summaryrefslogtreecommitdiffstats
path: root/third_party/rust/image/src/animation.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/image/src/animation.rs')
-rw-r--r--third_party/rust/image/src/animation.rs330
1 files changed, 330 insertions, 0 deletions
diff --git a/third_party/rust/image/src/animation.rs b/third_party/rust/image/src/animation.rs
new file mode 100644
index 0000000000..a10c0f611f
--- /dev/null
+++ b/third_party/rust/image/src/animation.rs
@@ -0,0 +1,330 @@
+use std::iter::Iterator;
+use std::time::Duration;
+
+use num_rational::Ratio;
+
+use crate::buffer::RgbaImage;
+use crate::error::ImageResult;
+
+/// An implementation dependent iterator, reading the frames as requested
+pub struct Frames<'a> {
+ iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>
+}
+
+impl<'a> Frames<'a> {
+ /// Creates a new `Frames` from an implementation specific iterator.
+ pub fn new(iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>) -> Self {
+ Frames { iterator }
+ }
+
+ /// Steps through the iterator from the current frame until the end and pushes each frame into
+ /// a `Vec`.
+ /// If en error is encountered that error is returned instead.
+ ///
+ /// Note: This is equivalent to `Frames::collect::<ImageResult<Vec<Frame>>>()`
+ pub fn collect_frames(self) -> ImageResult<Vec<Frame>> {
+ self.collect()
+ }
+}
+
+impl<'a> Iterator for Frames<'a> {
+ type Item = ImageResult<Frame>;
+ fn next(&mut self) -> Option<ImageResult<Frame>> {
+ self.iterator.next()
+ }
+}
+
+/// A single animation frame
+#[derive(Clone)]
+pub struct Frame {
+ /// Delay between the frames in milliseconds
+ delay: Delay,
+ /// x offset
+ left: u32,
+ /// y offset
+ top: u32,
+ buffer: RgbaImage,
+}
+
+/// The delay of a frame relative to the previous one.
+#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)]
+pub struct Delay {
+ ratio: Ratio<u32>,
+}
+
+impl Frame {
+ /// Contructs a new frame without any delay.
+ pub fn new(buffer: RgbaImage) -> Frame {
+ Frame {
+ delay: Delay::from_ratio(Ratio::from_integer(0)),
+ left: 0,
+ top: 0,
+ buffer,
+ }
+ }
+
+ /// Contructs a new frame
+ pub fn from_parts(buffer: RgbaImage, left: u32, top: u32, delay: Delay) -> Frame {
+ Frame {
+ delay,
+ left,
+ top,
+ buffer,
+ }
+ }
+
+ /// Delay of this frame
+ pub fn delay(&self) -> Delay {
+ self.delay
+ }
+
+ /// Returns the image buffer
+ pub fn buffer(&self) -> &RgbaImage {
+ &self.buffer
+ }
+
+ /// Returns the image buffer
+ pub fn into_buffer(self) -> RgbaImage {
+ self.buffer
+ }
+
+ /// Returns the x offset
+ pub fn left(&self) -> u32 {
+ self.left
+ }
+
+ /// Returns the y offset
+ pub fn top(&self) -> u32 {
+ self.top
+ }
+}
+
+impl Delay {
+ /// Create a delay from a ratio of milliseconds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use image::Delay;
+ /// let delay_10ms = Delay::from_numer_denom_ms(10, 1);
+ /// ```
+ pub fn from_numer_denom_ms(numerator: u32, denominator: u32) -> Self {
+ Delay { ratio: Ratio::new_raw(numerator, denominator) }
+ }
+
+ /// Convert from a duration, clamped between 0 and an implemented defined maximum.
+ ///
+ /// The maximum is *at least* `i32::MAX` milliseconds. It should be noted that the accuracy of
+ /// the result may be relative and very large delays have a coarse resolution.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::time::Duration;
+ /// use image::Delay;
+ ///
+ /// let duration = Duration::from_millis(20);
+ /// let delay = Delay::from_saturating_duration(duration);
+ /// ```
+ pub fn from_saturating_duration(duration: Duration) -> Self {
+ // A few notes: The largest number we can represent as a ratio is u32::MAX but we can
+ // sometimes represent much smaller numbers.
