diff options
Diffstat (limited to '')
-rw-r--r-- | third_party/rust/num-rational/src/lib.rs | 1927 |
1 files changed, 1927 insertions, 0 deletions
diff --git a/third_party/rust/num-rational/src/lib.rs b/third_party/rust/num-rational/src/lib.rs new file mode 100644 index 0000000000..a49d712b69 --- /dev/null +++ b/third_party/rust/num-rational/src/lib.rs @@ -0,0 +1,1927 @@ +// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Rational numbers +//! +//! ## Compatibility +//! +//! The `num-rational` crate is tested for rustc 1.15 and greater. + +#![doc(html_root_url = "https://docs.rs/num-rational/0.2")] + +#![no_std] + +#[cfg(feature = "serde")] +extern crate serde; +#[cfg(feature = "bigint")] +extern crate num_bigint as bigint; + +extern crate num_traits as traits; +extern crate num_integer as integer; + +#[cfg(feature = "std")] +#[cfg_attr(test, macro_use)] +extern crate std; + +use core::cmp; +#[cfg(feature = "std")] +use std::error::Error; +use core::fmt; +use core::hash::{Hash, Hasher}; +use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; +use core::str::FromStr; + +#[cfg(feature = "bigint")] +use bigint::{BigInt, BigUint, Sign}; + +use integer::Integer; +use traits::float::FloatCore; +use traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Inv, Num, + NumCast, One, Pow, Signed, Zero}; + +/// Represents the ratio between two numbers. +#[derive(Copy, Clone, Debug)] +#[allow(missing_docs)] +pub struct Ratio<T> { + /// Numerator. + numer: T, + /// Denominator. + denom: T, +} + +/// Alias for a `Ratio` of machine-sized integers. +pub type Rational = Ratio<isize>; +/// Alias for a `Ratio` of 32-bit-sized integers. +pub type Rational32 = Ratio<i32>; +/// Alias for a `Ratio` of 64-bit-sized integers. +pub type Rational64 = Ratio<i64>; + +#[cfg(feature = "bigint")] +/// Alias for arbitrary precision rationals. +pub type BigRational = Ratio<BigInt>; + +impl<T: Clone + Integer> Ratio<T> { + /// Creates a new `Ratio`. Fails if `denom` is zero. + #[inline] + pub fn new(numer: T, denom: T) -> Ratio<T> { + if denom.is_zero() { + panic!("denominator == 0"); + } + let mut ret = Ratio::new_raw(numer, denom); + ret.reduce(); + ret + } + + /// Creates a `Ratio` representing the integer `t`. + #[inline] + pub fn from_integer(t: T) -> Ratio<T> { + Ratio::new_raw(t, One::one()) + } + + /// Creates a `Ratio` without checking for `denom == 0` or reducing. + #[inline] + pub fn new_raw(numer: T, denom: T) -> Ratio<T> { + Ratio { + numer: numer, + denom: denom, + } + } + + /// Converts to an integer, rounding towards zero. + #[inline] + pub fn to_integer(&self) -> T { + self.trunc().numer + } + + /// Gets an immutable reference to the numerator. + #[inline] + pub fn numer<'a>(&'a self) -> &'a T { + &self.numer + } + + /// Gets an immutable reference to the denominator. + #[inline] + pub fn denom<'a>(&'a self) -> &'a T { + &self.denom + } + + /// Returns true if the rational number is an integer (denominator is 1). + #[inline] + pub fn is_integer(&self) -> bool { + self.denom.is_one() + } + + /// Puts self into lowest terms, with denom > 0. + fn reduce(&mut self) { + let g: T = self.numer.gcd(&self.denom); + + // FIXME(#5992): assignment operator overloads + // self.numer /= g; + // T: Clone + Integer != T: Clone + NumAssign + self.numer = self.numer.clone() / g.clone(); + // FIXME(#5992): assignment operator overloads + // self.denom /= g; + // T: Clone + Integer != T: Clone + NumAssign + self.denom = self.denom.clone() / g; + + // keep denom positive! + if self.denom < T::zero() { + self.numer = T::zero() - self.numer.clone(); + self.denom = T::zero() - self.denom.clone(); + } + } + + /// Returns a reduced copy of self. + /// + /// In general, it is not necessary to use this method, as the only + /// method of procuring a non-reduced fraction is through `new_raw`. + pub fn reduced(&self) -> Ratio<T> { + let mut ret = self.clone(); + ret.reduce(); + ret + } + + /// Returns the reciprocal. + /// + /// Fails if the `Ratio` is zero. + #[inline] + pub fn recip(&self) -> Ratio<T> { + match self.numer.cmp(&T::zero()) { + cmp::Ordering::Equal => panic!("numerator == 0"), + cmp::Ordering::Greater => Ratio::new_raw(self.denom.clone(), self.numer.clone()), + cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom.clone(), + T::zero() - self.numer.clone()) + } + } + + /// Rounds towards minus infinity. + #[inline] + pub fn floor(&self) -> Ratio<T> { + if *self < Zero::zero() { + let one: T = One::one(); + Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) / + self.denom.clone()) + } else { + Ratio::from_integer(self.numer.clone() / self.denom.clone()) + } + } + + /// Rounds towards plus infinity. + #[inline] + pub fn ceil(&self) -> Ratio<T> { + if *self < Zero::zero() { + Ratio::from_integer(self.numer.clone() / self.denom.clone()) + } else { + let one: T = One::one(); + Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) / + self.denom.clone()) + } + } + + /// Rounds to the nearest integer. Rounds half-way cases away from zero. + #[inline] + pub fn round(&self) -> Ratio<T> { + let zero: Ratio<T> = Zero::zero(); + let one: T = One::one(); + let two: T = one.clone() + one.clone(); + + // Find unsigned fractional part of rational number + let mut fractional = self.fract(); + if fractional < zero { + fractional = zero - fractional + }; + + // The algorithm compares the unsigned fractional part with 1/2, that + // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use + // a >= (b/2)+1. This avoids overflow issues. + let half_or_larger = if fractional.denom().is_even() { + *fractional.numer() >= fractional.denom().clone() / two.clone() + } else { + *fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone() + }; + + if half_or_larger { + let one: Ratio<T> = One::one(); + if *self >= Zero::zero() { + self.trunc() + one + } else { + self.trunc() - one + } + } else { + self.trunc() + } + } + + /// Rounds towards zero. + #[inline] + pub fn trunc(&self) -> Ratio<T> { + Ratio::from_integer(self.numer.clone() / self.denom.clone()) + } + + /// Returns the fractional part of a number, with division rounded towards zero. + /// + /// Satisfies `self == self.trunc() + self.fract()`. + #[inline] + pub fn fract(&self) -> Ratio<T> { + Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) + } +} + +impl<T: Clone + Integer + Pow<u32, Output = T>> Ratio<T> { + /// Raises the `Ratio` to the power of an exponent. + #[inline] + pub fn pow(&self, expon: i32) -> Ratio<T> { + Pow::pow(self, expon) + } +} + +macro_rules! pow_impl { + ($exp: ty) => { + pow_impl!