i, 5) |
+ bit(self, i, 6) |
+ bit(self, i, 7)
+ ).collect()
+ }
+
+ /// Compares a `BitVec` to a slice of `bool`s.
+ /// Both the `BitVec` and slice must have the same length.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the `BitVec` and slice are of different length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let bv = BitVec::from_bytes(&[0b10100000]);
+ ///
+ /// assert!(bv.eq_vec(&[true, false, true, false,
+ /// false, false, false, false]));
+ /// ```
+ #[inline]
+ pub fn eq_vec(&self, v: &[bool]) -> bool {
+ assert_eq!(self.nbits, v.len());
+ self.iter().zip(v.iter().cloned()).all(|(b1, b2)| b1 == b2)
+ }
+
+ /// Shortens a `BitVec`, dropping excess elements.
+ ///
+ /// If `len` is greater than the vector's current length, this has no
+ /// effect.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_bytes(&[0b01001011]);
+ /// bv.truncate(2);
+ /// assert!(bv.eq_vec(&[false, true]));
+ /// ```
+ #[inline]
+ pub fn truncate(&mut self, len: usize) {
+ self.ensure_invariant();
+ if len < self.len() {
+ self.nbits = len;
+ // This fixes (2).
+ self.storage.truncate(blocks_for_bits::<B>(len));
+ self.fix_last_block();
+ }
+ }
+
+ /// Reserves capacity for at least `additional` more bits to be inserted in the given
+ /// `BitVec`. The collection may reserve more space to avoid frequent reallocations.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(3, false);
+ /// bv.reserve(10);
+ /// assert_eq!(bv.len(), 3);
+ /// assert!(bv.capacity() >= 13);
+ /// ```
+ #[inline]
+ pub fn reserve(&mut self, additional: usize) {
+ let desired_cap = self.len().checked_add(additional).expect("capacity overflow");
+ let storage_len = self.storage.len();
+ if desired_cap > self.capacity() {
+ self.storage.reserve(blocks_for_bits::<B>(desired_cap) - storage_len);
+ }
+ }
+
+ /// Reserves the minimum capacity for exactly `additional` more bits to be inserted in the
+ /// given `BitVec`. Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it requests. Therefore
+ /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
+ /// insertions are expected.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_elem(3, false);
+ /// bv.reserve(10);
+ /// assert_eq!(bv.len(), 3);
+ /// assert!(bv.capacity() >= 13);
+ /// ```
+ #[inline]
+ pub fn reserve_exact(&mut self, additional: usize) {
+ let desired_cap = self.len().checked_add(additional).expect("capacity overflow");
+ let storage_len = self.storage.len();
+ if desired_cap > self.capacity() {
+ self.storage.reserve_exact(blocks_for_bits::<B>(desired_cap) - storage_len);
+ }
+ }
+
+ /// Returns the capacity in bits for this bit vector. Inserting any
+ /// element less than this amount will not trigger a resizing.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::new();
+ /// bv.reserve(10);
+ /// assert!(bv.capacity() >= 10);
+ /// ```
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.storage.capacity().checked_mul(B::bits()).unwrap_or(usize::MAX)
+ }
+
+ /// Grows the `BitVec` in-place, adding `n` copies of `value` to the `BitVec`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new len overflows a `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_bytes(&[0b01001011]);
+ /// bv.grow(2, true);
+ /// assert_eq!(bv.len(), 10);
+ /// assert_eq!(bv.to_bytes(), [0b01001011, 0b11000000]);
+ /// ```
+ pub fn grow(&mut self, n: usize, value: bool) {
+ self.ensure_invariant();
+
+ // Note: we just bulk set all the bits in the last word in this fn in multiple places
+ // which is technically wrong if not all of these bits are to be used. However, at the end
+ // of this fn we call `fix_last_block` at the end of this fn, which should fix this.
+
+ let new_nbits = self.nbits.checked_add(n).expect("capacity overflow");
+ let new_nblocks = blocks_for_bits::<B>(new_nbits);
+ let full_value = if value { !B::zero() } else { B::zero() };
+
+ // Correct the old tail word, setting or clearing formerly unused bits
+ let num_cur_blocks = blocks_for_bits::<B>(self.nbits);
+ if self.nbits % B::bits() > 0 {
+ let mask = mask_for_bits::<B>(self.nbits);
+ if value {
+ let block = &mut self.storage[num_cur_blocks - 1];
+ *block = *block | !mask;
+ } else {
+ // Extra bits are already zero by invariant.
