summaryrefslogtreecommitdiffstats
path: root/third_party/rust/image/src/imageops
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/image/src/imageops')
-rw-r--r--third_party/rust/image/src/imageops/affine.rs387
-rw-r--r--third_party/rust/image/src/imageops/colorops.rs325
-rw-r--r--third_party/rust/image/src/imageops/mod.rs219
-rw-r--r--third_party/rust/image/src/imageops/sample.rs873
4 files changed, 1804 insertions, 0 deletions
diff --git a/third_party/rust/image/src/imageops/affine.rs b/third_party/rust/image/src/imageops/affine.rs
new file mode 100644
index 0000000000..adaa8b995b
--- /dev/null
+++ b/third_party/rust/image/src/imageops/affine.rs
@@ -0,0 +1,387 @@
+//! Functions for performing affine transformations.
+
+use crate::buffer::{ImageBuffer, Pixel};
+use crate::image::{GenericImage, GenericImageView};
+
+/// Rotate an image 90 degrees clockwise.
+pub fn rotate90<I: GenericImageView>(
+ image: &I,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+ where I::Pixel: 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(height, width);
+ let _ = rotate90_in(image, &mut out);
+ out
+}
+
+/// Rotate an image 180 degrees clockwise.
+pub fn rotate180<I: GenericImageView>(
+ image: &I,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+ where I::Pixel: 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, height);
+ let _ = rotate180_in(image, &mut out);
+ out
+}
+
+/// Rotate an image 270 degrees clockwise.
+pub fn rotate270<I: GenericImageView>(
+ image: &I,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+ where I::Pixel: 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(height, width);
+ let _ = rotate270_in(image, &mut out);
+ out
+}
+
+/// Rotate an image 90 degrees clockwise and put the result into the destination [`ImageBuffer`].
+pub fn rotate90_in<I, Container>(
+ image: &I,
+ destination: &mut ImageBuffer<I::Pixel, Container>
+) -> crate::ImageResult<()> where
+ I: GenericImageView,
+ I::Pixel: 'static,
+ Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>
+{
+ let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
+ if w0 != h1 || h0 != w1 {
+ return Err(crate::ImageError::DimensionError);
+ }
+
+ for y in 0..h0 {
+ for x in 0..w0 {
+ let p = image.get_pixel(x, y);
+ destination.put_pixel(h0 - y - 1, x, p);
+ }
+ }
+ Ok(())
+}
+
+/// Rotate an image 180 degrees clockwise and put the result into the destination [`ImageBuffer`].
+pub fn rotate180_in<I, Container>(
+ image: &I,
+ destination: &mut ImageBuffer<I::Pixel, Container>
+) -> crate::ImageResult<()> where
+ I: GenericImageView,
+ I::Pixel: 'static,
+ Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>
+{
+ let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
+ if w0 != w1 || h0 != h1 {
+ return Err(crate::ImageError::DimensionError);
+ }
+
+ for y in 0..h0 {
+ for x in 0..w0 {
+ let p = image.get_pixel(x, y);
+ destination.put_pixel(w0 - x - 1, h0 - y - 1, p);
+ }
+ }
+ Ok(())
+}
+
+/// Rotate an image 270 degrees clockwise and put the result into the destination [`ImageBuffer`].
+pub fn rotate270_in<I, Container>(
+ image: &I,
+ destination: &mut ImageBuffer<I::Pixel, Container>
+) -> crate::ImageResult<()> where
+ I: GenericImageView,
+ I::Pixel: 'static,
+ Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>
+{
+ let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
+ if w0 != h1 || h0 != w1 {
+ return Err(crate::ImageError::DimensionError);
+ }
+
+ for y in 0..h0 {
+ for x in 0..w0 {
+ let p = image.get_pixel(x, y);
+ destination.put_pixel(y, w0 - x - 1, p);
+ }
+ }
+ Ok(())
+}
+
+/// Flip an image horizontally
+pub fn flip_horizontal<I: GenericImageView>(
+ image: &I,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+ where I::Pixel: 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, height);
+ let _ = flip_horizontal_in(image, &mut out);
+ out
+}
+
+/// Flip an image vertically
+pub fn flip_vertical<I: GenericImageView>(
+ image: &I,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+ where I::Pixel: 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, height);
+ let _ = flip_vertical_in(image, &mut out);
+ out
+}
+
+/// Flip an image horizontally and put the result into the destination [`ImageBuffer`].
+pub fn flip_horizontal_in<I, Container>(
+ image: &I,
+ destination: &mut ImageBuffer<I::Pixel, Container>
+) -> crate::ImageResult<()> where
+ I: GenericImageView,
+ I::Pixel: 'static,
+ Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>
+{
+ let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
+ if w0 != w1 || h0 != h1 {
+ return Err(crate::ImageError::DimensionError);
+ }
+
+ for y in 0..h0 {
+ for x in 0..w0 {
+ let p = image.get_pixel(x, y);
+ destination.put_pixel(w0 - x - 1, y, p);
+ }
+ }
+ Ok(())
+}
+
+/// Flip an image vertically and put the result into the destination [`ImageBuffer`].
+pub fn flip_vertical_in<I, Container>(
+ image: &I,
+ destination: &mut ImageBuffer<I::Pixel, Container>
+) -> crate::ImageResult<()> where
+ I: GenericImageView,
+ I::Pixel: 'static,
+ Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>
+{
+ let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
+ if w0 != w1 || h0 != h1 {
+ return Err(crate::ImageError::DimensionError);
+ }
+
+ for y in 0..h0 {
+ for x in 0..w0 {
+ let p = image.get_pixel(x, y);
+ destination.put_pixel(x, h0 - 1 - y, p);
+ }
+ }
+ Ok(())
+}
+
+/// Rotate an image 180 degrees clockwise in place.
+pub fn rotate180_in_place<I: GenericImage>(image: &mut I) {
+ let (width, height) = image.dimensions();
+
+ for y in 0..height / 2 {
+ for x in 0..width {
+ let p = image.get_pixel(x, y);
+
+ let x2 = width - x - 1;
+ let y2 = height - y - 1;
+
+ let p2 = image.get_pixel(x2, y2);
+ image.put_pixel(x, y, p2);
+ image.put_pixel(x2, y2, p);
+ }
+ }
+
+ if height % 2 != 0 {
+ let middle = height / 2;
+
+ for x in 0..width / 2 {
+ let p = image.get_pixel(x, middle);
+ let x2 = width - x - 1;
+
+ let p2 = image.get_pixel(x2, middle);
+ image.put_pixel(x, middle, p2);
+ image.put_pixel(x2, middle, p);
+ }
+ }
+}
+
+/// Flip an image horizontally in place.
+pub fn flip_horizontal_in_place<I: GenericImage>(image: &mut I) {
+ let (width, height) = image.dimensions();
+
+ for y in 0..height {
+ for x in 0..width / 2 {
+ let x2 = width - x - 1;
+ let p2 = image.get_pixel(x2, y);
+ let p = image.get_pixel(x, y);
+ image.put_pixel(x2, y, p);
+ image.put_pixel(x, y, p2);
+ }
+ }
+}
+
+/// Flip an image vertically in place.
