diff options
Diffstat (limited to 'third_party/rust/image/src/animation.rs')
-rw-r--r-- | third_party/rust/image/src/animation.rs | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/third_party/rust/image/src/animation.rs b/third_party/rust/image/src/animation.rs new file mode 100644 index 0000000000..a10c0f611f --- /dev/null +++ b/third_party/rust/image/src/animation.rs @@ -0,0 +1,330 @@ +use std::iter::Iterator; +use std::time::Duration; + +use num_rational::Ratio; + +use crate::buffer::RgbaImage; +use crate::error::ImageResult; + +/// An implementation dependent iterator, reading the frames as requested +pub struct Frames<'a> { + iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a> +} + +impl<'a> Frames<'a> { + /// Creates a new `Frames` from an implementation specific iterator. + pub fn new(iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>) -> Self { + Frames { iterator } + } + + /// Steps through the iterator from the current frame until the end and pushes each frame into + /// a `Vec`. + /// If en error is encountered that error is returned instead. + /// + /// Note: This is equivalent to `Frames::collect::<ImageResult<Vec<Frame>>>()` + pub fn collect_frames(self) -> ImageResult<Vec<Frame>> { + self.collect() + } +} + +impl<'a> Iterator for Frames<'a> { + type Item = ImageResult<Frame>; + fn next(&mut self) -> Option<ImageResult<Frame>> { + self.iterator.next() + } +} + +/// A single animation frame +#[derive(Clone)] +pub struct Frame { + /// Delay between the frames in milliseconds + delay: Delay, + /// x offset + left: u32, + /// y offset + top: u32, + buffer: RgbaImage, +} + +/// The delay of a frame relative to the previous one. +#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)] +pub struct Delay { + ratio: Ratio<u32>, +} + +impl Frame { + /// Contructs a new frame without any delay. + pub fn new(buffer: RgbaImage) -> Frame { + Frame { + delay: Delay::from_ratio(Ratio::from_integer(0)), + left: 0, + top: 0, + buffer, + } + } + + /// Contructs a new frame + pub fn from_parts(buffer: RgbaImage, left: u32, top: u32, delay: Delay) -> Frame { + Frame { + delay, + left, + top, + buffer, + } + } + + /// Delay of this frame + pub fn delay(&self) -> Delay { + self.delay + } + + /// Returns the image buffer + pub fn buffer(&self) -> &RgbaImage { + &self.buffer + } + + /// Returns the image buffer + pub fn into_buffer(self) -> RgbaImage { + self.buffer + } + + /// Returns the x offset + pub fn left(&self) -> u32 { + self.left + } + + /// Returns the y offset + pub fn top(&self) -> u32 { + self.top + } +} + +impl Delay { + /// Create a delay from a ratio of milliseconds. + /// + /// # Examples + /// + /// ``` + /// use image::Delay; + /// let delay_10ms = Delay::from_numer_denom_ms(10, 1); + /// ``` + pub fn from_numer_denom_ms(numerator: u32, denominator: u32) -> Self { + Delay { ratio: Ratio::new_raw(numerator, denominator) } + } + + /// Convert from a duration, clamped between 0 and an implemented defined maximum. + /// + /// The maximum is *at least* `i32::MAX` milliseconds. It should be noted that the accuracy of + /// the result may be relative and very large delays have a coarse resolution. + /// + /// # Examples + /// + /// ``` + /// use std::time::Duration; + /// use image::Delay; + /// + /// let duration = Duration::from_millis(20); + /// let delay = Delay::from_saturating_duration(duration); + /// ``` + pub fn from_saturating_duration(duration: Duration) -> Self { + // A few notes: The largest number we can represent as a ratio is u32::MAX but we can + // sometimes represent much smaller numbers. + // + // We can represent duration as `millis+a/b` (where a < b, b > 0). + // We must thus bound b with `bĀ·millis + (b-1) <= u32::MAX` or + // > `0 < b <= (u32::MAX + 1)/(millis + 1)` + // Corollary: millis <= u32::MAX + + const MILLIS_BOUND: u128 = u32::max_value() as u128; + + let millis = duration.as_millis().min(MILLIS_BOUND); + let submillis = (duration.as_nanos() % 1_000_000) as u32; + + let max_b = if millis > 0 { + ((MILLIS_BOUND + 1)/(millis + 1)) as u32 + } else { + MILLIS_BOUND as u32 + }; + let millis = millis as u32; + + let (a, b) = Self::closest_bounded_fraction(max_b, submillis, 1_000_000); + Self::from_numer_denom_ms(a + b*millis, b) + } + + /// The numerator and denominator of the delay in milliseconds. + /// + /// This is guaranteed to be an exact conversion if the `Delay` was previously created with the + /// `from_numer_denom_ms` constructor. + pub fn numer_denom_ms(self) -> (u32, u32) { + (*self.ratio.numer(), *self.ratio.denom()) + } + + pub(crate) fn from_ratio(ratio: Ratio<u32>) -> Self { + Delay { ratio } + } + + pub(crate) fn into_ratio(self) -> Ratio<u32> { + self.ratio + } + + /// Given some fraction, compute an approximation with denominator bounded. + /// + /// Note that `denom_bound` bounds nominator and denominator of all intermediate + /// approximations and the end result. + fn closest_bounded_fraction(denom_bound: u32, nom: u32, denom: u32) -> (u32, u32) { + use std::cmp::Ordering::{self, *}; + assert!(0 < denom); + assert!(0 < denom_bound); + assert!