+ }
+ }
+
+ // Fill in words after the old tail word
+ let stop_idx = cmp::min(self.storage.len(), new_nblocks);
+ for idx in num_cur_blocks..stop_idx {
+ self.storage[idx] = full_value;
+ }
+
+ // Allocate new words, if needed
+ if new_nblocks > self.storage.len() {
+ let to_add = new_nblocks - self.storage.len();
+ self.storage.extend(repeat(full_value).take(to_add));
+ }
+
+ // Adjust internal bit count
+ self.nbits = new_nbits;
+
+ self.fix_last_block();
+ }
+
+ /// Removes the last bit from the BitVec, and returns it. Returns None if the BitVec is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::from_bytes(&[0b01001001]);
+ /// assert_eq!(bv.pop(), Some(true));
+ /// assert_eq!(bv.pop(), Some(false));
+ /// assert_eq!(bv.len(), 6);
+ /// ```
+ #[inline]
+ pub fn pop(&mut self) -> Option<bool> {
+ self.ensure_invariant();
+
+ if self.is_empty() {
+ None
+ } else {
+ let i = self.nbits - 1;
+ let ret = self[i];
+ // (3)
+ self.set(i, false);
+ self.nbits = i;
+ if self.nbits % B::bits() == 0 {
+ // (2)
+ self.storage.pop();
+ }
+ Some(ret)
+ }
+ }
+
+ /// Pushes a `bool` onto the end.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bit_vec::BitVec;
+ ///
+ /// let mut bv = BitVec::new();
+ /// bv.push(true);
+ /// bv.push(false);
+ /// assert!(bv.eq_vec(&[true, false]));
+ /// ```
+ #[inline]
+ pub fn push(&mut self, elem: bool) {
+ if self.nbits % B::bits() == 0 {
+ self.storage.push(B::zero());
+ }
+ let insert_pos = self.nbits;
+ self.nbits = self.nbits.checked_add(1).expect("Capacity overflow");
+ self.set(insert_pos, elem);
+ }
+
+ /// Returns the total number of bits in this vector
+ #[inline]
+ pub fn len(&self) -> usize { self.nbits }
+
+ /// Sets the number of bits that this BitVec considers initialized.
+ ///
+ /// Almost certainly can cause bad stuff. Only really intended for BitSet.
+ #[inline]
+ pub unsafe fn set_len(&mut self, len: usize) {
+ self.nbits = len;
+ }
+
+ /// Returns true if there are no bits in this vector
+ #[inline]
+ pub fn is_empty(&self) -> bool { self.len() == 0 }
+
+ /// Clears all bits in this vector.
+ #[inline]
+ pub fn clear(&mut self) {
+ self.ensure_invariant();
+ for w in &mut self.storage { *w = B::zero(); }
+ }
+
+ /// Shrinks the capacity of the underlying storage as much as
+ /// possible.
+ ///
+ /// It will drop down as close as possible to the length but the
+ /// allocator may still inform the underlying storage that there
+ /// is space for a few more elements/bits.
+ pub fn shrink_to_fit(&mut self) {
+ self.storage.shrink_to_fit();
+ }
+}
+
+impl<B: BitBlock> Default for BitVec<B> {
+ #[inline]
+ fn default() -> Self { BitVec { storage: Vec::new(), nbits: 0 } }
+}
+
+impl<B: BitBlock> FromIterator<bool> for BitVec<B> {
+ #[inline]
+ fn from_iter<I: IntoIterator<Item=bool>>(iter: I) -> Self {
+ let mut ret: Self = Default::default();
+ ret.extend(iter);
+ ret
+ }
+}
+
+impl<B: BitBlock> Extend<bool> for BitVec<B> {
+ #[inline]
+ fn extend<I: IntoIterator<Item=bool>>(&mut self, iterable: I) {
+ self.ensure_invariant();
+ let iterator = iterable.into_iter();
+ let (min, _) = iterator.size_hint();
+ self.reserve(min);
+ for element in iterator {
+ self.push(element)
+ }
+ }
+}
+
+impl<B: BitBlock> Clone for BitVec<B> {
+ #[inline]
+ fn clone(&self) -> Self {
+ self.ensure_invariant();
+ BitVec { storage: self.storage.clone(), nbits: self.nbits }
+ }
+
+ #[inline]
+ fn clone_from(&mut self, source: &Self) {
+ debug_assert!(source.is_last_block_fixed());
+ self.nbits = source.nbits;
+ self.storage.clone_from(&source.storage);
+ }
+}
+
+impl<B: BitBlock> PartialOrd for BitVec<B> {
+ #[inline]
+ fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
+ Some(self.cmp(other))
+ }
+}
+
+impl<B: BitBlock> Ord for BitVec<B> {
+ #[inline]
+ fn cmp(&self, other: &Self) -> Ordering {
+ self.ensure_invariant();
+ debug_assert!(other.is_last_block_fixed());
+ let mut a = self.iter();
+ let mut b = other.iter();
+ loop {
+ match (a.next(), b.next()) {
+ (Some(x), Some(y)) => match x.cmp(&y) {
+ Ordering::Equal => {}
+ otherwise => return otherwise,
+ },
+ (None, None) => return Ordering::Equal,
+ (None, _) => return Ordering::Less,
+ (_, None) => return Ordering::Greater,
+ }
+ }
+ }
+}
+
+impl<B: BitBlock> fmt::Debug for BitVec<B> {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ self.ensure_invariant();
+ for bit in self {
+ write!(fmt, "{}", if bit { 1 } else { 0 })?;
+ }
+ Ok(())
+ }
+}
+
+impl<B: BitBlock> hash::Hash for BitVec<B> {
+ #[inline]
+ fn hash<H: hash::Hasher>(&self, state: &mut H) {
+ self.ensure_invariant();
+ self.nbits.hash(state);
+ for elem in self.blocks() {
+ elem.hash(state);
+ }
+ }
+}
+
+impl<B: BitBlock> cmp::PartialEq for BitVec<B> {
+ #[inline]
+ fn eq(&self, other: &Self) -> bool {
+ if self.nbits != other.nbits {
+ self.ensure_invariant();
+ other.ensure_invariant();
+ return false;
+ }
+ self.blocks().zip(other.blocks()).all(|(w1, w2)| w1 == w2)
+ }
+}
+
+impl<B: BitBlock> cmp::Eq for BitVec<B> {}
+
+/// An iterator for `BitVec`.