+pub fn flip_vertical_in_place<I: GenericImage>(image: &mut I) {
+ let (width, height) = image.dimensions();
+
+ for y in 0..height / 2 {
+ for x in 0..width {
+ let y2 = height - y - 1;
+ let p2 = image.get_pixel(x, y2);
+ let p = image.get_pixel(x, y);
+ image.put_pixel(x, y2, p);
+ image.put_pixel(x, y, p2);
+ }
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::{
+ flip_horizontal, flip_horizontal_in_place, flip_vertical, flip_vertical_in_place,
+ rotate180, rotate180_in_place, rotate270, rotate90,
+ };
+ use crate::buffer::{GrayImage, ImageBuffer, Pixel};
+ use crate::image::GenericImage;
+
+ macro_rules! assert_pixels_eq {
+ ($actual:expr, $expected:expr) => {{
+ let actual_dim = $actual.dimensions();
+ let expected_dim = $expected.dimensions();
+
+ if actual_dim != expected_dim {
+ panic!(
+ "dimensions do not match. \
+ actual: {:?}, expected: {:?}",
+ actual_dim, expected_dim
+ )
+ }
+
+ let diffs = pixel_diffs($actual, $expected);
+
+ if !diffs.is_empty() {
+ let mut err = "pixels do not match. ".to_string();
+
+ let diff_messages = diffs
+ .iter()
+ .take(5)
+ .map(|d| format!("\nactual: {:?}, expected {:?} ", d.0, d.1))
+ .collect::<Vec<_>>()
+ .join("");
+
+ err.push_str(&diff_messages);
+ panic!(err)
+ }
+ }};
+ }
+
+ #[test]
+ fn test_rotate90() {
+ let image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(2, 3, vec![10u8, 00u8, 11u8, 01u8, 12u8, 02u8]).unwrap();
+
+ assert_pixels_eq!(&rotate90(&image), &expected);
+ }
+
+ #[test]
+ fn test_rotate180() {
+ let image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![12u8, 11u8, 10u8, 02u8, 01u8, 00u8]).unwrap();
+
+ assert_pixels_eq!(&rotate180(&image), &expected);
+ }
+
+ #[test]
+ fn test_rotate270() {
+ let image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(2, 3, vec![02u8, 12u8, 01u8, 11u8, 00u8, 10u8]).unwrap();
+
+ assert_pixels_eq!(&rotate270(&image), &expected);
+ }
+
+ #[test]
+ fn test_rotate180_in_place() {
+ let mut image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![12u8, 11u8, 10u8, 02u8, 01u8, 00u8]).unwrap();
+
+ rotate180_in_place(&mut image);
+
+ assert_pixels_eq!(&image, &expected);
+ }
+
+ #[test]
+ fn test_flip_horizontal() {
+ let image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![02u8, 01u8, 00u8, 12u8, 11u8, 10u8]).unwrap();
+
+ assert_pixels_eq!(&flip_horizontal(&image), &expected);
+ }
+
+ #[test]
+ fn test_flip_vertical() {
+ let image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 00u8, 01u8, 02u8]).unwrap();
+
+ assert_pixels_eq!(&flip_vertical(&image), &expected);
+ }
+
+ #[test]
+ fn test_flip_horizontal_in_place() {
+ let mut image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![02u8, 01u8, 00u8, 12u8, 11u8, 10u8]).unwrap();
+
+ flip_horizontal_in_place(&mut image);
+
+ assert_pixels_eq!(&image, &expected);
+ }
+
+ #[test]
+ fn test_flip_vertical_in_place() {
+ let mut image: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
+
+ let expected: GrayImage =
+ ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 00u8, 01u8, 02u8]).unwrap();
+
+ flip_vertical_in_place(&mut image);
+
+ assert_pixels_eq!(&image, &expected);
+ }
+
+ fn pixel_diffs<I, J, P>(left: &I, right: &J) -> Vec<((u32, u32, P), (u32, u32, P))>
+ where
+ I: GenericImage<Pixel = P>,
+ J: GenericImage<Pixel = P>,
+ P: Pixel + Eq,
+ {
+ left.pixels()
+ .zip(right.pixels())
+ .filter(|&(p, q)| p != q)
+ .collect::<Vec<_>>()
+ }
+}
diff --git a/third_party/rust/image/src/imageops/colorops.rs b/third_party/rust/image/src/imageops/colorops.rs
new file mode 100644
index 0000000000..2de5194957
--- /dev/null
+++ b/third_party/rust/image/src/imageops/colorops.rs
@@ -0,0 +1,325 @@
+//! Functions for altering and converting the color of pixelbufs
+
+use crate::buffer::{ImageBuffer, Pixel};
+use crate::color::{Luma, Rgba};
+use crate::image::{GenericImage, GenericImageView};
+use crate::math::nq;
+use crate::math::utils::clamp;
+use num_traits::{Num, NumCast};
+use std::f64::consts::PI;
+use crate::traits::Primitive;
+
+type Subpixel<I> = <<I as GenericImageView>::Pixel as Pixel>::Subpixel;
+
+/// Convert the supplied image to grayscale
+pub fn grayscale<I: GenericImageView>(
+ image: &I,
+) -> ImageBuffer<Luma<Subpixel<I>>, Vec<Subpixel<I>>>
+where
+ Subpixel<I>: 'static,
+ <Subpixel<I> as Num>::FromStrRadixErr: 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, height);
+
+ for y in 0..height {
+ for x in 0..width {
+ let p = image.get_pixel(x, y).to_luma();
+ out.put_pixel(x, y, p);
+ }
+ }
+
+ out
+}
+
+/// Invert each pixel within the supplied image.
+/// This function operates in place.
+pub fn invert<I: GenericImage>(image: &mut I) {
+ let (width, height) = image.dimensions();
+
+ for y in 0..height {
+ for x in 0..width {
+ let mut p = image.get_pixel(x, y);
+ p.invert();
+
+ image.put_pixel(x, y, p);
+ }
+ }
+}
+
+/// Adjust the contrast of the supplied image.
+/// ```contrast``` is the amount to adjust the contrast by.
+/// Negative values decrease the contrast and positive values increase the contrast.
+pub fn contrast<I, P, S>(image: &I, contrast: f32) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, height);
+
+ let max = S::max_value();
+ let max: f32 = NumCast::from(max).unwrap();
+
+ let percent = ((100.0 + contrast) / 100.0).powi(2);
+
+ for y in 0..height {
+ for x in 0..width {
+ let f = image.get_pixel(x, y).map(|b| {
+ let c: f32 = NumCast::from(b).unwrap();
+
+ let d = ((c / max - 0.5) * percent + 0.5) * max;
+ let e = clamp(d, 0.0, max);
+
+ NumCast::from(e).unwrap()
+ });
+
+ out.put_pixel(x, y, f);
+ }
+ }
+
+ out
+}
+
+/// Brighten the supplied image.
+/// ```value``` is the amount to brighten each pixel by.
+/// Negative values decrease the brightness and positive values increase it.