($exp, $exp); + }; + ($exp: ty, $unsigned: ty) => { + impl<T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<$exp> for Ratio<T> { + type Output = Ratio<T>; + #[inline] + fn pow(self, expon: $exp) -> Ratio<T> { + match expon.cmp(&0) { + cmp::Ordering::Equal => One::one(), + cmp::Ordering::Less => { + let expon = expon.wrapping_abs() as $unsigned; + Ratio::new_raw( + Pow::pow(self.denom, expon), + Pow::pow(self.numer, expon), + ) + }, + cmp::Ordering::Greater => { + Ratio::new_raw( + Pow::pow(self.numer, expon as $unsigned), + Pow::pow(self.denom, expon as $unsigned), + ) + } + } + } + } + impl<'a, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<$exp> for &'a Ratio<T> { + type Output = Ratio<T>; + #[inline] + fn pow(self, expon: $exp) -> Ratio<T> { + Pow::pow(self.clone(), expon) + } + } + impl<'a, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<&'a $exp> for Ratio<T> { + type Output = Ratio<T>; + #[inline] + fn pow(self, expon: &'a $exp) -> Ratio<T> { + Pow::pow(self, *expon) + } + } + impl<'a, 'b, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<&'a $exp> for &'b Ratio<T> { + type Output = Ratio<T>; + #[inline] + fn pow(self, expon: &'a $exp) -> Ratio<T> { + Pow::pow(self.clone(), *expon) + } + } + }; +} + +// this is solely to make `pow_impl!` work +trait WrappingAbs: Sized { + fn wrapping_abs(self) -> Self { + self + } +} +impl WrappingAbs for u8 {} +impl WrappingAbs for u16 {} +impl WrappingAbs for u32 {} +impl WrappingAbs for u64 {} +impl WrappingAbs for usize {} + +pow_impl!(i8, u8); +pow_impl!(i16, u16); +pow_impl!(i32, u32); +pow_impl!(i64, u64); +pow_impl!(isize, usize); +pow_impl!(u8); +pow_impl!(u16); +pow_impl!(u32); +pow_impl!(u64); +pow_impl!(usize); + +// TODO: pow_impl!(BigUint) and pow_impl!(BigInt, BigUint) + +#[cfg(feature = "bigint")] +impl Ratio<BigInt> { + /// Converts a float into a rational number. + pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> { + if !f.is_finite() { + return None; + } + let (mantissa, exponent, sign) = f.integer_decode(); + let bigint_sign = if sign == 1 { + Sign::Plus + } else { + Sign::Minus + }; + if exponent < 0 { + let one: BigInt = One::one(); + let denom: BigInt = one << ((-exponent) as usize); + let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); + Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) + } else { + let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); + numer = numer << (exponent as usize); + Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer))) + } + } +} + +// From integer +impl<T> From<T> for Ratio<T> where T: Clone + Integer { + fn from(x: T) -> Ratio<T> { + Ratio::from_integer(x) + } +} + +// From pair (through the `new` constructor) +impl<T> From<(T, T)> for Ratio<T> where T: Clone + Integer { + fn from(pair: (T, T)) -> Ratio<T> { + Ratio::new(pair.0, pair.1) + } +} + +// Comparisons + +// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy +// for those multiplications to overflow fixed-size integers, so we need to take care. + +impl<T: Clone + Integer> Ord for Ratio<T> { + #[inline] + fn cmp(&self, other: &Self) -> cmp::Ordering { + // With equal denominators, the numerators can be directly compared + if self.denom == other.denom { + let ord = self.numer.cmp(&other.numer); + return if self.denom < T::zero() { + ord.reverse() + } else { + ord + }; + } + + // With equal numerators, the denominators can be inversely compared + if self.numer == other.numer { + let ord = self.denom.cmp(&other.denom); + return if self.numer < T::zero() { + ord + } else { + ord.reverse() + }; + } + + // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the + // division below, or even always avoid it for BigInt and BigUint. + // FIXME- future breaking change to add Checked* to Integer? + + // Compare as floored integers and remainders + let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); + let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); + match self_int.cmp(&other_int) { + cmp::Ordering::Greater => cmp::Ordering::Greater, + cmp::Ordering::Less => cmp::Ordering::Less, + cmp::Ordering::Equal => { + match (self_rem.is_zero(), other_rem.is_zero()) { + (true, true) => cmp::Ordering::Equal, + (true, false) => cmp::Ordering::Less, + (false, true) => cmp::Ordering::Greater, + (false, false) => { + // Compare the reciprocals of the remaining fractions in reverse + let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); + let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); + self_recip.cmp(&other_recip).reverse() + } + } + } + } + } +} + +impl<T: Clone + Integer> PartialOrd for Ratio<T> { + #[inline] + fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { + Some(self.cmp(other)) + } +} + +impl<T: Clone + Integer> PartialEq for Ratio<T> { + #[inline] + fn eq(&self, other: &Self) -> bool { + self.cmp(other) == cmp::Ordering::Equal + } +} + +impl<T: Clone + Integer> Eq for Ratio<T> {} + +// NB: We can't just `#[derive(Hash)]`, because it needs to agree +// with `Eq` even for non-reduced ratios. +impl<T: Clone + Integer + Hash> Hash for Ratio<T> { + fn hash<H: Hasher>(&self, state: &mut H) { + recurse(&self.numer, &self.denom, state); + + fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) { + if !denom.is_zero() { + let (int, rem) = numer.div_mod_floor(denom); + int.hash(state); + recurse(denom, &rem, state); + } else { + denom.hash(state); + } + } + } +} + +mod iter_sum_product { + use ::core::iter::{Sum, Product}; + use Ratio; + use integer::Integer; + use traits::{Zero, One}; + + impl<T: Integer + Clone> Sum for Ratio<T> { + fn sum<I>(iter: I) -> Self + where + I: Iterator<Item = Ratio<T>> + { + iter.fold(Self::zero(), |sum, num| sum + num) + } + } + + impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> { + fn sum<I>(iter: I) -> Self + where + I: Iterator<Item = &'a Ratio<T>> + { + iter.fold(Self::zero(), |sum, num| sum + num) + } + } + + impl<T: Integer + Clone> Product for Ratio<T> { + fn product<I>(iter: I) -> Self + where + I: Iterator<Item = Ratio<T>> + { + iter.fold(Self::one(), |prod, num| prod * num) + } + } + + impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> { + fn product<I>(iter: I) -> Self + where + I: Iterator<Item = &'a Ratio<T>> + { + iter.fold(Self::one(), |prod, num| prod * num) + } + } +} + +mod opassign { + use core::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign}; + + use Ratio; + use integer::Integer; + use traits::NumAssign; + + impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> { + fn add_assign(&mut self, other: Ratio<T>) { + self.numer *= other.denom.clone(); + self.numer += self.denom.clone() * other.numer; + self.denom *= other.denom; + self.reduce(); + } + } + + impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> { + fn div_assign(&mut self, other: Ratio<T>) { + self.numer *= other.denom; + self.denom *= other.numer; + self.reduce(); + } + } + + impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> { + fn mul_assign(&mut self, other: Ratio<T>) { + self.numer *= other.numer; + self.denom *= other.denom; + self.reduce(); + } + } + + impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> { + fn rem_assign(&mut self, other: Ratio<T>) { + self.numer *= other.denom.clone(); + self.numer %= self.denom.clone() * other.numer; + self.denom *= other.denom; + self.reduce(); + } + } + + impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> { + fn sub_assign(&mut self, other: Ratio<T>) { + self.numer *= other.denom.clone(); + self.numer -= self.denom.clone() * other.numer; + self.denom *= other.denom; + self.reduce(); + } + } + + // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b + impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> { + fn add_assign(&mut self, other: T) { + self.numer += self.denom.clone() * other; + self.reduce(); + } + } + + impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> { + fn div_assign(&mut self, other: T) { + self.denom *= other; + self.reduce(); + } + } + + impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> { + fn mul_assign(&mut self, other: T) { + self.numer *= other; + self.reduce(); + } + } + + // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b + impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> { + fn rem_assign(&mut self, other: T) { + self.numer %= self.denom.clone() * other; + self.reduce(); + } + } + + // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b + impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> { + fn sub_assign(&mut self, other: T) { + self.numer -= self.denom.clone() * other; + self.reduce(); + } + } + + macro_rules! forward_op_assign { + (impl $imp:ident, $method:ident) => { + impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> { + #[inline] + fn $method(&mut self, other: &Ratio<T>) { + self.$method(other.clone()) + } + } + impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> { + #[inline] + fn $method(&mut self, other: &T) { + self.$method(other.clone()) + } + } + } + } + + forward_op_assign!(impl AddAssign, add_assign); + forward_op_assign!(impl DivAssign, div_assign); + forward_op_assign!(impl MulAssign, mul_assign); + forward_op_assign!(impl RemAssign, rem_assign); + forward_op_assign!(impl SubAssign, sub_assign); +} + +macro_rules! forward_ref_ref_binop { + (impl $imp:ident, $method:ident) => { + impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> { + type Output = Ratio<T>; + + #[inline] + fn $method(self, other: &'b Ratio<T>) -> Ratio<T> { + self.clone().$method(other.clone()) + } + } + impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> { + type Output = Ratio<T>; + + #[inline] + fn $method(self, other: &'b T) -> Ratio<T> { + self.clone().$method(other.clone()) + } + } + } +} + +macro_rules! forward_ref_val_binop { + (impl $imp:ident, $method:ident) => { + impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> where + T: Clone + Integer + { + type Output = Ratio<T>; + + #[inline] + fn $method(self, other: Ratio<T>) -> Ratio<T> { + self.clone().$method(other) + } + } + impl<'a, T> $imp<T> for &'a Ratio<T> where + T: Clone + Integer + { + type Output = Ratio<T>; + + #[inline] + fn $method(self, other: T) -> Ratio<T> { + self.clone().$method(other) + } + } + } +} + +macro_rules! forward_val_ref_binop { + (impl $imp:ident, $method:ident) => { + impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> where + T: Clone + Integer + { + type Output = Ratio<T>; + + #[inline] + fn $method(self, other: &Ratio<T>) -> Ratio<T> { + self.$method(other.clone()) + } + } + impl<'a, T> $imp<&'a T> for Ratio<T> where + T: Clone + Integer + { + type Output = Ratio<T>; + + #[inline] + fn $method(self, other: &T) -> Ratio<T> { + self.$method(other.clone()) + } + } + } +} + +macro_rules! forward_all_binop { + (impl $imp:ident, $method:ident) => { + forward_ref_ref_binop!(impl $imp, $method); + forward_ref_val_binop!(impl $imp, $method); + forward_val_ref_binop!(impl $imp, $method); + }; +} + +// Arithmetic +forward_all_binop!(impl Mul, mul); +// a/b * c/d = (a*c)/(b*d) +impl<T> Mul<Ratio<T>> for Ratio<T> + where T: Clone + Integer +{ + type Output = Ratio<T>; + #[inline] + fn mul(self, rhs: Ratio<T>) -> Ratio<T> { + Ratio::new(self.numer * rhs.numer, + self.denom * rhs.denom) + } +} +// a/b * c/1 = (a*c) / (b*1) = (a*c) / b +impl<T> Mul<T> for Ratio<T> + where T: Clone + Integer +{ + type Output = Ratio<T>; + #[inline] + fn mul(self, rhs: T) -> Ratio<T> { + Ratio::new(self.numer * rhs, + self.denom) + } +} + +forward_all_binop!(impl Div, div); +// (a/b) / (c/d) = (a*d) / (b*c) +impl<T> Div<Ratio<T>> for Ratio<T> + where T: Clone + Integer +{ + type Output = Ratio<T>; + + #[inline] + fn div(self, rhs: Ratio<T>) -> Ratio<T> { + Ratio::new(self.numer * rhs.denom, + self.denom * rhs.numer) + } +} +// (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) +impl<T> Div<T> for Ratio<T> + where T: Clone + Integer +{ + type Output = Ratio<T>; + + #[inline] + fn div(self, rhs: T) -> Ratio<T> { + Ratio::new(self.numer, + self.denom * rhs) + } +} + +macro_rules! arith_impl { + (impl $imp:ident, $method:ident) => { + forward_all_binop!