+#[derive(Clone)]
+pub struct Iter<'a, B: 'a = u32> {
+ bit_vec: &'a BitVec<B>,
+ range: Range<usize>,
+}
+
+impl<'a, B: BitBlock> Iterator for Iter<'a, B> {
+ type Item = bool;
+
+ #[inline]
+ fn next(&mut self) -> Option<bool> {
+ // NB: indexing is slow for extern crates when it has to go through &TRUE or &FALSE
+ // variables. get is more direct, and unwrap is fine since we're sure of the range.
+ self.range.next().map(|i| self.bit_vec.get(i).unwrap())
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.range.size_hint()
+ }
+}
+
+impl<'a, B: BitBlock> DoubleEndedIterator for Iter<'a, B> {
+ #[inline]
+ fn next_back(&mut self) -> Option<bool> {
+ self.range.next_back().map(|i| self.bit_vec.get(i).unwrap())
+ }
+}
+
+impl<'a, B: BitBlock> ExactSizeIterator for Iter<'a, B> {}
+
+impl<'a, B: BitBlock> IntoIterator for &'a BitVec<B> {
+ type Item = bool;
+ type IntoIter = Iter<'a, B>;
+
+ #[inline]
+ fn into_iter(self) -> Iter<'a, B> {
+ self.iter()
+ }
+}
+
+pub struct IntoIter<B=u32> {
+ bit_vec: BitVec<B>,
+ range: Range<usize>,
+}
+
+impl<B: BitBlock> Iterator for IntoIter<B> {
+ type Item = bool;
+
+ #[inline]
+ fn next(&mut self) -> Option<bool> {
+ self.range.next().map(|i| self.bit_vec.get(i).unwrap())
+ }
+}
+
+impl<B: BitBlock> DoubleEndedIterator for IntoIter<B> {
+ #[inline]
+ fn next_back(&mut self) -> Option<bool> {
+ self.range.next_back().map(|i| self.bit_vec.get(i).unwrap())
+ }
+}
+
+impl<B: BitBlock> ExactSizeIterator for IntoIter<B> {}
+
+impl<B: BitBlock> IntoIterator for BitVec<B> {
+ type Item = bool;
+ type IntoIter = IntoIter<B>;
+
+ #[inline]
+ fn into_iter(self) -> IntoIter<B> {
+ let nbits = self.nbits;
+ IntoIter { bit_vec: self, range: 0..nbits }
+ }
+}
+
+/// An iterator over the blocks of a `BitVec`.
+#[derive(Clone)]
+pub struct Blocks<'a, B: 'a> {
+ iter: slice::Iter<'a, B>,
+}
+
+impl<'a, B: BitBlock> Iterator for Blocks<'a, B> {
+ type Item = B;
+
+ #[inline]
+ fn next(&mut self) -> Option<B> {
+ self.iter.next().cloned()
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<'a, B: BitBlock> DoubleEndedIterator for Blocks<'a, B> {
+ #[inline]
+ fn next_back(&mut self) -> Option<B> {
+ self.iter.next_back().cloned()
+ }
+}
+
+impl<'a, B: BitBlock> ExactSizeIterator for Blocks<'a, B> {}
+
+#[cfg(test)]
+mod tests {
+ use super::{BitVec, Iter, Vec};
+
+ // This is stupid, but I want to differentiate from a "random" 32
+ const U32_BITS: usize = 32;
+
+ #[test]
+ fn test_to_str() {
+ let zerolen = BitVec::new();
+ assert_eq!(format!("{:?}", zerolen), "");
+
+ let eightbits = BitVec::from_elem(8, false);
+ assert_eq!(format!("{:?}", eightbits), "00000000")
+ }
+
+ #[test]
+ fn test_0_elements() {
+ let act = BitVec::new();
+ let exp = Vec::new();
+ assert!(act.eq_vec(&exp));
+ assert!(act.none() && act.all());
+ }
+
+ #[test]
+ fn test_1_element() {
+ let mut act = BitVec::from_elem(1, false);
+ assert!(act.eq_vec(&[false]));
+ assert!(act.none() && !act.all());
+ act = BitVec::from_elem(1, true);
+ assert!(act.eq_vec(&[true]));
+ assert!(!act.none() && act.all());
+ }
+
+ #[test]
+ fn test_2_elements() {
+ let mut b = BitVec::from_elem(2, false);
+ b.set(0, true);
+ b.set(1, false);
+ assert_eq!(format!("{:?}", b), "10");
+ assert!(!b.none() && !b.all());
+ }
+
+ #[test]
+ fn test_10_elements() {
+ let mut act;
+ // all 0
+
+ act = BitVec::from_elem(10, false);
+ assert!((act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false])));
+ assert!(act.none() && !act.all());
+ // all 1
+
+ act = BitVec::from_elem(10, true);
+ assert!((act.eq_vec(&[true, true, true, true, true, true, true, true, true, true])));
+ assert!(!act.none() && act.all());
+ // mixed
+
+ act = BitVec::from_elem(10, false);
+ act.set(0, true);
+ act.set(1, true);
+ act.set(2, true);
+ act.set(3, true);
+ act.set(4, true);
+ assert!((act.eq_vec(&[true, true, true, true, true, false, false, false, false, false])));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(10, false);
+ act.set(5, true);
+ act.set(6, true);
+ act.set(7, true);
+ act.set(8, true);
+ act.set(9, true);
+ assert!((act.eq_vec(&[false, false, false, false, false, true, true, true, true, true])));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(10, false);