+pub fn brighten<I, P, S>(image: &I, value: i32) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, height);
+
+ let max = S::max_value();
+ let max: i32 = NumCast::from(max).unwrap();
+
+ for y in 0..height {
+ for x in 0..width {
+ let e = image.get_pixel(x, y).map_with_alpha(
+ |b| {
+ let c: i32 = NumCast::from(b).unwrap();
+ let d = clamp(c + value, 0, max);
+
+ NumCast::from(d).unwrap()
+ },
+ |alpha| alpha,
+ );
+
+ out.put_pixel(x, y, e);
+ }
+ }
+
+ out
+}
+
+/// Hue rotate the supplied image.
+/// `value` is the degrees to rotate each pixel by.
+/// 0 and 360 do nothing, the rest rotates by the given degree value.
+/// just like the css webkit filter hue-rotate(180)
+pub fn huerotate<I, P, S>(image: &I, value: i32) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, height);
+
+ let angle: f64 = NumCast::from(value).unwrap();
+
+ let cosv = (angle * PI / 180.0).cos();
+ let sinv = (angle * PI / 180.0).sin();
+ let matrix: [f64; 9] = [
+ // Reds
+ 0.213 + cosv * 0.787 - sinv * 0.213,
+ 0.715 - cosv * 0.715 - sinv * 0.715,
+ 0.072 - cosv * 0.072 + sinv * 0.928,
+ // Greens
+ 0.213 - cosv * 0.213 + sinv * 0.143,
+ 0.715 + cosv * 0.285 + sinv * 0.140,
+ 0.072 - cosv * 0.072 - sinv * 0.283,
+ // Blues
+ 0.213 - cosv * 0.213 - sinv * 0.787,
+ 0.715 - cosv * 0.715 + sinv * 0.715,
+ 0.072 + cosv * 0.928 + sinv * 0.072,
+ ];
+ for (x, y, pixel) in out.enumerate_pixels_mut() {
+ let p = image.get_pixel(x, y);
+ let (k1, k2, k3, k4) = p.channels4();
+ let vec: (f64, f64, f64, f64) = (
+ NumCast::from(k1).unwrap(),
+ NumCast::from(k2).unwrap(),
+ NumCast::from(k3).unwrap(),
+ NumCast::from(k4).unwrap(),
+ );
+
+ let r = vec.0;
+ let g = vec.1;
+ let b = vec.2;
+
+ let new_r = matrix[0] * r + matrix[1] * g + matrix[2] * b;
+ let new_g = matrix[3] * r + matrix[4] * g + matrix[5] * b;
+ let new_b = matrix[6] * r + matrix[7] * g + matrix[8] * b;
+ let max = 255f64;
+ let outpixel = Pixel::from_channels(
+ NumCast::from(clamp(new_r, 0.0, max)).unwrap(),
+ NumCast::from(clamp(new_g, 0.0, max)).unwrap(),
+ NumCast::from(clamp(new_b, 0.0, max)).unwrap(),
+ NumCast::from(clamp(vec.3, 0.0, max)).unwrap(),
+ );
+ *pixel = outpixel;
+ }
+ out
+}
+
+/// A color map
+pub trait ColorMap {
+ /// The color type on which the map operates on
+ type Color;
+ /// Returns the index of the closed match of `color`
+ /// in the color map.
+ fn index_of(&self, color: &Self::Color) -> usize;
+ /// Maps `color` to the closest color in the color map.
+ fn map_color(&self, color: &mut Self::Color);
+}
+
+/// A bi-level color map
+#[derive(Clone, Copy)]
+pub struct BiLevel;
+
+impl ColorMap for BiLevel {
+ type Color = Luma<u8>;
+
+ #[inline(always)]
+ fn index_of(&self, color: &Luma<u8>) -> usize {
+ let luma = color.0;
+ if luma[0] > 127 {
+ 1
+ } else {
+ 0
+ }
+ }
+
+ #[inline(always)]
+ fn map_color(&self, color: &mut Luma<u8>) {
+ let new_color = 0xFF * self.index_of(color) as u8;
+ let luma = &mut color.0;
+ luma[0] = new_color;
+ }
+}
+
+impl ColorMap for nq::NeuQuant {
+ type Color = Rgba<u8>;
+
+ #[inline(always)]
+ fn index_of(&self, color: &Rgba<u8>) -> usize {
+ self.index_of(color.channels())
+ }
+
+ #[inline(always)]
+ fn map_color(&self, color: &mut Rgba<u8>) {
+ self.map_pixel(color.channels_mut())
+ }
+}
+
+/// Floyd-Steinberg error diffusion
+fn diffuse_err<P: Pixel<Subpixel = u8>>(pixel: &mut P, error: [i16; 3], factor: i16) {
+ for (e, c) in error.iter().zip(pixel.channels_mut().iter_mut()) {
+ *c = match <i16 as From<_>>::from(*c) + e * factor / 16 {
+ val if val < 0 => 0,
+ val if val > 0xFF => 0xFF,
+ val => val as u8,
+ }
+ }
+}
+
+macro_rules! do_dithering(
+ ($map:expr, $image:expr, $err:expr, $x:expr, $y:expr) => (
+ {
+ let old_pixel = $image[($x, $y)];
+ let new_pixel = $image.get_pixel_mut($x, $y);
+ $map.map_color(new_pixel);
+ for ((e, &old), &new) in $err.iter_mut()
+ .zip(old_pixel.channels().iter())
+ .zip(new_pixel.channels().iter())
+ {
+ *e = <i16 as From<_>>::from(old) - <i16 as From<_>>::from(new)
+ }
+ }
+ )
+);
+
+/// Reduces the colors of the image using the supplied `color_map` while applying
+/// Floyd-Steinberg dithering to improve the visual conception
+pub fn dither<Pix, Map>(image: &mut ImageBuffer<Pix, Vec<u8>>, color_map: &Map)
+where
+ Map: ColorMap<Color = Pix>,
+ Pix: Pixel<Subpixel = u8> + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut err: [i16; 3] = [0; 3];
+ for y in 0..height - 1 {
+ let x = 0;
+ do_dithering!(color_map, image, err, x, y);
+ diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
+ diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
+ diffuse_err(image.get_pixel_mut(x + 1, y + 1), err, 1);
+ for x in 1..width - 1 {
+ do_dithering!(color_map, image, err, x, y);
+ diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
+ diffuse_err(image.get_pixel_mut(x - 1, y + 1), err, 3);
+ diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
+ diffuse_err(image.get_pixel_mut(x + 1, y + 1), err, 1);
+ }
+ let x = width - 1;
+ do_dithering!(color_map, image, err, x, y);