(impl $imp, $method); + // Abstracts the a/b `op` c/d = (a*d `op` b*c) / (b*d) pattern + impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> { + type Output = Ratio<T>; + #[inline] + fn $method(self, rhs: Ratio<T>) -> Ratio<T> { + Ratio::new((self.numer * rhs.denom.clone()).$method(self.denom.clone() * rhs.numer), + self.denom * rhs.denom) + } + } + // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern + impl<T: Clone + Integer> $imp<T> for Ratio<T> { + type Output = Ratio<T>; + #[inline] + fn $method(self, rhs: T) -> Ratio<T> { + Ratio::new(self.numer.$method(self.denom.clone() * rhs), + self.denom) + } + } + } +} + +arith_impl!(impl Add, add); +arith_impl!(impl Sub, sub); +arith_impl!(impl Rem, rem); + +// Like `std::try!` for Option<T>, unwrap the value or early-return None. +// Since Rust 1.22 this can be replaced by the `?` operator. +macro_rules! otry { + ($expr:expr) => (match $expr { + Some(val) => val, + None => return None, + }) +} + +// a/b * c/d = (a*c)/(b*d) +impl<T> CheckedMul for Ratio<T> + where T: Clone + Integer + CheckedMul +{ + #[inline] + fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { + Some(Ratio::new(otry!(self.numer.checked_mul(&rhs.numer)), + otry!(self.denom.checked_mul(&rhs.denom)))) + } +} + +// (a/b) / (c/d) = (a*d)/(b*c) +impl<T> CheckedDiv for Ratio<T> + where T: Clone + Integer + CheckedMul +{ + #[inline] + fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { + let bc = otry!(self.denom.checked_mul(&rhs.numer)); + if bc.is_zero() { + None + } else { + Some(Ratio::new(otry!(self.numer.checked_mul(&rhs.denom)), bc)) + } + } +} + +// As arith_impl! but for Checked{Add,Sub} traits +macro_rules! checked_arith_impl { + (impl $imp:ident, $method:ident) => { + impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> { + #[inline] + fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { + let ad = otry!(self.numer.checked_mul(&rhs.denom)); + let bc = otry!(self.denom.checked_mul(&rhs.numer)); + let bd = otry!(self.denom.checked_mul(&rhs.denom)); + Some(Ratio::new(otry!(ad.$method(&bc)), bd)) + } + } + } +} + +// a/b + c/d = (a*d + b*c)/(b*d) +checked_arith_impl!(impl CheckedAdd, checked_add); + +// a/b - c/d = (a*d - b*c)/(b*d) +checked_arith_impl!(impl CheckedSub, checked_sub); + +impl<T> Neg for Ratio<T> + where T: Clone + Integer + Neg<Output = T> +{ + type Output = Ratio<T>; + + #[inline] + fn neg(self) -> Ratio<T> { + Ratio::new_raw(-self.numer, self.denom) + } +} + +impl<'a, T> Neg for &'a Ratio<T> + where T: Clone + Integer + Neg<Output = T> +{ + type Output = Ratio<T>; + + #[inline] + fn neg(self) -> Ratio<T> { + -self.clone() + } +} + +impl<T> Inv for Ratio<T> + where T: Clone + Integer +{ + type Output = Ratio<T>; + + #[inline] + fn inv(self) -> Ratio<T> { + self.recip() + } +} + +impl<'a, T> Inv for &'a Ratio<T> + where T: Clone + Integer +{ + type Output = Ratio<T>; + + #[inline] + fn inv(self) -> Ratio<T> { + self.recip() + } +} + +// Constants +impl<T: Clone + Integer> Zero for Ratio<T> { + #[inline] + fn zero() -> Ratio<T> { + Ratio::new_raw(Zero::zero(), One::one()) + } + + #[inline] + fn is_zero(&self) -> bool { + self.numer.is_zero() + } +} + +impl<T: Clone + Integer> One for Ratio<T> { + #[inline] + fn one() -> Ratio<T> { + Ratio::new_raw(One::one(), One::one()) + } + + #[inline] + fn is_one(&self) -> bool { + self.numer == self.denom + } +} + +impl<T: Clone + Integer> Num for Ratio<T> { + type FromStrRadixErr = ParseRatioError; + + /// Parses `numer/denom` where the numbers are in base `radix`. + fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> { + if s.splitn(2, '/').count() == 2 { + let mut parts = s.splitn(2, '/').map(|ss| T::from_str_radix(ss, radix).map_err(|_| { + ParseRatioError { kind: RatioErrorKind::ParseError } + })); + let numer: T = parts.next().unwrap()?; + let denom: T = parts.next().unwrap()?; + if denom.is_zero() { + Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator }) + } else { + Ok(Ratio::new(numer, denom)) + } + } else { + Err(ParseRatioError { kind: RatioErrorKind::ParseError }) + } + } +} + +impl<T: Clone + Integer + Signed> Signed for Ratio<T> { + #[inline] + fn abs(&self) -> Ratio<T> { + if self.is_negative() { + -self.clone() + } else { + self.clone() + } + } + + #[inline] + fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> { + if *self <= *other { + Zero::zero() + } else { + self - other + } + } + + #[inline] + fn signum(&self) -> Ratio<T> { + if self.is_positive() { + Self::one() + } else if self.is_zero() { + Self::zero() + } else { + -Self::one() + } + } + + #[inline] + fn is_positive(&self) -> bool { + (self.numer.is_positive() && self.denom.is_positive()) || + (self.numer.is_negative() && self.denom.is_negative()) + } + + #[inline] + fn is_negative(&self) -> bool { + (self.numer.is_negative() && self.denom.is_positive()) || + (self.numer.is_positive() && self.denom.is_negative()) + } +} + +// String conversions +impl<T> fmt::Display for Ratio<T> + where T: fmt::Display + Eq + One +{ + /// Renders as `numer/denom`. If denom=1, renders as numer. + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + if self.denom.is_one() { + write!(f, "{}", self.numer) + } else { + write!(f, "{}/{}", self.numer, self.denom) + } + } +} + +impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> { + type Err = ParseRatioError; + + /// Parses `numer/denom` or just `numer`. + fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> { + let mut split = s.splitn(2, '/'); + + let n = try!(split.next().ok_or(ParseRatioError { kind: RatioErrorKind::ParseError })); + let num = try!(FromStr::from_str(n) + .map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError })); + + let d = split.next().unwrap_or("1"); + let den = try!