+ act.set(0, true);
+ act.set(3, true);
+ act.set(6, true);
+ act.set(9, true);
+ assert!((act.eq_vec(&[true, false, false, true, false, false, true, false, false, true])));
+ assert!(!act.none() && !act.all());
+ }
+
+ #[test]
+ fn test_31_elements() {
+ let mut act;
+ // all 0
+
+ act = BitVec::from_elem(31, false);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false]));
+ assert!(act.none() && !act.all());
+ // all 1
+
+ act = BitVec::from_elem(31, true);
+ assert!(act.eq_vec(
+ &[true, true, true, true, true, true, true, true, true, true, true, true, true,
+ true, true, true, true, true, true, true, true, true, true, true, true, true,
+ true, true, true, true, true]));
+ assert!(!act.none() && act.all());
+ // mixed
+
+ act = BitVec::from_elem(31, false);
+ act.set(0, true);
+ act.set(1, true);
+ act.set(2, true);
+ act.set(3, true);
+ act.set(4, true);
+ act.set(5, true);
+ act.set(6, true);
+ act.set(7, true);
+ assert!(act.eq_vec(
+ &[true, true, true, true, true, true, true, true, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(31, false);
+ act.set(16, true);
+ act.set(17, true);
+ act.set(18, true);
+ act.set(19, true);
+ act.set(20, true);
+ act.set(21, true);
+ act.set(22, true);
+ act.set(23, true);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, true, true, true, true, true, true, true, true,
+ false, false, false, false, false, false, false]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(31, false);
+ act.set(24, true);
+ act.set(25, true);
+ act.set(26, true);
+ act.set(27, true);
+ act.set(28, true);
+ act.set(29, true);
+ act.set(30, true);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, true, true, true, true, true, true, true]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(31, false);
+ act.set(3, true);
+ act.set(17, true);
+ act.set(30, true);
+ assert!(act.eq_vec(
+ &[false, false, false, true, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, true, false, false, false, false, false, false,
+ false, false, false, false, false, false, true]));
+ assert!(!act.none() && !act.all());
+ }
+
+ #[test]
+ fn test_32_elements() {
+ let mut act;
+ // all 0
+
+ act = BitVec::from_elem(32, false);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false]));
+ assert!(act.none() && !act.all());
+ // all 1
+
+ act = BitVec::from_elem(32, true);
+ assert!(act.eq_vec(
+ &[true, true, true, true, true, true, true, true, true, true, true, true, true,
+ true, true, true, true, true, true, true, true, true, true, true, true, true,
+ true, true, true, true, true, true]));
+ assert!(!act.none() && act.all());
+ // mixed
+
+ act = BitVec::from_elem(32, false);
+ act.set(0, true);
+ act.set(1, true);
+ act.set(2, true);
+ act.set(3, true);
+ act.set(4, true);
+ act.set(5, true);
+ act.set(6, true);
+ act.set(7, true);
+ assert!(act.eq_vec(
+ &[true, true, true, true, true, true, true, true, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(32, false);
+ act.set(16, true);
+ act.set(17, true);
+ act.set(18, true);
+ act.set(19, true);
+ act.set(20, true);
+ act.set(21, true);
+ act.set(22, true);
+ act.set(23, true);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, true, true, true, true, true, true, true, true,
+ false, false, false, false, false, false, false, false]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(32, false);
+ act.set(24, true);
+ act.set(25, true);
+ act.set(26, true);
+ act.set(27, true);
+ act.set(28, true);
+ act.set(29, true);
+ act.set(30, true);
+ act.set(31, true);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, true, true, true, true, true, true, true, true]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(32, false);
+ act.set(3, true);
+ act.set(17, true);
+ act.set(30, true);
+ act.set(31, true);
+ assert!(act.eq_vec(
+ &[false, false, false, true, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, true, false, false, false, false, false, false,
+ false, false, false, false, false, false, true, true]));
+ assert!(!act.none() && !act.all());
+ }
+
+ #[test]
+ fn test_33_elements() {
+ let mut act;
+ // all 0
+
+ act = BitVec::from_elem(33, false);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false]));
