summaryrefslogtreecommitdiffstats
path: root/third_party/rust/plane-split/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/plane-split/src/lib.rs')
-rwxr-xr-xthird_party/rust/plane-split/src/lib.rs301
1 files changed, 301 insertions, 0 deletions
diff --git a/third_party/rust/plane-split/src/lib.rs b/third_party/rust/plane-split/src/lib.rs
new file mode 100755
index 0000000000..991766a53d
--- /dev/null
+++ b/third_party/rust/plane-split/src/lib.rs
@@ -0,0 +1,301 @@
+/*!
+Plane splitting.
+
+Uses [euclid](https://crates.io/crates/euclid) for the math basis.
+Introduces new geometrical primitives and associated logic.
+
+Automatically splits a given set of 4-point polygons into sub-polygons
+that don't intersect each other. This is useful for WebRender, to sort
+the resulting sub-polygons by depth and avoid transparency blending issues.
+*/
+#![warn(missing_docs)]
+
+mod bsp;
+mod clip;
+mod polygon;
+
+use euclid::{approxeq::ApproxEq, Point3D, Scale, Vector3D};
+use num_traits::{Float, One, Zero};
+
+use std::ops;
+
+pub use self::bsp::BspSplitter;
+pub use self::clip::Clipper;
+pub use self::polygon::{Intersection, LineProjection, Polygon};
+
+fn is_zero<T>(value: T) -> bool
+where
+ T: Copy + Zero + ApproxEq<T> + ops::Mul<T, Output = T>,
+{
+ //HACK: this is rough, but the original Epsilon is too strict
+ (value * value).approx_eq(&T::zero())
+}
+
+fn is_zero_vec<T, U>(vec: Vector3D<T, U>) -> bool
+where
+ T: Copy
+ + Zero
+ + ApproxEq<T>
+ + ops::Add<T, Output = T>
+ + ops::Sub<T, Output = T>
+ + ops::Mul<T, Output = T>,
+{
+ vec.dot(vec).approx_eq(&T::zero())
+}
+
+/// A generic line.
+#[derive(Debug)]
+pub struct Line<T, U> {
+ /// Arbitrary point on the line.
+ pub origin: Point3D<T, U>,
+ /// Normalized direction of the line.
+ pub dir: Vector3D<T, U>,
+}
+
+impl<T, U> Line<T, U>
+where
+ T: Copy
+ + One
+ + Zero
+ + ApproxEq<T>
+ + ops::Add<T, Output = T>
+ + ops::Sub<T, Output = T>
+ + ops::Mul<T, Output = T>,
+{
+ /// Check if the line has consistent parameters.
+ pub fn is_valid(&self) -> bool {
+ is_zero(self.dir.dot(self.dir) - T::one())
+ }
+ /// Check if two lines match each other.
+ pub fn matches(&self, other: &Self) -> bool {
+ let diff = self.origin - other.origin;
+ is_zero_vec(self.dir.cross(other.dir)) && is_zero_vec(self.dir.cross(diff))
+ }
+
+ /// Intersect an edge given by the end points.
+ /// Returns the fraction of the edge where the intersection occurs.
+ fn intersect_edge(&self, edge: ops::Range<Point3D<T, U>>) -> Option<T>
+ where
+ T: ops::Div<T, Output = T>,
+ {
+ let edge_vec = edge.end - edge.start;
+ let origin_vec = self.origin - edge.start;
+ // edge.start + edge_vec * t = r + k * d
+ // (edge.start, d) + t * (edge_vec, d) - (r, d) = k
+ // edge.start + t * edge_vec = r + t * (edge_vec, d) * d + (start-r, d) * d
+ // t * (edge_vec - (edge_vec, d)*d) = origin_vec - (origin_vec, d) * d
+ let pr = origin_vec - self.dir * self.dir.dot(origin_vec);
+ let pb = edge_vec - self.dir * self.dir.dot(edge_vec);
+ let denom = pb.dot(pb);
+ if denom.approx_eq(&T::zero()) {
+ None
+ } else {
+ Some(pr.dot(pb) / denom)
+ }
+ }
+}
+
+/// An infinite plane in 3D space, defined by equation:
+/// dot(v, normal) + offset = 0
+/// When used for plane splitting, it's defining a hemisphere
+/// with equation "dot(v, normal) + offset > 0".