(FromStr::from_str(d) + .map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError })); + + if Zero::is_zero(&den) { + Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator }) + } else { + Ok(Ratio::new(num, den)) + } + } +} + +impl<T> Into<(T, T)> for Ratio<T> { + fn into(self) -> (T, T) { + (self.numer, self.denom) + } +} + +#[cfg(feature = "serde")] +impl<T> serde::Serialize for Ratio<T> + where T: serde::Serialize + Clone + Integer + PartialOrd +{ + fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> + where S: serde::Serializer + { + (self.numer(), self.denom()).serialize(serializer) + } +} + +#[cfg(feature = "serde")] +impl<'de, T> serde::Deserialize<'de> for Ratio<T> + where T: serde::Deserialize<'de> + Clone + Integer + PartialOrd +{ + fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> + where D: serde::Deserializer<'de> + { + use serde::de::Unexpected; + use serde::de::Error; + let (numer, denom): (T,T) = try!(serde::Deserialize::deserialize(deserializer)); + if denom.is_zero() { + Err(Error::invalid_value(Unexpected::Signed(0), &"a ratio with non-zero denominator")) + } else { + Ok(Ratio::new_raw(numer, denom)) + } + } +} + +// FIXME: Bubble up specific errors +#[derive(Copy, Clone, Debug, PartialEq)] +pub struct ParseRatioError { + kind: RatioErrorKind, +} + +#[derive(Copy, Clone, Debug, PartialEq)] +enum RatioErrorKind { + ParseError, + ZeroDenominator, +} + +impl fmt::Display for ParseRatioError { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + self.kind.description().fmt(f) + } +} + +#[cfg(feature = "std")] +impl Error for ParseRatioError { + fn description(&self) -> &str { + self.kind.description() + } +} + +impl RatioErrorKind { + fn description(&self) -> &'static str { + match *self { + RatioErrorKind::ParseError => "failed to parse integer", + RatioErrorKind::ZeroDenominator => "zero value denominator", + } + } +} + +#[cfg(feature = "bigint")] +impl FromPrimitive for Ratio<BigInt> { + fn from_i64(n: i64) -> Option<Self> { + Some(Ratio::from_integer(n.into())) + } + + #[cfg(has_i128)] + fn from_i128(n: i128) -> Option<Self> { + Some(Ratio::from_integer(n.into())) + } + + fn from_u64(n: u64) -> Option<Self> { + Some(Ratio::from_integer(n.into())) + } + + #[cfg(has_i128)] + fn from_u128(n: u128) -> Option<Self> { + Some(Ratio::from_integer(n.into())) + } + + fn from_f32(n: f32) -> Option<Self> { + Ratio::from_float(n) + } + + fn from_f64(n: f64) -> Option<Self> { + Ratio::from_float(n) + } +} + +macro_rules! from_primitive_integer { + ($typ:ty, $approx:ident) => { + impl FromPrimitive for Ratio<$typ> { + fn from_i64(n: i64) -> Option<Self> { + <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) + } + + #[cfg(has_i128)] + fn from_i128(n: i128) -> Option<Self> { + <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) + } + + fn from_u64(n: u64) -> Option<Self> { + <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) + } + + #[cfg(has_i128)] + fn from_u128(n: u128) -> Option<Self> { + <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) + } + + fn from_f32(n: f32) -> Option<Self> { + $approx(n, 10e-20, 30) + } + + fn from_f64(n: f64) -> Option<Self> { + $approx(n, 10e-20, 30) + } + } + } +} + +from_primitive_integer!(i8, approximate_float); +from_primitive_integer!(i16, approximate_float); +from_primitive_integer!(i32, approximate_float); +from_primitive_integer!(i64, approximate_float); +#[cfg(has_i128)] +from_primitive_integer!(i128, approximate_float); +from_primitive_integer!(isize, approximate_float); + +from_primitive_integer!(u8, approximate_float_unsigned); +from_primitive_integer!(u16, approximate_float_unsigned); +from_primitive_integer!(u32, approximate_float_unsigned); +from_primitive_integer!(u64, approximate_float_unsigned); +#[cfg(has_i128)] +from_primitive_integer!(u128, approximate_float_unsigned); +from_primitive_integer!(usize, approximate_float_unsigned); + +impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> { + pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { + // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems + // to work well. Might want to choose something based on the types in the future, e.g. + // T::max().recip() and T::bits() or something similar. + let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20"); + approximate_float(f, epsilon, 30) + } +} + +fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> + where T: Integer + Signed + Bounded + NumCast + Clone, + F: FloatCore + NumCast +{ + let negative = val.is_sign_negative(); + let abs_val = val.abs(); + + let r = approximate_float_unsigned(abs_val, max_error, max_iterations); + + // Make negative again if needed + if negative { + r.map(|r| r.neg()) + } else { + r + } +} + +// No Unsigned constraint because this also works on positive integers and is called +// like that, see above +fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> + where T: Integer + Bounded + NumCast + Clone, + F: FloatCore + NumCast +{ + // Continued fractions algorithm + // http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac + + if val < F::zero() || val.is_nan() { + return None; + } + + let mut q = val; + let mut n0 = T::zero(); + let mut d0 = T::one(); + let mut n1 = T::one(); + let mut d1 = T::zero(); + + let t_max = T::max_value(); + let t_max_f = match <F as NumCast>::from(t_max.clone()) { + None => return None, + Some(t_max_f) => t_max_f, + }; + + // 1/epsilon > T::MAX + let epsilon = t_max_f.recip(); + + // Overflow + if q > t_max_f { + return None; + } + + for _ in 0..max_iterations { + let a = match <T as NumCast>::from(q) { + None => break, + Some(a) => a, + }; + + let a_f = match <F as NumCast>::from(a.clone()) { + None => break, + Some(a_f) => a_f, + }; + let f = q - a_f; + + // Prevent overflow + if !a.is_zero() && + (n1 > t_max.clone() / a.clone() || + d1 > t_max.clone() / a.clone() || + a.clone() * n1.clone() > t_max.clone() - n0.clone() || + a.clone() * d1.clone() > t_max.clone() - d0.clone()) { + break; + } + + let n = a.clone() * n1.clone() + n0.clone(); + let d = a.clone() * d1.clone() + d0.clone(); + + n0 = n1; + d0 = d1; + n1 = n.clone(); + d1 = d.clone(); + + // Simplify fraction. Doing so here instead of at the end + // allows us to get closer to the target value without overflows + let g = Integer::gcd(&n1, &d1); + if !g.is_zero() { + n1 = n1 / g.clone(); + d1 = d1 / g.clone(); + } + + // Close enough? + let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) { + (Some(n_f), Some(d_f)) => (n_f, d_f), + _ => break, + }; + if (n_f / d_f - val).abs() < max_error { + break; + } + + // Prevent division by ~0 + if f < epsilon { + break; + } + q = f.recip(); + } + + // Overflow + if d1.is_zero() { + return None; + } + + Some(Ratio::new(n1, d1)) +} + +#[cfg(test)] +#[cfg(feature = "std")] +fn hash<T: Hash>(x: &T) -> u64 { + use std::hash::BuildHasher; + use std::collections::hash_map::RandomState; + let mut hasher = <RandomState as BuildHasher>::Hasher::new(); + x.hash(&mut hasher); + hasher.finish() +} + +#[cfg(test)] +mod test { + use super::{Ratio, Rational}; + #[cfg(feature = "bigint")] + use super::BigRational; + + use core::str::FromStr; + use core::i32; + use core::f64; + use traits::{Zero, One, Signed, FromPrimitive, Pow}; + use integer::Integer; + + pub const _0: Rational = Ratio { + numer: 0, + denom: 1, + }; + pub const _1: Rational = Ratio { + numer: 1, + denom: 1, + }; + pub const _2: Rational = Ratio { + numer: 2, + denom: 1, + }; + pub const _NEG2: Rational = Ratio { + numer: -2, + denom: 1, + }; + pub const _1_2: Rational = Ratio { + numer: 1, + denom: 2, + }; + pub const _3_2: Rational = Ratio { + numer: 3, + denom: 2, + }; + pub const _NEG1_2: Rational = Ratio { + numer: -1, + denom: 2, + }; + pub const _1_NEG2: Rational = Ratio { + numer: 1, + denom: -2, + }; + pub const _NEG1_NEG2: Rational = Ratio { + numer: -1, + denom: -2, + }; + pub const _1_3: Rational = Ratio { + numer: 1, + denom: 3, + }; + pub const _NEG1_3: Rational = Ratio { + numer: -1, + denom: 3, + }; + pub const _2_3: Rational = Ratio { + numer: 2, + denom: 3, + }; + pub const _NEG2_3: Rational = Ratio { + numer: -2, + denom: 3, + }; + + #[cfg(feature = "bigint")] + pub fn to_big(n: Rational) -> BigRational { + Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(), + FromPrimitive::from_isize(n.denom).unwrap()) + } + #[cfg(not(feature = "bigint"))] + pub fn to_big(n: Rational) -> Rational { + Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(), + FromPrimitive::from_isize(n.denom).unwrap()) + } + + #[test] + fn test_test_constants() { + // check our constants are what Ratio::new etc. would make. + assert_eq!(_0, Zero::zero()); + assert_eq!(_1, One::one()); + assert_eq!(_2, Ratio::from_integer(2)); + assert_eq!(_1_2, Ratio::new(1, 2)); + assert_eq!(_3_2, Ratio::new(3, 2)); + assert_eq!(_NEG1_2, Ratio::new(-1, 2)); + assert_eq!(_2, From::from(2)); + } + + #[test] + fn test_new_reduce() { + let one22 = Ratio::new(2, 2); + + assert_eq!(one22, One::one()); + } + #[test] + #[should_panic] + fn test_new_zero() { + let _a = Ratio::new(1, 0); + } + + #[test] + fn test_approximate_float() { + assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); + assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); + assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); + assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); + assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); + assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); + + assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); + assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); + assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); + assert_eq!(Ratio::<i8>::from_f32(127.5f32), None); + assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); + assert_eq!(Ratio::<i8>::from_f32(-126.5f32), Some(Ratio::new(-126i8, 1))); + assert_eq!(Ratio::<i8>::from_f32(-127.0f32), Some(Ratio::new(-127i8, 1))); + assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None); + + assert_eq!(Ratio::<u8>::from_f32(-127f32), None); + assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1))); + assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); + assert_eq!(Ratio::<u8>::from_f32(256f32), None); + + assert_eq!(Ratio::<i64>::from_f64(-10e200), None); + assert_eq!(Ratio::<i64>::from_f64(10e200), None); + assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None); + assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None); + assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None); + assert_eq!(Ratio::<i64>::from_f64(f64::EPSILON), Some(Ratio::new(1, 4503599627370496))); + assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1))); + assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1))); + } + + #[test] + fn test_cmp() { + assert!(_0 == _0 && _1 == _1); + assert!(_0 != _1 && _1 != _0); + assert!(_0 < _1 && !(_1 < _0)); + assert!(_1 > _0 && !(_0 > _1)); + + assert!(_0 <= _0 && _1 <= _1); + assert!(_0 <= _1 && !(_1 <= _0)); + + assert!(_0 >= _0 && _1 >= _1); + assert!(_1 >= _0 && !(_0 >= _1)); + } + + #[test] + fn test_cmp_overflow() { + use core::cmp::Ordering; + + // issue #7 example: + let big = Ratio::new(128u8, 1); + let small = big.recip(); + assert!(big > small); + + // try a few that are closer together + // (some matching numer, some matching denom, some neither) + let ratios = [ + Ratio::new(125_i8, 127_i8), + Ratio::new(63_i8, 64_i8), + Ratio::new(124_i8, 125_i8), + Ratio::new(125_i8, 126_i8), + Ratio::new(126_i8, 127_i8), + Ratio::new(127_i8, 126_i8), + ]; + + fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) { + #[cfg(feature = "std")] + println!("comparing {} and {}", a, b); + assert_eq!(a.cmp(&b), ord); + assert_eq!(b.cmp(&a), ord.reverse()); + } + + for (i, &a) in ratios.iter().enumerate() { + check_cmp(a, a, Ordering::Equal); + check_cmp(-a, a, Ordering::Less); + for &b in &ratios[i + 1..] { + check_cmp(a, b, Ordering::Less); + check_cmp(-a, -b, Ordering::Greater); + check_cmp(a.recip(), b.recip(), Ordering::Greater); + check_cmp(-a.recip(), -b.recip(), Ordering::Less); + } + } + } + + #[test] + fn test_to_integer() { + assert_eq!(_0.to_integer(), 0); + assert_eq!(_1.to_integer(), 1); + assert_eq!(_2.to_integer(), 2); + assert_eq!(_1_2.to_integer(), 0); + assert_eq!(_3_2.to_integer(), 1); + assert_eq!(_NEG1_2.to_integer(), 0); + } + + + #[test] + fn test_numer() { + assert_eq!(_0.numer(), &0); + assert_eq!(_1.numer(), &1); + assert_eq!(_2.numer(), &2); + assert_eq!(_1_2.numer(), &1); + assert_eq!(_3_2.numer(), &3); + assert_eq!(_NEG1_2.numer(), &(-1)); + } + #[test] + fn test_denom() { + assert_eq!(_0.denom(), &1); + assert_eq!(_1.denom(), &1); + assert_eq!(_2.denom(), &1); + assert_eq!(_1_2.denom(), &2); + assert_eq!(_3_2.denom(), &2); + assert_eq!(_NEG1_2.denom(), &2); + } + + + #[test] + fn test_is_integer() { + assert!