(nom < denom); + + // Avoid a few type troubles. All intermediate results are bounded by `denom_bound` which + // is in turn bounded by u32::MAX. Representing with u64 allows multiplication of any two + // values without fears of overflow. + + // Compare two fractions whose parts fit into a u32. + fn compare_fraction((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> Ordering { + (an*bd).cmp(&(bn*ad)) + } + + // Computes the nominator of the absolute difference between two such fractions. + fn abs_diff_nom((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> u64 { + let c0 = an*bd; + let c1 = ad*bn; + + let d0 = c0.max(c1); + let d1 = c0.min(c1); + d0 - d1 + } + + let exact = (u64::from(nom), u64::from(denom)); + // The lower bound fraction, numerator and denominator. + let mut lower = (0u64, 1u64); + // The upper bound fraction, numerator and denominator. + let mut upper = (1u64, 1u64); + // The closest approximation for now. + let mut guess = (u64::from(nom*2 > denom), 1u64); + + // loop invariant: ad, bd <= denom_bound + // iterates the Farey sequence. + loop { + // Break if we are done. + if compare_fraction(guess, exact) == Equal { + break; + } + + // Break if next Farey number is out-of-range. + if u64::from(denom_bound) - lower.1 < upper.1 { + break; + } + + // Next Farey approximation n between a and b + let next = (lower.0 + upper.0, lower.1 + upper.1); + // if F < n then replace the upper bound, else replace lower. + if compare_fraction(exact, next) == Less { + upper = next; + } else { + lower = next; + } + + // Now correct the closest guess. + // In other words, if |c - f| > |n - f| then replace it with the new guess. + // This favors the guess with smaller denominator on equality. + + // |g - f| = |g_diff_nom|/(gd*fd); + let g_diff_nom = abs_diff_nom(guess, exact); + // |n - f| = |n_diff_nom|/(nd*fd); + let n_diff_nom = abs_diff_nom(next, exact); + + // The difference |n - f| is smaller than |g - f| if either the integral part of the + // fraction |n_diff_nom|/nd is smaller than the one of |g_diff_nom|/gd or if they are + // the same but the fractional part is larger. + if match (n_diff_nom/next.1).cmp(&(g_diff_nom/guess.1)) { + Less => true, + Greater => false, + // Note that the nominator for the fractional part is smaller than its denominator + // which is smaller than u32 and can't overflow the multiplication with the other + // denominator, that is we can compare these fractions by multiplication with the + // respective other denominator. + Equal => compare_fraction((n_diff_nom%next.1, next.1), (g_diff_nom%guess.1, guess.1)) == Less, + } { + guess = next; + } + } + + (guess.0 as u32, guess.1 as u32) + } +} + +impl From<Delay> for Duration { + fn from(delay: Delay) -> Self { + let ratio = delay.into_ratio(); + let ms = ratio.to_integer(); + let rest = ratio.numer() % ratio.denom(); + let nanos = (u64::from(rest) * 1_000_000) / u64::from(*ratio.denom()); + Duration::from_millis(ms.into()) + Duration::from_nanos(nanos) + } +} + +#[cfg(test)] +mod tests { + use super::{Delay, Duration, Ratio}; + + #[test] + fn simple() { + let second = Delay::from_numer_denom_ms(1000, 1); + assert_eq!(Duration::from(second), Duration::from_secs(1)); + } + + #[test] + fn fps_30() { + let thirtieth = Delay::from_numer_denom_ms(1000, 30); + let duration = Duration::from(thirtieth); + assert_eq!(duration.as_secs(), 0); + assert_eq!(duration.subsec_millis(), 33); + assert_eq!(duration.subsec_nanos(), 33_333_333); + } + + #[test] + fn duration_outlier() { + let oob = Duration::from_secs(0xFFFF_FFFF); + let delay = Delay::from_saturating_duration(oob); + assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); + } + + #[test] + fn duration_approx() { + let oob = Duration::from_millis(0xFFFF_FFFF) + Duration::from_micros(1); + let delay = Delay::from_saturating_duration(oob); + assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); + + let inbounds = Duration::from_millis(0xFFFF_FFFF) - Duration::from_micros(1); + let delay = Delay::from_saturating_duration(inbounds); + assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); + + let fine = Duration::from_millis(0xFFFF_FFFF/1000) + Duration::from_micros(0xFFFF_FFFF%1000); + let delay = Delay::from_saturating_duration(fine); + // Funnily, 0xFFFF_FFFF is divisble by 5, thus we compare with a `Ratio`. + assert_eq!(delay.into_ratio(), Ratio::new(0xFFFF_FFFF, 1000)); + } + + #[test] + fn precise() { + // The ratio has only 32 bits in the numerator, too imprecise to get more than 11 digits + // correct. But it may be expressed as 1_000_000/3 instead. + let exceed = Duration::from_secs(333) + Duration::from_nanos(333_333_333); + let delay = Delay::from_saturating_duration(exceed); + assert_eq!(Duration::from(delay), exceed); + } + + + #[test] + fn small() { + // Not quite a delay of `1 ms`. + let delay = Delay::from_numer_denom_ms(1 << 16, (1 << 16) + 1); + let duration = Duration::from(delay); + assert_eq!(duration.as_millis(), 0); + // Not precisely the original but should be smaller than 0. + let delay = Delay::from_saturating_duration(duration); + assert_eq!(delay.into_ratio().to_integer(), 0); + } +} |