+#[derive(Debug, PartialEq)]
+pub struct Plane<T, U> {
+ /// Normalized vector perpendicular to the plane.
+ pub normal: Vector3D<T, U>,
+ /// Constant offset from the normal plane, specified in the
+ /// direction opposite to the normal.
+ pub offset: T,
+}
+
+impl<T: Clone, U> Clone for Plane<T, U> {
+ fn clone(&self) -> Self {
+ Plane {
+ normal: self.normal.clone(),
+ offset: self.offset.clone(),
+ }
+ }
+}
+
+/// An error returned when everything would end up projected
+/// to the negative hemisphere (W <= 0.0);
+#[derive(Clone, Debug, Hash, PartialEq, PartialOrd)]
+pub struct NegativeHemisphereError;
+
+impl<
+ T: Copy
+ + Zero
+ + One
+ + Float
+ + ApproxEq<T>
+ + ops::Sub<T, Output = T>
+ + ops::Add<T, Output = T>
+ + ops::Mul<T, Output = T>
+ + ops::Div<T, Output = T>,
+ U,
+ > Plane<T, U>
+{
+ /// Construct a new plane from unnormalized equation.
+ pub fn from_unnormalized(
+ normal: Vector3D<T, U>,
+ offset: T,
+ ) -> Result<Option<Self>, NegativeHemisphereError> {
+ let square_len = normal.square_length();
+ if square_len < T::approx_epsilon() * T::approx_epsilon() {
+ if offset > T::zero() {
+ Ok(None)
+ } else {
+ Err(NegativeHemisphereError)
+ }
+ } else {
+ let kf = T::one() / square_len.sqrt();
+ Ok(Some(Plane {
+ normal: normal * Scale::new(kf),
+ offset: offset * kf,
+ }))
+ }
+ }
+
+ /// Check if this plane contains another one.
+ pub fn contains(&self, other: &Self) -> bool {
+ //TODO: actually check for inside/outside
+ self.normal == other.normal && self.offset == other.offset
+ }
+
+ /// Return the signed distance from this plane to a point.
+ /// The distance is negative if the point is on the other side of the plane
+ /// from the direction of the normal.
+ pub fn signed_distance_to(&self, point: &Point3D<T, U>) -> T {
+ point.to_vector().dot(self.normal) + self.offset
+ }
+
+ /// Compute the distance across the line to the plane plane,
+ /// starting from the line origin.
+ pub fn distance_to_line(&self, line: &Line<T, U>) -> T
+ where
+ T: ops::Neg<Output = T>,
+ {
+ self.signed_distance_to(&line.origin) / -self.normal.dot(line.dir)
+ }
+
+ /// Compute the sum of signed distances to each of the points
+ /// of another plane. Useful to know the relation of a plane that
+ /// is a product of a split, and we know it doesn't intersect `self`.
+ pub fn signed_distance_sum_to<A>(&self, poly: &Polygon<T, U, A>) -> T {
+ poly.points
+ .iter()
+ .fold(T::zero(), |u, p| u + self.signed_distance_to(p))
+ }
+
+ /// Check if a convex shape defined by a set of points is completely
+ /// outside of this plane. Merely touching the surface is not
+ /// considered an intersection.
+ pub fn are_outside(&self, points: &[Point3D<T, U>]) -> bool {
+ let d0 = self.signed_distance_to(&points[0]);
+ points[1..]
+ .iter()
+ .all(|p| self.signed_distance_to(p) * d0 > T::zero())
+ }
+
+ //TODO(breaking): turn this into Result<Line, DotProduct>
+ /// Compute the line of intersection with another plane.