+ assert!(act.none() && !act.all());
+ // all 1
+
+ act = BitVec::from_elem(33, true);
+ assert!(act.eq_vec(
+ &[true, true, true, true, true, true, true, true, true, true, true, true, true,
+ true, true, true, true, true, true, true, true, true, true, true, true, true,
+ true, true, true, true, true, true, true]));
+ assert!(!act.none() && act.all());
+ // mixed
+
+ act = BitVec::from_elem(33, false);
+ act.set(0, true);
+ act.set(1, true);
+ act.set(2, true);
+ act.set(3, true);
+ act.set(4, true);
+ act.set(5, true);
+ act.set(6, true);
+ act.set(7, true);
+ assert!(act.eq_vec(
+ &[true, true, true, true, true, true, true, true, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(33, false);
+ act.set(16, true);
+ act.set(17, true);
+ act.set(18, true);
+ act.set(19, true);
+ act.set(20, true);
+ act.set(21, true);
+ act.set(22, true);
+ act.set(23, true);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, true, true, true, true, true, true, true, true,
+ false, false, false, false, false, false, false, false, false]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(33, false);
+ act.set(24, true);
+ act.set(25, true);
+ act.set(26, true);
+ act.set(27, true);
+ act.set(28, true);
+ act.set(29, true);
+ act.set(30, true);
+ act.set(31, true);
+ assert!(act.eq_vec(
+ &[false, false, false, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, false, false, false, false, false, false,
+ false, false, true, true, true, true, true, true, true, true, false]));
+ assert!(!act.none() && !act.all());
+ // mixed
+
+ act = BitVec::from_elem(33, false);
+ act.set(3, true);
+ act.set(17, true);
+ act.set(30, true);
+ act.set(31, true);
+ act.set(32, true);
+ assert!(act.eq_vec(
+ &[false, false, false, true, false, false, false, false, false, false, false, false,
+ false, false, false, false, false, true, false, false, false, false, false, false,
+ false, false, false, false, false, false, true, true, true]));
+ assert!(!act.none() && !act.all());
+ }
+
+ #[test]
+ fn test_equal_differing_sizes() {
+ let v0 = BitVec::from_elem(10, false);
+ let v1 = BitVec::from_elem(11, false);
+ assert_ne!(v0, v1);
+ }
+
+ #[test]
+ fn test_equal_greatly_differing_sizes() {
+ let v0 = BitVec::from_elem(10, false);
+ let v1 = BitVec::from_elem(110, false);
+ assert_ne!(v0, v1);
+ }
+
+ #[test]
+ fn test_equal_sneaky_small() {
+ let mut a = BitVec::from_elem(1, false);
+ a.set(0, true);
+
+ let mut b = BitVec::from_elem(1, true);
+ b.set(0, true);
+
+ assert_eq!(a, b);
+ }
+
+ #[test]
+ fn test_equal_sneaky_big() {
+ let mut a = BitVec::from_elem(100, false);
+ for i in 0..100 {
+ a.set(i, true);
+ }
+
+ let mut b = BitVec::from_elem(100, true);
+ for i in 0..100 {
+ b.set(i, true);
+ }
+
+ assert_eq!(a, b);
+ }
+
+ #[test]
+ fn test_from_bytes() {
+ let bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111]);
+ let str = concat!("10110110", "00000000", "11111111");
+ assert_eq!(format!("{:?}", bit_vec), str);
+ }
+
+ #[test]
+ fn test_to_bytes() {
+ let mut bv = BitVec::from_elem(3, true);
+ bv.set(1, false);
+ assert_eq!(bv.to_bytes(), [0b10100000]);
+
+ let mut bv = BitVec::from_elem(9, false);
+ bv.set(2, true);
+ bv.set(8, true);
+ assert_eq!(bv.to_bytes(), [0b00100000, 0b10000000]);
+ }
+
+ #[test]
+ fn test_from_bools() {
+ let bools = vec![true, false, true, true];
+ let bit_vec: BitVec = bools.iter().map(|n| *n).collect();
+ assert_eq!(format!("{:?}", bit_vec), "1011");
+ }
+
+ #[test]
+ fn test_to_bools() {
+ let bools = vec![false, false, true, false, false, true, true, false];
+ assert_eq!(BitVec::from_bytes(&[0b00100110]).iter().collect::<Vec<bool>>(), bools);
+ }
+
+ #[test]
+ fn test_bit_vec_iterator() {
+ let bools = vec![true, false, true, true];
+ let bit_vec: BitVec = bools.iter().map(|n| *n).collect();
+
+ assert_eq!(bit_vec.iter().collect::<Vec<bool>>(), bools);
+
+ let long: Vec<_> = (0..10000).map(|i| i % 2 == 0).collect();
+ let bit_vec: BitVec = long.iter().map(|n| *n).collect();
+ assert_eq!(bit_vec.iter().collect::<Vec<bool>>(), long)
+ }
+
+ #[test]
+ fn test_small_difference() {
+ let mut b1 = BitVec::from_elem(3, false);
+ let mut b2 = BitVec::from_elem(3, false);