+ diffuse_err(image.get_pixel_mut(x - 1, y + 1), err, 3);
+ diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
+ }
+ let y = height - 1;
+ let x = 0;
+ do_dithering!(color_map, image, err, x, y);
+ diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
+ for x in 1..width - 1 {
+ do_dithering!(color_map, image, err, x, y);
+ diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
+ }
+ let x = width - 1;
+ do_dithering!(color_map, image, err, x, y);
+}
+
+/// Reduces the colors using the supplied `color_map` and returns an image of the indices
+pub fn index_colors<Pix, Map>(
+ image: &ImageBuffer<Pix, Vec<u8>>,
+ color_map: &Map,
+) -> ImageBuffer<Luma<u8>, Vec<u8>>
+where
+ Map: ColorMap<Color = Pix>,
+ Pix: Pixel<Subpixel = u8> + 'static,
+{
+ let mut indices = ImageBuffer::new(image.width(), image.height());
+ for (pixel, idx) in image.pixels().zip(indices.pixels_mut()) {
+ *idx = Luma([color_map.index_of(pixel) as u8])
+ }
+ indices
+}
+
+#[cfg(test)]
+mod test {
+
+ use super::*;
+ use crate::ImageBuffer;
+
+ #[test]
+ fn test_dither() {
+ let mut image = ImageBuffer::from_raw(2, 2, vec![127, 127, 127, 127]).unwrap();
+ let cmap = BiLevel;
+ dither(&mut image, &cmap);
+ assert_eq!(&*image, &[0, 0xFF, 0xFF, 0]);
+ assert_eq!(index_colors(&image, &cmap).into_raw(), vec![0, 1, 1, 0])
+ }
+}
diff --git a/third_party/rust/image/src/imageops/mod.rs b/third_party/rust/image/src/imageops/mod.rs
new file mode 100644
index 0000000000..f0c7fe68c8
--- /dev/null
+++ b/third_party/rust/image/src/imageops/mod.rs
@@ -0,0 +1,219 @@
+//! Image Processing Functions
+use std::cmp;
+
+use crate::image::{GenericImage, GenericImageView, SubImage};
+
+use crate::buffer::Pixel;
+
+pub use self::sample::FilterType;
+
+pub use self::sample::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
+
+/// Affine transformations
+pub use self::affine::{
+ flip_horizontal, flip_horizontal_in_place, flip_vertical, flip_vertical_in_place, rotate180,
+ rotate180_in_place, rotate270, rotate90, rotate180_in, rotate90_in, rotate270_in, flip_horizontal_in, flip_vertical_in
+};
+
+/// Image sampling
+pub use self::sample::{blur, filter3x3, resize, thumbnail, unsharpen};
+
+/// Color operations
+pub use self::colorops::{brighten, contrast, dither, grayscale, huerotate, index_colors, invert,
+ BiLevel, ColorMap};
+
+mod affine;
+// Public only because of Rust bug:
+// https://github.com/rust-lang/rust/issues/18241
+pub mod colorops;
+mod sample;
+
+/// Return a mutable view into an image
+pub fn crop<I: GenericImageView>(
+ image: &mut I,
+ x: u32,
+ y: u32,
+ width: u32,
+ height: u32,
+) -> SubImage<&mut I> {
+ let (iwidth, iheight) = image.dimensions();
+
+ let x = cmp::min(x, iwidth);
+ let y = cmp::min(y, iheight);
+
+ let height = cmp::min(height, iheight - y);
+ let width = cmp::min(width, iwidth - x);
+
+ SubImage::new(image, x, y, width, height)
+}
+
+/// Calculate the region that can be copied from top to bottom.
+///
+/// Given image size of bottom and top image, and a point at which we want to place the top image
+/// onto the bottom image, how large can we be? Have to wary of the following issues:
+/// * Top might be larger than bottom
+/// * Overflows in the computation
+/// * Coordinates could be completely out of bounds
+///
+/// The main idea is to make use of inequalities provided by the nature of `saturing_add` and
+/// `saturating_sub`. These intrinsically validate that all resulting coordinates will be in bounds
+/// for both images.
+///
+/// We want that all these coordinate accesses are safe:
+/// 1. `bottom.get_pixel(x + [0..x_range), y + [0..y_range))`
+/// 2. `top.get_pixel([0..x_range), [0..y_range))`
+///
+/// Proof that the function provides the necessary bounds for width. Note that all unaugmented math
+/// operations are to be read in standard arithmetic, not integer arithmetic. Since no direct
+/// integer arithmetic occurs in the implementation, this is unambiguous.
+///
+/// ```text
+/// Three short notes/lemmata:
+/// - Iff `(a - b) <= 0` then `a.saturating_sub(b) = 0`
+/// - Iff `(a - b) >= 0` then `a.saturating_sub(b) = a - b`
+/// - If `a <= c` then `a.saturating_sub(b) <= c.saturating_sub(b)`
+///
+/// 1.1 We show that if `bottom_width <= x`, then `x_range = 0` therefore `x + [0..x_range)` is empty.
+///
+/// x_range
+/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
+/// <= bottom_width.saturating_sub(x)
+///
+/// bottom_width <= x
+/// <==> bottom_width - x <= 0
+/// <==> bottom_width.saturating_sub(x) = 0
+/// ==> x_range <= 0
+/// ==> x_range = 0
+///
+/// 1.2 If `x < bottom_width` then `x + x_range < bottom_width`
+///
+/// x + x_range
+/// <= x + bottom_width.saturating_sub(x)
+/// = x + (bottom_width - x)
+/// = bottom_width
+///
+/// 2. We show that `x_range <= top_width`
+///
+/// x_range
+/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
+/// <= top_width.saturating_add(x).saturating_sub(x)
+/// <= (top_wdith + x).saturating_sub(x)
+/// = top_width (due to `top_width >= 0` and `x >= 0`)
+/// ```
+///
+/// Proof is the same for height.