(_0.is_integer()); + assert!(_1.is_integer()); + assert!(_2.is_integer()); + assert!(!_1_2.is_integer()); + assert!(!_3_2.is_integer()); + assert!(!_NEG1_2.is_integer()); + } + + #[test] + #[cfg(feature = "std")] + fn test_show() { + use std::string::ToString; + assert_eq!(format!("{}", _2), "2".to_string()); + assert_eq!(format!("{}", _1_2), "1/2".to_string()); + assert_eq!(format!("{}", _0), "0".to_string()); + assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string()); + } + + mod arith { + use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big}; + use super::super::{Ratio, Rational}; + use traits::{CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}; + + #[test] + fn test_add() { + fn test(a: Rational, b: Rational, c: Rational) { + assert_eq!(a + b, c); + assert_eq!({ let mut x = a; x += b; x}, c); + assert_eq!(to_big(a) + to_big(b), to_big(c)); + assert_eq!(a.checked_add(&b), Some(c)); + assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); + } + fn test_assign(a: Rational, b: isize, c: Rational) { + assert_eq!(a + b, c); + assert_eq!({ let mut x = a; x += b; x}, c); + } + + test(_1, _1_2, _3_2); + test(_1, _1, _2); + test(_1_2, _3_2, _2); + test(_1_2, _NEG1_2, _0); + test_assign(_1_2, 1, _3_2); + } + + #[test] + fn test_sub() { + fn test(a: Rational, b: Rational, c: Rational) { + assert_eq!(a - b, c); + assert_eq!({ let mut x = a; x -= b; x}, c); + assert_eq!(to_big(a) - to_big(b), to_big(c)); + assert_eq!(a.checked_sub(&b), Some(c)); + assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); + } + fn test_assign(a: Rational, b: isize, c: Rational) { + assert_eq!(a - b, c); + assert_eq!({ let mut x = a; x -= b; x}, c); + } + + test(_1, _1_2, _1_2); + test(_3_2, _1_2, _1); + test(_1, _NEG1_2, _3_2); + test_assign(_1_2, 1, _NEG1_2); + } + + #[test] + fn test_mul() { + fn test(a: Rational, b: Rational, c: Rational) { + assert_eq!(a * b, c); + assert_eq!({ let mut x = a; x *= b; x}, c); + assert_eq!(to_big(a) * to_big(b), to_big(c)); + assert_eq!(a.checked_mul(&b), Some(c)); + assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); + } + fn test_assign(a: Rational, b: isize, c: Rational) { + assert_eq!(a * b, c); + assert_eq!({ let mut x = a; x *= b; x}, c); + } + + test(_1, _1_2, _1_2); + test(_1_2, _3_2, Ratio::new(3, 4)); + test(_1_2, _NEG1_2, Ratio::new(-1, 4)); + test_assign(_1_2, 2, _1); + } + + #[test] + fn test_div() { + fn test(a: Rational, b: Rational, c: Rational) { + assert_eq!(a / b, c); + assert_eq!({ let mut x = a; x /= b; x}, c); + assert_eq!(to_big(a) / to_big(b), to_big(c)); + assert_eq!(a.checked_div(&b), Some(c)); + assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); + } + fn test_assign(a: Rational, b: isize, c: Rational) { + assert_eq!(a / b, c); + assert_eq!({ let mut x = a; x /= b; x}, c); + } + + test(_1, _1_2, _2); + test(_3_2, _1_2, _1 + _2); + test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); + test_assign(_1, 2, _1_2); + } + + #[test] + fn test_rem() { + fn test(a: Rational, b: Rational, c: Rational) { + assert_eq!(a % b, c); + assert_eq!({ let mut x = a; x %= b; x}, c); + assert_eq!(to_big(a) % to_big(b), to_big(c)) + } + fn test_assign(a: Rational, b: isize, c: Rational) { + assert_eq!(a % b, c); + assert_eq!({ let mut x = a; x %= b; x}, c); + } + + test(_3_2, _1, _1_2); + test(_2, _NEG1_2, _0); + test(_1_2, _2, _1_2); + test_assign(_3_2, 1, _1_2); + } + + #[test] + fn test_neg() { + fn test(a: Rational, b: Rational) { + assert_eq!(-a, b); + assert_eq!(-to_big(a), to_big(b)) + } + + test(_0, _0); + test(_1_2, _NEG1_2); + test(-_1, _1); + } + #[test] + fn test_zero() { + assert_eq!(_0 + _0, _0); + assert_eq!(_0 * _0, _0); + assert_eq!(_0 * _1, _0); + assert_eq!(_0 / _NEG1_2, _0); + assert_eq!(_0 - _0, _0); + } + #[test] + #[should_panic] + fn test_div_0() { + let _a = _1 / _0; + } + + #[test] + fn test_checked_failures() { + let big = Ratio::new(128u8, 1); + let small = Ratio::new(1, 128u8); + assert_eq!(big.checked_add(&big), None); + assert_eq!(small.checked_sub(&big), None); + assert_eq!(big.checked_mul(&big), None); + assert_eq!(small.checked_div(&big), None); + assert_eq!(_1.checked_div(&_0), None); + } + } + + #[test] + fn test_round() { + assert_eq!(_1_3.ceil(), _1); + assert_eq!(_1_3.floor(), _0); + assert_eq!(_1_3.round(), _0); + assert_eq!(_1_3.trunc(), _0); + + assert_eq!(_NEG1_3.ceil(), _0); + assert_eq!(_NEG1_3.floor(), -_1); + assert_eq!(_NEG1_3.round(), _0); + assert_eq!(_NEG1_3.trunc(), _0); + + assert_eq!(_2_3.ceil(), _1); + assert_eq!(_2_3.floor(), _0); + assert_eq!(_2_3.round(), _1); + assert_eq!(_2_3.trunc(), _0); + + assert_eq!(_NEG2_3.ceil(), _0); + assert_eq!(_NEG2_3.floor(), -_1); + assert_eq!(_NEG2_3.round(), -_1); + assert_eq!(_NEG2_3.trunc(), _0); + + assert_eq!(_1_2.ceil(), _1); + assert_eq!(_1_2.floor(), _0); + assert_eq!(_1_2.round(), _1); + assert_eq!(_1_2.trunc(), _0); + + assert_eq!(_NEG1_2.ceil(), _0); + assert_eq!(_NEG1_2.floor(), -_1); + assert_eq!(_NEG1_2.round(), -_1); + assert_eq!(_NEG1_2.trunc(), _0); + + assert_eq!(_1.ceil(), _1); + assert_eq!(_1.floor(), _1); + assert_eq!(_1.round(), _1); + assert_eq!(_1.trunc(), _1); + + // Overflow checks + + let _neg1 = Ratio::from_integer(-1); + let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); + let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); + let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); + let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); + let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); + let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); + let _large_rat7 = Ratio::new(1, i32::MIN + 1); + let _large_rat8 = Ratio::new(1, i32::MAX); + + assert_eq!(_large_rat1.round(), One::one()); + assert_eq!(_large_rat2.round(), One::one()); + assert_eq!(_large_rat3.round(), One::one()); + assert_eq!(_large_rat4.round(), One::one()); + assert_eq!(_large_rat5.round(), _neg1); + assert_eq!(_large_rat6.round(), _neg1); + assert_eq!(_large_rat7.round(), Zero::zero()); + assert_eq!(_large_rat8.round(), Zero::zero()); + } + + #[test] + fn test_fract() { + assert_eq!(_1.fract(), _0); + assert_eq!(_NEG1_2.fract(), _NEG1_2); + assert_eq!(_1_2.fract(), _1_2); + assert_eq!