+ b1.set(0, true);
+ b1.set(1, true);
+ b2.set(1, true);
+ b2.set(2, true);
+ assert!(b1.difference(&b2));
+ assert!(b1[0]);
+ assert!(!b1[1]);
+ assert!(!b1[2]);
+ }
+
+ #[test]
+ fn test_big_difference() {
+ let mut b1 = BitVec::from_elem(100, false);
+ let mut b2 = BitVec::from_elem(100, false);
+ b1.set(0, true);
+ b1.set(40, true);
+ b2.set(40, true);
+ b2.set(80, true);
+ assert!(b1.difference(&b2));
+ assert!(b1[0]);
+ assert!(!b1[40]);
+ assert!(!b1[80]);
+ }
+
+ #[test]
+ fn test_small_xor() {
+ let mut a = BitVec::from_bytes(&[0b0011]);
+ let b = BitVec::from_bytes(&[0b0101]);
+ let c = BitVec::from_bytes(&[0b0110]);
+ assert!(a.xor(&b));
+ assert_eq!(a,c);
+ }
+
+ #[test]
+ fn test_small_xnor() {
+ let mut a = BitVec::from_bytes(&[0b0011]);
+ let b = BitVec::from_bytes(&[0b1111_0101]);
+ let c = BitVec::from_bytes(&[0b1001]);
+ assert!(a.xnor(&b));
+ assert_eq!(a,c);
+ }
+
+ #[test]
+ fn test_small_nand() {
+ let mut a = BitVec::from_bytes(&[0b1111_0011]);
+ let b = BitVec::from_bytes(&[0b1111_0101]);
+ let c = BitVec::from_bytes(&[0b1110]);
+ assert!(a.nand(&b));
+ assert_eq!(a,c);
+ }
+
+ #[test]
+ fn test_small_nor() {
+ let mut a = BitVec::from_bytes(&[0b0011]);
+ let b = BitVec::from_bytes(&[0b1111_0101]);
+ let c = BitVec::from_bytes(&[0b1000]);
+ assert!(a.nor(&b));
+ assert_eq!(a,c);
+ }
+
+ #[test]
+ fn test_big_xor() {
+ let mut a = BitVec::from_bytes(&[ // 88 bits
+ 0, 0, 0b00010100, 0,
+ 0, 0, 0, 0b00110100,
+ 0, 0, 0]);
+ let b = BitVec::from_bytes(&[ // 88 bits
+ 0, 0, 0b00010100, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0b00110100]);
+ let c = BitVec::from_bytes(&[ // 88 bits
+ 0, 0, 0, 0,
+ 0, 0, 0, 0b00110100,
+ 0, 0, 0b00110100]);
+ assert!(a.xor(&b));
+ assert_eq!(a,c);
+ }
+
+ #[test]
+ fn test_big_xnor() {
+ let mut a = BitVec::from_bytes(&[ // 88 bits
+ 0, 0, 0b00010100, 0,
+ 0, 0, 0, 0b00110100,
+ 0, 0, 0]);
+ let b = BitVec::from_bytes(&[ // 88 bits
+ 0, 0, 0b00010100, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0b00110100]);
+ let c = BitVec::from_bytes(&[ // 88 bits
+ !0, !0, !0, !0,
+ !0, !0, !0, !0b00110100,
+ !0, !0, !0b00110100]);
+ assert!(a.xnor(&b));
+ assert_eq!(a,c);
+ }
+
+ #[test]
+ fn test_small_clear() {
+ let mut b = BitVec::from_elem(14, true);
+ assert!(!b.none() && b.all());
+ b.clear();
+ assert!(b.none() && !b.all());
+ }
+
+ #[test]
+ fn test_big_clear() {
+ let mut b = BitVec::from_elem(140, true);
+ assert!(!b.none() && b.all());
+ b.clear();
+ assert!(b.none() && !b.all());
+ }
+
+ #[test]
+ fn test_bit_vec_lt() {
+ let mut a = BitVec::from_elem(5, false);
+ let mut b = BitVec::from_elem(5, false);
+
+ assert!(!(a < b) && !(b < a));
+ b.set(2, true);
+ assert!(a < b);
+ a.set(3, true);
+ assert!(a < b);
+ a.set(2, true);
+ assert!(!(a < b) && b < a);
+ b.set(0, true);
+ assert!(a < b);
+ }
+
+ #[test]
+ fn test_ord() {
+ let mut a = BitVec::from_elem(5, false);
+ let mut b = BitVec::from_elem(5, false);
+
+ assert!(a <= b && a >= b);
+ a.set(1, true);
+ assert!(a > b && a >= b);
+ assert!(b < a && b <= a);
+ b.set(1, true);
+ b.set(2, true);
+ assert!(b > a && b >= a);
+ assert!(a < b && a <= b);
+ }
+
+ #[test]
+ fn test_small_bit_vec_tests() {
+ let v = BitVec::from_bytes(&[0]);
+ assert!(!v.all());
+ assert!(!v.any());
+ assert!(v.none());
+
+ let v = BitVec::from_bytes(&[0b00010100]);
+ assert!(!v.all());
+ assert!(v.any());
+ assert!(!v.none());
+
+ let v = BitVec::from_bytes(&[0xFF]);
+ assert!(v.all());
+ assert!(v.any());
+ assert!(!v.none());
+ }
+
+ #[test]
+ fn test_big_bit_vec_tests() {
+ let v = BitVec::from_bytes(&[ // 88 bits
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0]);
+ assert!(!v.all());
+ assert!(!v.any());
+ assert!(v.none());
+
+ let v = BitVec::from_bytes(&[ // 88 bits
+ 0, 0, 0b00010100, 0,
+ 0, 0, 0, 0b00110100,
+ 0, 0, 0]);
+ assert!(!v.all());
+ assert!(v.any());
+ assert!(!v.none());
+
+ let v = BitVec::from_bytes(&[ // 88 bits
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF]);
+ assert!(v.all());
+ assert!(v.any());
+ assert!(!v.none());
+ }
+
+ #[test]
+ fn test_bit_vec_push_pop() {
+ let mut s = BitVec::from_elem(5 * U32_BITS - 2, false);
+ assert_eq!(s.len(), 5 * U32_BITS - 2);