+ //
+ // We can represent duration as `millis+a/b` (where a < b, b > 0).
+ // We must thus bound b with `bĀ·millis + (b-1) <= u32::MAX` or
+ // > `0 < b <= (u32::MAX + 1)/(millis + 1)`
+ // Corollary: millis <= u32::MAX
+
+ const MILLIS_BOUND: u128 = u32::max_value() as u128;
+
+ let millis = duration.as_millis().min(MILLIS_BOUND);
+ let submillis = (duration.as_nanos() % 1_000_000) as u32;
+
+ let max_b = if millis > 0 {
+ ((MILLIS_BOUND + 1)/(millis + 1)) as u32
+ } else {
+ MILLIS_BOUND as u32
+ };
+ let millis = millis as u32;
+
+ let (a, b) = Self::closest_bounded_fraction(max_b, submillis, 1_000_000);
+ Self::from_numer_denom_ms(a + b*millis, b)
+ }
+
+ /// The numerator and denominator of the delay in milliseconds.
+ ///
+ /// This is guaranteed to be an exact conversion if the `Delay` was previously created with the
+ /// `from_numer_denom_ms` constructor.
+ pub fn numer_denom_ms(self) -> (u32, u32) {
+ (*self.ratio.numer(), *self.ratio.denom())
+ }
+
+ pub(crate) fn from_ratio(ratio: Ratio<u32>) -> Self {
+ Delay { ratio }
+ }
+
+ pub(crate) fn into_ratio(self) -> Ratio<u32> {
+ self.ratio
+ }
+
+ /// Given some fraction, compute an approximation with denominator bounded.
+ ///
+ /// Note that `denom_bound` bounds nominator and denominator of all intermediate
+ /// approximations and the end result.
+ fn closest_bounded_fraction(denom_bound: u32, nom: u32, denom: u32) -> (u32, u32) {
+ use std::cmp::Ordering::{self, *};
+ assert!(0 < denom);
+ assert!(0 < denom_bound);
+ assert!(nom < denom);
+
+ // Avoid a few type troubles. All intermediate results are bounded by `denom_bound` which
+ // is in turn bounded by u32::MAX. Representing with u64 allows multiplication of any two
+ // values without fears of overflow.
+
+ // Compare two fractions whose parts fit into a u32.
+ fn compare_fraction((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> Ordering {
+ (an*bd).cmp(&(bn*ad))
+ }
+
+ // Computes the nominator of the absolute difference between two such fractions.
+ fn abs_diff_nom((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> u64 {
+ let c0 = an*bd;
+ let c1 = ad*bn;
+
+ let d0 = c0.max(c1);
+ let d1 = c0.min(c1);
+ d0 - d1
+ }
+
+ let exact = (u64::from(nom), u64::from(denom));
+ // The lower bound fraction, numerator and denominator.
+ let mut lower = (0u64, 1u64);
+ // The upper bound fraction, numerator and denominator.
+ let mut upper = (1u64, 1u64);
+ // The closest approximation for now.
+ let mut guess = (u64::from(nom*2 > denom), 1u64);
+
+ // loop invariant: ad, bd <= denom_bound
+ // iterates the Farey sequence.
+ loop {
+ // Break if we are done.
+ if compare_fraction(guess, exact) == Equal {
+ break;
+ }
+
+ // Break if next Farey number is out-of-range.
+ if u64::from(denom_bound) - lower.1 < upper.1 {
+ break;
+ }
+
+ // Next Farey approximation n between a and b
+ let next = (lower.0 + upper.0, lower.1 + upper.1);
+ // if F < n then replace the upper bound, else replace lower.
+ if compare_fraction(exact, next) == Less {
+ upper = next;
+ } else {
+ lower = next;
+ }
+
+ // Now correct the closest guess.
+ // In other words, if |c - f| > |n - f| then replace it with the new guess.
+ // This favors the guess with smaller denominator on equality.