(_3_2.fract(), _1_2); + } + + #[test] + fn test_recip() { + assert_eq!(_1 * _1.recip(), _1); + assert_eq!(_2 * _2.recip(), _1); + assert_eq!(_1_2 * _1_2.recip(), _1); + assert_eq!(_3_2 * _3_2.recip(), _1); + assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); + + assert_eq!(_3_2.recip(), _2_3); + assert_eq!(_NEG1_2.recip(), _NEG2); + assert_eq!(_NEG1_2.recip().denom(), &1); + } + + #[test] + #[should_panic(expected = "== 0")] + fn test_recip_fail() { + let _a = Ratio::new(0, 1).recip(); + } + + #[test] + fn test_pow() { + fn test(r: Rational, e: i32, expected: Rational) { + assert_eq!(r.pow(e), expected); + assert_eq!(Pow::pow(r, e), expected); + assert_eq!(Pow::pow(r, &e), expected); + assert_eq!(Pow::pow(&r, e), expected); + assert_eq!(Pow::pow(&r, &e), expected); + } + + test(_1_2, 2, Ratio::new(1, 4)); + test(_1_2, -2, Ratio::new(4, 1)); + test(_1, 1, _1); + test(_1, i32::MAX, _1); + test(_1, i32::MIN, _1); + test(_NEG1_2, 2, _1_2.pow(2i32)); + test(_NEG1_2, 3, -_1_2.pow(3i32)); + test(_3_2, 0, _1); + test(_3_2, -1, _3_2.recip()); + test(_3_2, 3, Ratio::new(27, 8)); + } + + #[test] + #[cfg(feature = "std")] + fn test_to_from_str() { + use std::string::{String, ToString}; + fn test(r: Rational, s: String) { + assert_eq!(FromStr::from_str(&s), Ok(r)); + assert_eq!(r.to_string(), s); + } + test(_1, "1".to_string()); + test(_0, "0".to_string()); + test(_1_2, "1/2".to_string()); + test(_3_2, "3/2".to_string()); + test(_2, "2".to_string()); + test(_NEG1_2, "-1/2".to_string()); + } + #[test] + fn test_from_str_fail() { + fn test(s: &str) { + let rational: Result<Rational, _> = FromStr::from_str(s); + assert!(rational.is_err()); + } + + let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"]; + for &s in xs.iter() { + test(s); + } + } + + #[cfg(feature = "bigint")] + #[test] + fn test_from_float() { + use traits::float::FloatCore; + fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) { + let ratio: BigRational = Ratio::from_float(given).unwrap(); + assert_eq!(ratio, + Ratio::new(FromStr::from_str(numer).unwrap(), + FromStr::from_str(denom).unwrap())); + } + + // f32 + test(3.14159265359f32, ("13176795", "4194304")); + test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); + test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1")); + test(1.0 / 2f32.powf(100.), + ("1", "1267650600228229401496703205376")); + test(684729.48391f32, ("1369459", "2")); + test(-8573.5918555f32, ("-4389679", "512")); + + // f64 + test(3.14159265359f64, ("3537118876014453", "1125899906842624")); + test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); + test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1")); + test(684729.48391f64, ("367611342500051", "536870912")); + test(-8573.5918555f64, ("-4713381968463931", "549755813888")); + test(1.0 / 2f64.powf(100.), + ("1", "1267650600228229401496703205376")); + } + + #[cfg(feature = "bigint")] + #[test] + fn test_from_float_fail() { + use core::{f32, f64}; + + assert_eq!(Ratio::from_float(f32::NAN), None); + assert_eq!(Ratio::from_float(f32::INFINITY), None); + assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); + assert_eq!(Ratio::from_float(f64::NAN), None); + assert_eq!(Ratio::from_float(f64::INFINITY), None); + assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); + } + + #[test] + fn test_signed() { + assert_eq!(_NEG1_2.abs(), _1_2); + assert_eq!(_3_2.abs_sub(&_1_2), _1); + assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); + assert_eq!(_1_2.signum(), One::one()); + assert_eq!(_NEG1_2.signum(), -<Ratio<isize>>::one()); + assert_eq!(_0.signum(), Zero::zero()); + assert!(_NEG1_2.is_negative()); + assert!(_1_NEG2.is_negative()); + assert!(!_NEG1_2.is_positive()); + assert!(!_1_NEG2.is_positive()); + assert!(_1_2.is_positive()); + assert!(_NEG1_NEG2.is_positive()); + assert!(!_1_2.is_negative()); + assert!(!_NEG1_NEG2.is_negative()); + assert!(!_0.is_positive()); + assert!(!_0.is_negative()); + } + + #[test] + #[cfg(feature = "std")] + fn test_hash() { + assert!(::hash(&_0) != ::hash(&_1)); + assert!(::hash(&_0) != ::hash(&_3_2)); + + // a == b -> hash(a) == hash(b) + let a = Rational::new_raw(4, 2); + let b = Rational::new_raw(6, 3); + assert_eq!(a, b); + assert_eq!(::hash(&a), ::hash(&b)); + + let a = Rational::new_raw(123456789, 1000); + let b = Rational::new_raw(123456789 * 5, 5000); + assert_eq!(a, b); + assert_eq!(::hash(&a), ::hash(&b)); + } + + #[test] + fn test_into_pair() { + assert_eq! ((0, 1), _0.into()); + assert_eq! ((-2, 1), _NEG2.into()); + assert_eq! ((1, -2), _1_NEG2.into()); + } + + #[test] + fn test_from_pair() { + assert_eq! (_0, Ratio::from ((0, 1))); + assert_eq! (_1, Ratio::from ((1, 1))); + assert_eq! (_NEG2, Ratio::from ((-2, 1))); + assert_eq! (_1_NEG2, Ratio::from ((1, -2))); + } + + #[test] + fn ratio_iter_sum() { + // generic function to assure the iter method can be called + // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> + fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { + let mut manual_sum = Ratio::new(T::zero(), T::one()); + for ratio in slice { + manual_sum = manual_sum + ratio; + } + [ + manual_sum, + slice.iter().sum(), + slice.iter().cloned().sum() + ] + } + // collect into array so test works on no_std + let mut nums = [Ratio::new(0,1); 1000]; + for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { + nums[i] = r; + } + let sums = iter_sums(&nums[..]); + assert_eq!(sums[0], sums[1]); + assert_eq!(sums[0], sums[2]); + } + + #[test] + fn ratio_iter_product() { + // generic function to assure the iter method can be called + // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> + fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { + let mut manual_prod = Ratio::new(T::one(), T::one()); + for ratio in slice { + manual_prod = manual_prod * ratio; + } + [ + manual_prod, + slice.iter().product(), + slice.iter().cloned().product() + ] + } + + // collect into array so test works on no_std + let mut nums = [Ratio::new(0,1); 1000]; + for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { + nums[i] = r; + } + let products = iter_products(&nums[..]); + assert_eq!(products[0], products[1]); + assert_eq!(products[0], products[2]); + } +} |