+ assert_eq!(s[5 * U32_BITS - 3], false);
+ s.push(true);
+ s.push(true);
+ assert_eq!(s[5 * U32_BITS - 2], true);
+ assert_eq!(s[5 * U32_BITS - 1], true);
+ // Here the internal vector will need to be extended
+ s.push(false);
+ assert_eq!(s[5 * U32_BITS], false);
+ s.push(false);
+ assert_eq!(s[5 * U32_BITS + 1], false);
+ assert_eq!(s.len(), 5 * U32_BITS + 2);
+ // Pop it all off
+ assert_eq!(s.pop(), Some(false));
+ assert_eq!(s.pop(), Some(false));
+ assert_eq!(s.pop(), Some(true));
+ assert_eq!(s.pop(), Some(true));
+ assert_eq!(s.len(), 5 * U32_BITS - 2);
+ }
+
+ #[test]
+ fn test_bit_vec_truncate() {
+ let mut s = BitVec::from_elem(5 * U32_BITS, true);
+
+ assert_eq!(s, BitVec::from_elem(5 * U32_BITS, true));
+ assert_eq!(s.len(), 5 * U32_BITS);
+ s.truncate(4 * U32_BITS);
+ assert_eq!(s, BitVec::from_elem(4 * U32_BITS, true));
+ assert_eq!(s.len(), 4 * U32_BITS);
+ // Truncating to a size > s.len() should be a noop
+ s.truncate(5 * U32_BITS);
+ assert_eq!(s, BitVec::from_elem(4 * U32_BITS, true));
+ assert_eq!(s.len(), 4 * U32_BITS);
+ s.truncate(3 * U32_BITS - 10);
+ assert_eq!(s, BitVec::from_elem(3 * U32_BITS - 10, true));
+ assert_eq!(s.len(), 3 * U32_BITS - 10);
+ s.truncate(0);
+ assert_eq!(s, BitVec::from_elem(0, true));
+ assert_eq!(s.len(), 0);
+ }
+
+ #[test]
+ fn test_bit_vec_reserve() {
+ let mut s = BitVec::from_elem(5 * U32_BITS, true);
+ // Check capacity
+ assert!(s.capacity() >= 5 * U32_BITS);
+ s.reserve(2 * U32_BITS);
+ assert!(s.capacity() >= 7 * U32_BITS);
+ s.reserve(7 * U32_BITS);
+ assert!(s.capacity() >= 12 * U32_BITS);
+ s.reserve_exact(7 * U32_BITS);
+ assert!(s.capacity() >= 12 * U32_BITS);
+ s.reserve(7 * U32_BITS + 1);
+ assert!(s.capacity() >= 12 * U32_BITS + 1);
+ // Check that length hasn't changed
+ assert_eq!(s.len(), 5 * U32_BITS);
+ s.push(true);
+ s.push(false);
+ s.push(true);
+ assert_eq!(s[5 * U32_BITS - 1], true);
+ assert_eq!(s[5 * U32_BITS - 0], true);
+ assert_eq!(s[5 * U32_BITS + 1], false);
+ assert_eq!(s[5 * U32_BITS + 2], true);
+ }
+
+ #[test]
+ fn test_bit_vec_grow() {
+ let mut bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010]);
+ bit_vec.grow(32, true);
+ assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010,
+ 0xFF, 0xFF, 0xFF, 0xFF]));
+ bit_vec.grow(64, false);
+ assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0]));
+ bit_vec.grow(16, true);
+ assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF]));
+ }
+
+ #[test]
+ fn test_bit_vec_extend() {
+ let mut bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111]);
+ let ext = BitVec::from_bytes(&[0b01001001, 0b10010010, 0b10111101]);
+ bit_vec.extend(ext.iter());
+ assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111,
+ 0b01001001, 0b10010010, 0b10111101]));
+ }
+
+ #[test]
+ fn test_bit_vec_append() {
+ // Append to BitVec that holds a multiple of U32_BITS bits
+ let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011]);
+ let mut b = BitVec::new();
+ b.push(false);
+ b.push(true);
+ b.push(true);
+
+ a.append(&mut b);
+
+ assert_eq!(a.len(), 35);
+ assert_eq!(b.len(), 0);
+ assert!(b.capacity() >= 3);
+
+ assert!(a.eq_vec(&[true, false, true, false, false, false, false, false,
+ false, false, false, true, false, false, true, false,
+ true, false, false, true, false, false, true, false,
+ false, false, true, true, false, false, true, true,
+ false, true, true]));
+
+ // Append to arbitrary BitVec
+ let mut a = BitVec::new();
+ a.push(true);
+ a.push(false);
+
+ let mut b = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]);
+
+ a.append(&mut b);
+
+ assert_eq!(a.len(), 42);
+ assert_eq!(b.len(), 0);
+ assert!(b.capacity() >= 40);
+
+ assert!(a.eq_vec(&[true, false, true, false, true, false, false, false,
+ false, false, false, false, false, true, false, false,
+ true, false, true, false, false, true, false, false,
+ true, false, false, false, true, true, false, false,
+ true, true, true, false, false, true, false, true,
+ false, true]));
+
+ // Append to empty BitVec
+ let mut a = BitVec::new();
+ let mut b = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]);
+
+ a.append(&mut b);
+
+ assert_eq!(a.len(), 40);
+ assert_eq!(b.len(), 0);