+ pub fn intersect(&self, other: &Self) -> Option<Line<T, U>> {
+ // compute any point on the intersection between planes
+ // (n1, v) + d1 = 0
+ // (n2, v) + d2 = 0
+ // v = a*n1/w + b*n2/w; w = (n1, n2)
+ // v = (d2*w - d1) / (1 - w*w) * n1 - (d2 - d1*w) / (1 - w*w) * n2
+ let w = self.normal.dot(other.normal);
+ let divisor = T::one() - w * w;
+ if divisor < T::approx_epsilon() * T::approx_epsilon() {
+ return None;
+ }
+ let origin = Point3D::origin() + self.normal * ((other.offset * w - self.offset) / divisor)
+ - other.normal * ((other.offset - self.offset * w) / divisor);
+
+ let cross_dir = self.normal.cross(other.normal);
+ // note: the cross product isn't too close to zero
+ // due to the previous check
+
+ Some(Line {
+ origin,
+ dir: cross_dir.normalize(),
+ })
+ }
+}
+
+/// Generic plane splitter interface
+pub trait Splitter<T, U, A> {
+ /// Reset the splitter results.
+ fn reset(&mut self);
+
+ /// Add a new polygon and return a slice of the subdivisions
+ /// that avoid collision with any of the previously added polygons.
+ fn add(&mut self, polygon: Polygon<T, U, A>);
+
+ /// Sort the produced polygon set by the ascending distance across
+ /// the specified view vector. Return the sorted slice.
+ fn sort(&mut self, view: Vector3D<T, U>) -> &[Polygon<T, U, A>];
+
+ /// Process a set of polygons at once.
+ fn solve(&mut self, input: &[Polygon<T, U, A>], view: Vector3D<T, U>) -> &[Polygon<T, U, A>]
+ where
+ T: Clone,
+ U: Clone,
+ A: Copy,
+ {
+ self.reset();
+ for p in input {
+ self.add(p.clone());
+ }
+ self.sort(view)
+ }
+}
+
+/// Helper method used for benchmarks and tests.
+/// Constructs a 3D grid of polygons.
+#[doc(hidden)]
+pub fn make_grid(count: usize) -> Vec<Polygon<f32, (), usize>> {
+ let mut polys: Vec<Polygon<f32, (), usize>> = Vec::with_capacity(count * 3);
+ let len = count as f32;
+ polys.extend((0..count).map(|i| Polygon {
+ points: [
+ Point3D::new(0.0, i as f32, 0.0),
+ Point3D::new(len, i as f32, 0.0),
+ Point3D::new(len, i as f32, len),
+ Point3D::new(0.0, i as f32, len),
+ ],
+ plane: Plane {
+ normal: Vector3D::new(0.0, 1.0, 0.0),
+ offset: -(i as f32),
+ },
+ anchor: 0,
+ }));
+ polys.extend((0..count).map(|i| Polygon {
+ points: [
+ Point3D::new(i as f32, 0.0, 0.0),
+ Point3D::new(i as f32, len, 0.0),
+ Point3D::new(i as f32, len, len),
+ Point3D::new(i as f32, 0.0, len),
+ ],
+ plane: Plane {
+ normal: Vector3D::new(1.0, 0.0, 0.0),
+ offset: -(i as f32),
+ },
+ anchor: 0,
+ }));
+ polys.extend((0..count).map(|i| Polygon {
+ points: [
+ Point3D::new(0.0, 0.0, i as f32),
+ Point3D::new(len, 0.0, i as f32),
+ Point3D::new(len, len, i as f32),
+ Point3D::new(0.0, len, i as f32),
+ ],
+ plane: Plane {
+ normal: Vector3D::new(0.0, 0.0, 1.0),
+ offset: -(i as f32),
+ },
+ anchor: 0,
+ }));
+ polys
+}