+
+ // |g - f| = |g_diff_nom|/(gd*fd);
+ let g_diff_nom = abs_diff_nom(guess, exact);
+ // |n - f| = |n_diff_nom|/(nd*fd);
+ let n_diff_nom = abs_diff_nom(next, exact);
+
+ // The difference |n - f| is smaller than |g - f| if either the integral part of the
+ // fraction |n_diff_nom|/nd is smaller than the one of |g_diff_nom|/gd or if they are
+ // the same but the fractional part is larger.
+ if match (n_diff_nom/next.1).cmp(&(g_diff_nom/guess.1)) {
+ Less => true,
+ Greater => false,
+ // Note that the nominator for the fractional part is smaller than its denominator
+ // which is smaller than u32 and can't overflow the multiplication with the other
+ // denominator, that is we can compare these fractions by multiplication with the
+ // respective other denominator.
+ Equal => compare_fraction((n_diff_nom%next.1, next.1), (g_diff_nom%guess.1, guess.1)) == Less,
+ } {
+ guess = next;
+ }
+ }
+
+ (guess.0 as u32, guess.1 as u32)
+ }
+}
+
+impl From<Delay> for Duration {
+ fn from(delay: Delay) -> Self {
+ let ratio = delay.into_ratio();
+ let ms = ratio.to_integer();
+ let rest = ratio.numer() % ratio.denom();
+ let nanos = (u64::from(rest) * 1_000_000) / u64::from(*ratio.denom());
+ Duration::from_millis(ms.into()) + Duration::from_nanos(nanos)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{Delay, Duration, Ratio};
+
+ #[test]
+ fn simple() {
+ let second = Delay::from_numer_denom_ms(1000, 1);
+ assert_eq!(Duration::from(second), Duration::from_secs(1));
+ }
+
+ #[test]
+ fn fps_30() {
+ let thirtieth = Delay::from_numer_denom_ms(1000, 30);
+ let duration = Duration::from(thirtieth);
+ assert_eq!(duration.as_secs(), 0);
+ assert_eq!(duration.subsec_millis(), 33);
+ assert_eq!(duration.subsec_nanos(), 33_333_333);
+ }
+
+ #[test]
+ fn duration_outlier() {
+ let oob = Duration::from_secs(0xFFFF_FFFF);
+ let delay = Delay::from_saturating_duration(oob);
+ assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
+ }
+
+ #[test]
+ fn duration_approx() {
+ let oob = Duration::from_millis(0xFFFF_FFFF) + Duration::from_micros(1);
+ let delay = Delay::from_saturating_duration(oob);
+ assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
+
+ let inbounds = Duration::from_millis(0xFFFF_FFFF) - Duration::from_micros(1);
+ let delay = Delay::from_saturating_duration(inbounds);
+ assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
+
+ let fine = Duration::from_millis(0xFFFF_FFFF/1000) + Duration::from_micros(0xFFFF_FFFF%1000);
+ let delay = Delay::from_saturating_duration(fine);
+ // Funnily, 0xFFFF_FFFF is divisble by 5, thus we compare with a `Ratio`.
+ assert_eq!(delay.into_ratio(), Ratio::new(0xFFFF_FFFF, 1000));
+ }
+
+ #[test]
+ fn precise() {
+ // The ratio has only 32 bits in the numerator, too imprecise to get more than 11 digits
+ // correct. But it may be expressed as 1_000_000/3 instead.
+ let exceed = Duration::from_secs(333) + Duration::from_nanos(333_333_333);
+ let delay = Delay::from_saturating_duration(exceed);
+ assert_eq!(Duration::from(delay), exceed);
+ }
+
+
+ #[test]
+ fn small() {
+ // Not quite a delay of `1 ms`.
+ let delay = Delay::from_numer_denom_ms(1 << 16, (1 << 16) + 1);
+ let duration = Duration::from(delay);
+ assert_eq!(duration.as_millis(), 0);
+ // Not precisely the original but should be smaller than 0.
+ let delay = Delay::from_saturating_duration(duration);
+ assert_eq!(delay.into_ratio().to_integer(), 0);
+ }
+}