+ assert!(b.capacity() >= 40);
+
+ assert!(a.eq_vec(&[true, false, true, false, false, false, false, false,
+ false, false, false, true, false, false, true, false,
+ true, false, false, true, false, false, true, false,
+ false, false, true, true, false, false, true, true,
+ true, false, false, true, false, true, false, true]));
+
+ // Append empty BitVec
+ let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]);
+ let mut b = BitVec::new();
+
+ a.append(&mut b);
+
+ assert_eq!(a.len(), 40);
+ assert_eq!(b.len(), 0);
+
+ assert!(a.eq_vec(&[true, false, true, false, false, false, false, false,
+ false, false, false, true, false, false, true, false,
+ true, false, false, true, false, false, true, false,
+ false, false, true, true, false, false, true, true,
+ true, false, false, true, false, true, false, true]));
+ }
+
+ #[test]
+ fn test_bit_vec_split_off() {
+ // Split at 0
+ let mut a = BitVec::new();
+ a.push(true);
+ a.push(false);
+ a.push(false);
+ a.push(true);
+
+ let b = a.split_off(0);
+
+ assert_eq!(a.len(), 0);
+ assert_eq!(b.len(), 4);
+
+ assert!(b.eq_vec(&[true, false, false, true]));
+
+ // Split at last bit
+ a.truncate(0);
+ a.push(true);
+ a.push(false);
+ a.push(false);
+ a.push(true);
+
+ let b = a.split_off(4);
+
+ assert_eq!(a.len(), 4);
+ assert_eq!(b.len(), 0);
+
+ assert!(a.eq_vec(&[true, false, false, true]));
+
+ // Split at block boundary
+ let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b11110011]);
+
+ let b = a.split_off(32);
+
+ assert_eq!(a.len(), 32);
+ assert_eq!(b.len(), 8);
+
+ assert!(a.eq_vec(&[true, false, true, false, false, false, false, false,
+ false, false, false, true, false, false, true, false,
+ true, false, false, true, false, false, true, false,
+ false, false, true, true, false, false, true, true]));
+ assert!(b.eq_vec(&[true, true, true, true, false, false, true, true]));
+
+ // Don't split at block boundary
+ let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011,
+ 0b01101011, 0b10101101]);
+
+ let b = a.split_off(13);
+
+ assert_eq!(a.len(), 13);
+ assert_eq!(b.len(), 35);
+
+ assert!(a.eq_vec(&[true, false, true, false, false, false, false, false,
+ false, false, false, true, false]));
+ assert!(b.eq_vec(&[false, true, false, true, false, false, true, false,
+ false, true, false, false, false, true, true, false,
+ false, true, true, false, true, true, false, true,
+ false, true, true, true, false, true, false, true,
+ true, false, true]));
+ }
+
+ #[test]
+ fn test_into_iter() {
+ let bools = vec![true, false, true, true];
+ let bit_vec: BitVec = bools.iter().map(|n| *n).collect();
+ let mut iter = bit_vec.into_iter();
+ assert_eq!(Some(true), iter.next());
+ assert_eq!(Some(false), iter.next());
+ assert_eq!(Some(true), iter.next());
+ assert_eq!(Some(true), iter.next());
+ assert_eq!(None, iter.next());
+ assert_eq!(None, iter.next());
+
+ let bit_vec: BitVec = bools.iter().map(|n| *n).collect();
+ let mut iter = bit_vec.into_iter();
+ assert_eq!(Some(true), iter.next_back());
+ assert_eq!(Some(true), iter.next_back());
+ assert_eq!(Some(false), iter.next_back());
+ assert_eq!(Some(true), iter.next_back());
+ assert_eq!(None, iter.next_back());
+ assert_eq!(None, iter.next_back());
+
+ let bit_vec: BitVec = bools.iter().map(|n| *n).collect();
+ let mut iter = bit_vec.into_iter();
+ assert_eq!(Some(true), iter.next_back());
+ assert_eq!(Some(true), iter.next());
+ assert_eq!(Some(false), iter.next());
+ assert_eq!(Some(true), iter.next_back());
+ assert_eq!(None, iter.next());
+ assert_eq!(None, iter.next_back());
+ }
+
+ #[test]
+ fn iter() {
+ let b = BitVec::with_capacity(10);
+ let _a: Iter = b.iter();
+ }
+
+ #[cfg(feature="serde")]
+ #[test]
+ fn test_serialization() {
+ let bit_vec: BitVec = BitVec::new();
+ let serialized = serde_json::to_string(&bit_vec).unwrap();
+ let unserialized: BitVec = serde_json::from_str(&serialized).unwrap();
+ assert_eq!(bit_vec, unserialized);
+
+ let bools = vec![true, false, true, true];
+ let bit_vec: BitVec = bools.iter().map(|n| *n).collect();
+ let serialized = serde_json::to_string(&bit_vec).unwrap();
+ let unserialized = serde_json::from_str(&serialized).unwrap();
+ assert_eq!(bit_vec, unserialized);
+ }
+}