+pub fn overlay_bounds(
+ (bottom_width, bottom_height): (u32, u32),
+ (top_width, top_height): (u32, u32),
+ x: u32,
+ y: u32
+)
+ -> (u32, u32)
+{
+ let x_range = top_width.saturating_add(x) // Calculate max coordinate
+ .min(bottom_width) // Restrict to lower width
+ .saturating_sub(x); // Determinate length from start `x`
+ let y_range = top_height.saturating_add(y)
+ .min(bottom_height)
+ .saturating_sub(y);
+ (x_range, y_range)
+}
+
+/// Overlay an image at a given coordinate (x, y)
+pub fn overlay<I, J>(bottom: &mut I, top: &J, x: u32, y: u32)
+where
+ I: GenericImage,
+ J: GenericImageView<Pixel = I::Pixel>,
+{
+ let bottom_dims = bottom.dimensions();
+ let top_dims = top.dimensions();
+
+ // Crop our top image if we're going out of bounds
+ let (range_width, range_height) = overlay_bounds(bottom_dims, top_dims, x, y);
+
+ for top_y in 0..range_height {
+ for top_x in 0..range_width {
+ let p = top.get_pixel(top_x, top_y);
+ let mut bottom_pixel = bottom.get_pixel(x + top_x, y + top_y);
+ bottom_pixel.blend(&p);
+
+ bottom.put_pixel(x + top_x, y + top_y, bottom_pixel);
+ }
+ }
+}
+
+/// Replace the contents of an image at a given coordinate (x, y)
+pub fn replace<I, J>(bottom: &mut I, top: &J, x: u32, y: u32)
+where
+ I: GenericImage,
+ J: GenericImageView<Pixel = I::Pixel>,
+{
+ let bottom_dims = bottom.dimensions();
+ let top_dims = top.dimensions();
+
+ // Crop our top image if we're going out of bounds
+ let (range_width, range_height) = overlay_bounds(bottom_dims, top_dims, x, y);
+
+ for top_y in 0..range_height {
+ for top_x in 0..range_width {
+ let p = top.get_pixel(top_x, top_y);
+ bottom.put_pixel(x + top_x, y + top_y, p);
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+
+ use super::overlay;
+ use crate::buffer::ImageBuffer;
+ use crate::color::Rgb;
+
+ #[test]
+ /// Test that images written into other images works
+ fn test_image_in_image() {
+ let mut target = ImageBuffer::new(32, 32);
+ let source = ImageBuffer::from_pixel(16, 16, Rgb([255u8, 0, 0]));
+ overlay(&mut target, &source, 0, 0);
+ assert!(*target.get_pixel(0, 0) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(15, 0) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(16, 0) == Rgb([0u8, 0, 0]));
+ assert!(*target.get_pixel(0, 15) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(0, 16) == Rgb([0u8, 0, 0]));
+ }
+
+ #[test]
+ /// Test that images written outside of a frame doesn't blow up
+ fn test_image_in_image_outside_of_bounds() {
+ let mut target = ImageBuffer::new(32, 32);
+ let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
+ overlay(&mut target, &source, 1, 1);
+ assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(1, 1) == Rgb([255u8, 0, 0]));
+ assert!(*target.get_pixel(31, 31) == Rgb([255u8, 0, 0]));
+ }
+
+ #[test]
+ /// Test that images written to coordinates out of the frame doesn't blow up
+ /// (issue came up in #848)
+ fn test_image_outside_image_no_wrap_around() {
+ let mut target = ImageBuffer::new(32, 32);
+ let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
+ overlay(&mut target, &source, 33, 33);
+ assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(31, 31) == Rgb([0, 0, 0]));
+ }
+
+ #[test]
+ /// Test that images written to coordinates with overflow works
+ fn test_image_coordinate_overflow() {
+ let mut target = ImageBuffer::new(16, 16);
+ let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
+ // Overflows to 'sane' coordinates but top is larger than bot.
+ overlay(&mut target, &source, u32::max_value() - 31, u32::max_value() - 31);
+ assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
+ assert!(*target.get_pixel(15, 15) == Rgb([0, 0, 0]));
+ }
+}
diff --git a/third_party/rust/image/src/imageops/sample.rs b/third_party/rust/image/src/imageops/sample.rs
new file mode 100644
index 0000000000..6f8a76da17
--- /dev/null
+++ b/third_party/rust/image/src/imageops/sample.rs
@@ -0,0 +1,873 @@
+//! Functions and filters for the sampling of pixels.
+
+// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf
+// for some of the theory behind image scaling and convolution
+
+use std::f32;
+
+use num_traits::{NumCast, ToPrimitive, Zero};
+
+use crate::buffer::{ImageBuffer, Pixel};
+use crate::image::GenericImageView;
+use crate::math::utils::clamp;
+use crate::traits::{Enlargeable, Primitive};
+
+/// Available Sampling Filters.
+///
+/// ## Examples
+///
+/// To test the different sampling filters on a real example, you can find two
+/// examples called
+/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown)
+/// and
+/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup)
+/// in the `examples` directory of the crate source code.
+///
+/// Here is a 3.58 MiB
+/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg)
+/// that has been scaled down to 300x225 px:
+///
+/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` -->
+/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;">
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br>
+/// Nearest Neighbor
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br>
+/// Linear: Triangle
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br>
+/// Cubic: Catmull-Rom
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br>
+/// Gaussian
+/// </div>
+/// <div style="margin: 0 8px 8px 0;">
+/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br>
+/// Lanczos with window 3
+/// </div>
+/// </div>
+///
+/// ## Speed
+///
+/// Time required to create each of the examples above, tested on an Intel
+/// i7-4770 CPU with Rust 1.37 in release mode:
+///
+/// <table style="width: auto;">
+/// <tr>
+/// <th>Nearest</th>
+/// <td>31 ms</td>
+/// </tr>
+/// <tr>
+/// <th>Triangle</th>
+/// <td>414 ms</td>
+/// </tr>
+/// <tr>
+/// <th>CatmullRom</th>
+/// <td>817 ms</td>
+/// </tr>
+/// <tr>
+/// <th>Gaussian</th>
+/// <td>1180 ms</td>
+/// </tr>
+/// <tr>
+/// <th>Lanczos3</th>
+/// <td>1170 ms</td>
+/// </tr>
+/// </table>
+#[derive(Clone, Copy, Debug)]
+pub enum FilterType {
+ /// Nearest Neighbor
+ Nearest,
+
+ /// Linear Filter
+ Triangle,
+
+ /// Cubic Filter
+ CatmullRom,
+
+ /// Gaussian Filter
+ Gaussian,
+
+ /// Lanczos with window 3
+ Lanczos3,
+}
+
+/// A Representation of a separable filter.
+pub(crate) struct Filter<'a> {
+ /// The filter's filter function.
+ pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,
+
+ /// The window on which this filter operates.
+ pub(crate) support: f32,
+}
+
+// sinc function: the ideal sampling filter.
+fn sinc(t: f32) -> f32 {
+ let a = t * f32::consts::PI;
+
+ if t == 0.0 {
+ 1.0
+ } else {
+ a.sin() / a
+ }
+}
+
+// lanczos kernel function. A windowed sinc function.
+fn lanczos(x: f32, t: f32) -> f32 {
+ if x.abs() < t {
+ sinc(x) * sinc(x / t)
+ } else {
+ 0.0
+ }
+}
+
+// Calculate a splice based on the b and c parameters.
+// from authors Mitchell and Netravali.
+fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
+ let a = x.abs();
+
+ let k = if a < 1.0 {
+ (12.0 - 9.0 * b - 6.0 * c) * a.powi(3) + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
+ + (6.0 - 2.0 * b)
+ } else if a < 2.0 {
+ (-b - 6.0 * c) * a.powi(3) + (6.0 * b + 30.0 * c) * a.powi(2) + (-12.0 * b - 48.0 * c) * a
+ + (8.0 * b + 24.0 * c)
+ } else {
+ 0.0
+ };
+
+ k / 6.0
+}
+
+/// The Gaussian Function.
+/// ```r``` is the standard deviation.
+pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
+ ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
+}
+
+/// Calculate the lanczos kernel with a window of 3
+pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
+ lanczos(x, 3.0)
+}
+
+/// Calculate the gaussian function with a
+/// standard deviation of 0.5
+pub(crate) fn gaussian_kernel(x: f32) -> f32 {
+ gaussian(x, 0.5)
+}
+
+/// Calculate the Catmull-Rom cubic spline.
+/// Also known as a form of `BiCubic` sampling in two dimensions.
+pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
+ bc_cubic_spline(x, 0.0, 0.5)
+}
+
+/// Calculate the triangle function.
+/// Also known as `BiLinear` sampling in two dimensions.
+pub(crate) fn triangle_kernel(x: f32) -> f32 {
+ if x.abs() < 1.0 {
+ 1.0 - x.abs()
+ } else {
+ 0.0
+ }
+}
+
+/// Calculate the box kernel.
+/// Only pixels inside the box should be considered, and those
+/// contribute equally. So this method simply returns 1.
+pub(crate) fn box_kernel(_x: f32) -> f32 {
+ 1.0
+}
+
+// Sample the rows of the supplied image using the provided filter.
+// The height of the image remains unchanged.
+// ```new_width``` is the desired width of the new image
+// ```filter``` is the filter to use for sampling.
+fn horizontal_sample<I, P, S>(
+ image: &I,
+ new_width: u32,
+ filter: &mut Filter,
+) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(new_width, height);
+ let mut ws = Vec::new();
+
+ let max: f32 = NumCast::from(S::max_value()).unwrap();
+ let ratio = width as f32 / new_width as f32;
+ let sratio = if ratio < 1.0 { 1.0 } else { ratio };
+ let src_support = filter.support * sratio;
+
+ for outx in 0..new_width {
+ // Find the point in the input image corresponding to the centre
+ // of the current pixel in the output image.
+ let inputx = (outx as f32 + 0.5) * ratio;
+
+ // Left and right are slice bounds for the input pixels relevant
+ // to the output pixel we are calculating. Pixel x is relevant
+ // if and only if (x >= left) && (x < right).
+
+ // Invariant: 0 <= left < right <= width
+
+ let left = (inputx - src_support).floor() as i64;
+ let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
+
+ let right = (inputx + src_support).ceil() as i64;
+ let right = clamp(
+ right,
+ <i64 as From<_>>::from(left) + 1,
+ <i64 as From<_>>::from(width),
+ ) as u32;
+
+ // Go back to left boundary of pixel, to properly compare with i
+ // below, as the kernel treats the centre of a pixel as 0.
+ let inputx = inputx - 0.5;
+
+ ws.clear();
+ let mut sum = 0.0;
+ for i in left..right {
+ let w = (filter.kernel)((i as f32 - inputx) / sratio);
+ ws.push(w);
+ sum += w;
+ }
+
+ for y in 0..height {
+ let mut t = (0.0, 0.0, 0.0, 0.0);
+
+ for (i, w) in ws.iter().enumerate() {
+ let p = image.get_pixel(left + i as u32, y);
+
+ let (k1, k2, k3, k4) = p.channels4();
+ let vec: (f32, f32, f32, f32) = (
+ NumCast::from(k1).unwrap(),
+ NumCast::from(k2).unwrap(),
+ NumCast::from(k3).unwrap(),
+ NumCast::from(k4).unwrap(),
+ );
+
+ t.0 += vec.0 * w;
+ t.1 += vec.1 * w;
+ t.2 += vec.2 * w;
+ t.3 += vec.3 * w;
+ }
+
+ let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
+ let t = Pixel::from_channels(
+ NumCast::from(clamp(t1, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t2, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t3, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t4, 0.0, max)).unwrap(),
+ );
+
+ out.put_pixel(outx, y, t);
+ }
+ }
+
+ out
+}
+
+// Sample the columns of the supplied image using the provided filter.
+// The width of the image remains unchanged.
+// ```new_height``` is the desired height of the new image
+// ```filter``` is the filter to use for sampling.
+fn vertical_sample<I, P, S>(
+ image: &I,
+ new_height: u32,
+ filter: &mut Filter,
+) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(width, new_height);
+ let mut ws = Vec::new();
+
+ let max: f32 = NumCast::from(S::max_value()).unwrap();
+ let ratio = height as f32 / new_height as f32;
+ let sratio = if ratio < 1.0 { 1.0 } else { ratio };
+ let src_support = filter.support * sratio;
+
+ for outy in 0..new_height {
+ // For an explanation of this algorithm, see the comments
+ // in horizontal_sample.
+ let inputy = (outy as f32 + 0.5) * ratio;
+
+ let left = (inputy - src_support).floor() as i64;
+ let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
+
+ let right = (inputy + src_support).ceil() as i64;
+ let right = clamp(
+ right,
+ <i64 as From<_>>::from(left) + 1,
+ <i64 as From<_>>::from(height),
+ ) as u32;
+
+ let inputy = inputy - 0.5;
+
+ ws.clear();
+ let mut sum = 0.0;
+ for i in left..right {
+ let w = (filter.kernel)((i as f32 - inputy) / sratio);
+ ws.push(w);
+ sum += w;
+ }
+
+ for x in 0..width {
+ let mut t = (0.0, 0.0, 0.0, 0.0);
+
+ for (i, w) in ws.iter().enumerate() {
+ let p = image.get_pixel(x, left + i as u32);
+
+ let (k1, k2, k3, k4) = p.channels4();
+ let vec: (f32, f32, f32, f32) = (
+ NumCast::from(k1).unwrap(),
+ NumCast::from(k2).unwrap(),
+ NumCast::from(k3).unwrap(),
+ NumCast::from(k4).unwrap(),
+ );
+
+ t.0 += vec.0 * w;
+ t.1 += vec.1 * w;
+ t.2 += vec.2 * w;
+ t.3 += vec.3 * w;
+ }
+
+ let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
+ let t = Pixel::from_channels(
+ NumCast::from(clamp(t1, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t2, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t3, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t4, 0.0, max)).unwrap(),
+ );
+
+ out.put_pixel(x, outy, t);
+ }
+ }
+
+ out
+}
+
+/// Local struct for keeping track of pixel sums for fast thumbnail averaging
+struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
+
+impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
+ fn zeroed() -> Self {
+ ThumbnailSum(S::Larger::zero(), S::Larger::zero(), S::Larger::zero(), S::Larger::zero())
+ }
+
+ fn sample_val(val: S) -> S::Larger {
+ <S::Larger as NumCast>::from(val).unwrap()
+ }
+
+ fn add_pixel<P: Pixel<Subpixel=S>>(&mut self, pixel: P) {
+ let pixel = pixel.channels4();
+ self.0 += Self::sample_val(pixel.0);
+ self.1 += Self::sample_val(pixel.1);
+ self.2 += Self::sample_val(pixel.2);
+ self.3 += Self::sample_val(pixel.3);
+ }
+}
+
+/// Resize the supplied image to the specific dimensions.
+///
+/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes
+/// to exactly one target pixel. May give aliasing artifacts if new size is close to old size.
+///
+/// In case the current width is smaller than the new width or similar for the height, another
+/// strategy is used instead. For each pixel in the output, a rectangular region of the input is
+/// determined, just as previously. But when no input pixel is part of this region, the nearest
+/// pixels are interpolated instead.
+///
+/// For speed reasons, all interpolation is performed linearly over the colour values. It will not
+/// take the pixel colour spaces into account.
+pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + Enlargeable + 'static,
+{
+ let (width, height) = image.dimensions();
+ let mut out = ImageBuffer::new(new_width, new_height);
+
+ let x_ratio = width as f32 / new_width as f32;
+ let y_ratio = height as f32 / new_height as f32;
+
+ for outy in 0..new_height {
+ let bottomf = outy as f32 * y_ratio;
+ let topf = bottomf + y_ratio;
+
+ let bottom = clamp(
+ bottomf.ceil() as u32,
+ 0,
+ height - 1,
+ );
+ let top = clamp(
+ topf.ceil() as u32,
+ bottom,
+ height,
+ );
+
+ for outx in 0..new_width {
+ let leftf = outx as f32 * x_ratio;
+ let rightf = leftf + x_ratio;
+
+ let left = clamp(
+ leftf.ceil() as u32,
+ 0,
+ width - 1,
+ );
+ let right = clamp(
+ rightf.ceil() as u32,
+ left,
+ width,
+ );
+
+ let avg = if bottom != top && left != right {
+ thumbnail_sample_block(image, left, right, bottom, top)
+ } else if bottom != top { // && left == right
+ // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this
+ // assertion can never trigger.
+ debug_assert!(left > 0 && right > 0,
+ "First output column must have corresponding pixels");
+
+ let fraction_horizontal = (leftf.fract() + rightf.fract())/2.;
+ thumbnail_sample_fraction_horizontal(image, right - 1, fraction_horizontal, bottom, top)
+ } else if left != right { // && bottom == top
+ // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this
+ // assertion can never trigger.
+ debug_assert!(bottom > 0 && top > 0,
+ "First output row must have corresponding pixels");
+
+ let fraction_vertical = (topf.fract() + bottomf.fract())/2.;
+ thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
+ } else { // bottom == top && left == right
+ let fraction_horizontal = (topf.fract() + bottomf.fract())/2.;
+ let fraction_vertical= (leftf.fract() + rightf.fract())/2.;
+
+ thumbnail_sample_fraction_both(image, right - 1, fraction_horizontal, top - 1, fraction_vertical)
+ };
+
+ let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
+ out.put_pixel(outx, outy, pixel);
+ }
+ }
+
+ out
+}
+
+/// Get a pixel for a thumbnail where the input window encloses at least a full pixel.
+fn thumbnail_sample_block<I, P, S>(
+ image: &I,
+ left: u32,
+ right: u32,
+ bottom: u32,
+ top: u32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ let mut sum = ThumbnailSum::zeroed();
+
+ for y in bottom..top {
+ for x in left..right {
+ let k = image.get_pixel(x, y);
+ sum.add_pixel(k);
+ }
+ }
+
+ let n = <S::Larger as NumCast>::from(
+ (right - left) * (top - bottom)).unwrap();
+ let round = <S::Larger as NumCast>::from(
+ n / NumCast::from(2).unwrap()).unwrap();
+ (
+ S::clamp_from((sum.0 + round)/n),
+ S::clamp_from((sum.1 + round)/n),
+ S::clamp_from((sum.2 + round)/n),
+ S::clamp_from((sum.3 + round)/n),
+ )
+}
+
+/// Get a thumbnail pixel where the input window encloses at least a vertical pixel.
+fn thumbnail_sample_fraction_horizontal<I, P, S>(
+ image: &I,
+ left: u32,
+ fraction_horizontal: f32,
+ bottom: u32,
+ top: u32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ let fract = fraction_horizontal;
+
+ let mut sum_left = ThumbnailSum::zeroed();
+ let mut sum_right = ThumbnailSum::zeroed();
+ for x in bottom..top {
+ let k_left = image.get_pixel(left, x);
+ sum_left.add_pixel(k_left);
+
+ let k_right = image.get_pixel(left + 1, x);
+ sum_right.add_pixel(k_right);
+ }
+
+ // Now we approximate: left/n*(1-fract) + right/n*fract
+ let fact_right = fract /((top - bottom) as f32);
+ let fact_left = (1. - fract)/((top - bottom) as f32);
+
+ let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger|
+ <S as NumCast>::from(
+ fact_left * leftv.to_f32().unwrap() +
+ fact_right * rightv.to_f32().unwrap()
+ ).expect("Average sample value should fit into sample type");
+
+ (
+ mix_left_and_right(sum_left.0, sum_right.0),
+ mix_left_and_right(sum_left.1, sum_right.1),
+ mix_left_and_right(sum_left.2, sum_right.2),
+ mix_left_and_right(sum_left.3, sum_right.3),
+ )
+}
+
+/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel.
+fn thumbnail_sample_fraction_vertical<I, P, S>(
+ image: &I,
+ left: u32,
+ right: u32,
+ bottom: u32,
+ fraction_vertical: f32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ let fract = fraction_vertical;
+
+ let mut sum_bot = ThumbnailSum::zeroed();
+ let mut sum_top = ThumbnailSum::zeroed();
+ for x in left..right {
+ let k_bot = image.get_pixel(x, bottom);
+ sum_bot.add_pixel(k_bot);
+
+ let k_top = image.get_pixel(x, bottom + 1);
+ sum_top.add_pixel(k_top);
+ }
+
+ // Now we approximate: bot/n*fract + top/n*(1-fract)
+ let fact_top = fract /((right - left) as f32);
+ let fact_bot = (1. - fract)/((right - left) as f32);
+
+ let mix_bot_and_top = |botv: S::Larger, topv: S::Larger|
+ <S as NumCast>::from(
+ fact_bot * botv.to_f32().unwrap() +
+ fact_top * topv.to_f32().unwrap()
+ ).expect("Average sample value should fit into sample type");
+
+ (
+ mix_bot_and_top(sum_bot.0, sum_top.0),
+ mix_bot_and_top(sum_bot.1, sum_top.1),
+ mix_bot_and_top(sum_bot.2, sum_top.2),
+ mix_bot_and_top(sum_bot.3, sum_top.3),
+ )
+}
+
+/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel.
+fn thumbnail_sample_fraction_both<I, P, S>(
+ image: &I,
+ left: u32,
+ fraction_vertical: f32,
+ bottom: u32,
+ fraction_horizontal: f32,
+) -> (S, S, S, S)
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S>,
+ S: Primitive + Enlargeable,
+{
+ let k_bl = image.get_pixel(left, bottom ).channels4();
+ let k_tl = image.get_pixel(left, bottom + 1).channels4();
+ let k_br = image.get_pixel(left + 1, bottom ).channels4();
+ let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
+
+ let frac_v = fraction_vertical;
+ let frac_h = fraction_horizontal;
+
+ let fact_tr = frac_v * frac_h;
+ let fact_tl = frac_v * (1. - frac_h);
+ let fact_br = (1. - frac_v) * frac_h;
+ let fact_bl = (1. - frac_v) * (1. - frac_h);
+
+ let mix = |br: S, tr: S, bl: S, tl: S|
+ <S as NumCast>::from(
+ fact_br * br.to_f32().unwrap() +
+ fact_tr * tr.to_f32().unwrap() +
+ fact_bl * bl.to_f32().unwrap() +
+ fact_tl * tl.to_f32().unwrap()
+ ).expect("Average sample value should fit into sample type");
+
+ (
+ mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
+ mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
+ mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
+ mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
+ )
+}
+
+/// Perform a 3x3 box filter on the supplied image.
+/// ```kernel``` is an array of the filter weights of length 9.
+pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ // The kernel's input positions relative to the current pixel.
+ let taps: &[(isize, isize)] = &[
+ (-1, -1),
+ (0, -1),
+ (1, -1),
+ (-1, 0),
+ (0, 0),
+ (1, 0),
+ (-1, 1),
+ (0, 1),
+ (1, 1),
+ ];
+
+ let (width, height) = image.dimensions();
+
+ let mut out = ImageBuffer::new(width, height);
+
+ let max = S::max_value();
+ let max: f32 = NumCast::from(max).unwrap();
+
+ let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
+ x if x == 0.0 => 1.0,
+ sum => sum,
+ };
+ let sum = (sum, sum, sum, sum);
+
+ for y in 1..height - 1 {
+ for x in 1..width - 1 {
+ let mut t = (0.0, 0.0, 0.0, 0.0);
+
+ // TODO: There is no need to recalculate the kernel for each pixel.
+ // Only a subtract and addition is needed for pixels after the first
+ // in each row.
+ for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
+ let k = (k, k, k, k);
+ let x0 = x as isize + a;
+ let y0 = y as isize + b;
+
+ let p = image.get_pixel(x0 as u32, y0 as u32);
+
+ let (k1, k2, k3, k4) = p.channels4();
+
+ let vec: (f32, f32, f32, f32) = (
+ NumCast::from(k1).unwrap(),
+ NumCast::from(k2).unwrap(),
+ NumCast::from(k3).unwrap(),
+ NumCast::from(k4).unwrap(),
+ );
+
+ t.0 += vec.0 * k.0;
+ t.1 += vec.1 * k.1;
+ t.2 += vec.2 * k.2;
+ t.3 += vec.3 * k.3;
+ }
+
+ let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
+
+ let t = Pixel::from_channels(
+ NumCast::from(clamp(t1, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t2, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t3, 0.0, max)).unwrap(),
+ NumCast::from(clamp(t4, 0.0, max)).unwrap(),
+ );
+
+ out.put_pixel(x, y, t);
+ }
+ }
+
+ out
+}
+
+/// Resize the supplied image to the specified dimensions.
+/// ```nwidth``` and ```nheight``` are the new dimensions.
+/// ```filter``` is the sampling filter to use.
+pub fn resize<I: GenericImageView>(
+ image: &I,
+ nwidth: u32,
+ nheight: u32,
+ filter: FilterType,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+where
+ I::Pixel: 'static,
+ <I::Pixel as Pixel>::Subpixel: 'static,
+{
+ let mut method = match filter {
+ FilterType::Nearest => Filter {
+ kernel: Box::new(box_kernel),
+ support: 0.0,
+ },
+ FilterType::Triangle => Filter {
+ kernel: Box::new(triangle_kernel),
+ support: 1.0,
+ },
+ FilterType::CatmullRom => Filter {
+ kernel: Box::new(catmullrom_kernel),
+ support: 2.0,
+ },
+ FilterType::Gaussian => Filter {
+ kernel: Box::new(gaussian_kernel),
+ support: 3.0,
+ },
+ FilterType::Lanczos3 => Filter {
+ kernel: Box::new(lanczos3_kernel),
+ support: 3.0,
+ },
+ };
+
+ let tmp = vertical_sample(image, nheight, &mut method);
+ horizontal_sample(&tmp, nwidth, &mut method)
+}
+
+/// Performs a Gaussian blur on the supplied image.
+/// ```sigma``` is a measure of how much to blur by.
+pub fn blur<I: GenericImageView>(
+ image: &I,
+ sigma: f32,
+) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
+where
+ I::Pixel: 'static,
+{
+ let sigma = if sigma < 0.0 { 1.0 } else { sigma };
+
+ let mut method = Filter {
+ kernel: Box::new(|x| gaussian(x, sigma)),
+ support: 2.0 * sigma,
+ };
+
+ let (width, height) = image.dimensions();
+
+ // Keep width and height the same for horizontal and
+ // vertical sampling.
+ let tmp = vertical_sample(image, height, &mut method);
+ horizontal_sample(&tmp, width, &mut method)
+}
+
+/// Performs an unsharpen mask on the supplied image.
+/// ```sigma``` is the amount to blur the image by.
+/// ```threshold``` is the threshold for the difference between
+///
+/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
+pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
+where
+ I: GenericImageView<Pixel = P>,
+ P: Pixel<Subpixel = S> + 'static,
+ S: Primitive + 'static,
+{
+ let mut tmp = blur(image, sigma);
+
+ let max = S::max_value();
+ let max: i32 = NumCast::from(max).unwrap();
+ let (width, height) = image.dimensions();
+
+ for y in 0..height {
+ for x in 0..width {
+ let a = image.get_pixel(x, y);
+ let b = tmp.get_pixel_mut(x, y);
+
+ let p = a.map2(b, |c, d| {
+ let ic: i32 = NumCast::from(c).unwrap();
+ let id: i32 = NumCast::from(d).unwrap();
+
+ let diff = (ic - id).abs();
+
+ if diff > threshold {
+ let e = clamp(ic + diff, 0, max);
+
+ NumCast::from(e).unwrap()
+ } else {
+ c
+ }
+ });
+
+ *b = p;
+ }
+ }
+
+ tmp
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{resize, FilterType};
+ use crate::buffer::{ImageBuffer, RgbImage};
+ #[cfg(feature = "benchmarks")]
+ use test;
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "png"))]
+ fn bench_resize(b: &mut test::Bencher) {
+ use std::path::Path;
+ let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
+ b.iter(|| {
+ test::black_box(resize(&img, 200, 200, FilterType::Nearest));
+ });
+ b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
+ }
+
+ #[test]
+ fn test_issue_186() {
+ let img: RgbImage = ImageBuffer::new(100, 100);
+ let _ = resize(&img, 50, 50, FilterType::Lanczos3);
+ }
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "tiff"))]
+ fn bench_thumbnail(b: &mut test::Bencher) {
+ let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff");
+ let image = crate::open(path).unwrap();
+ b.iter(|| {
+ test::black_box(image.thumbnail(256, 256));
+ });
+ b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
+ }
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "tiff"))]
+ fn bench_thumbnail_upsize(b: &mut test::Bencher) {
+ let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff");
+ let image = crate::open(path).unwrap().thumbnail(256, 256);
+ b.iter(|| {
+ test::black_box(image.thumbnail(512, 512));
+ });
+ b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
+ }
+
+ #[bench]
+ #[cfg(all(feature = "benchmarks", feature = "tiff"))]
+ fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
+ let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/mandrill.tiff");
+ let image = crate::open(path).unwrap().thumbnail(193, 193);
+ b.iter(|| {
+ test::black_box(image.thumbnail(256, 256));
+ });
+ b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
+ }
+}