diff options
Diffstat (limited to 'third_party/rust/regex/src/utf8.rs')
-rw-r--r-- | third_party/rust/regex/src/utf8.rs | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/third_party/rust/regex/src/utf8.rs b/third_party/rust/regex/src/utf8.rs new file mode 100644 index 0000000000..6e0608fdba --- /dev/null +++ b/third_party/rust/regex/src/utf8.rs @@ -0,0 +1,264 @@ +/// A few elementary UTF-8 encoding and decoding functions used by the matching +/// engines. +/// +/// In an ideal world, the matching engines operate on `&str` and we can just +/// lean on the standard library for all our UTF-8 needs. However, to support +/// byte based regexes (that can match on arbitrary bytes which may contain +/// UTF-8), we need to be capable of searching and decoding UTF-8 on a `&[u8]`. +/// The standard library doesn't really recognize this use case, so we have +/// to build it out ourselves. +/// +/// Should this be factored out into a separate crate? It seems independently +/// useful. There are other crates that already exist (e.g., `utf-8`) that have +/// overlapping use cases. Not sure what to do. +use std::char; + +const TAG_CONT: u8 = 0b1000_0000; +const TAG_TWO: u8 = 0b1100_0000; +const TAG_THREE: u8 = 0b1110_0000; +const TAG_FOUR: u8 = 0b1111_0000; + +/// Returns the smallest possible index of the next valid UTF-8 sequence +/// starting after `i`. +pub fn next_utf8(text: &[u8], i: usize) -> usize { + let b = match text.get(i) { + None => return i + 1, + Some(&b) => b, + }; + let inc = if b <= 0x7F { + 1 + } else if b <= 0b110_11111 { + 2 + } else if b <= 0b1110_1111 { + 3 + } else { + 4 + }; + i + inc +} + +/// Decode a single UTF-8 sequence into a single Unicode codepoint from `src`. +/// +/// If no valid UTF-8 sequence could be found, then `None` is returned. +/// Otherwise, the decoded codepoint and the number of bytes read is returned. +/// The number of bytes read (for a valid UTF-8 sequence) is guaranteed to be +/// 1, 2, 3 or 4. +/// +/// Note that a UTF-8 sequence is invalid if it is incorrect UTF-8, encodes a +/// codepoint that is out of range (surrogate codepoints are out of range) or +/// is not the shortest possible UTF-8 sequence for that codepoint. +#[inline] +pub fn decode_utf8(src: &[u8]) -> Option<(char, usize)> { + let b0 = match src.get(0) { + None => return None, + Some(&b) if b <= 0x7F => return Some((b as char, 1)), + Some(&b) => b, + }; + match b0 { + 0b110_00000..=0b110_11111 => { + if src.len() < 2 { + return None; + } + let b1 = src[1]; + if 0b11_000000 & b1 != TAG_CONT { + return None; + } + let cp = ((b0 & !TAG_TWO) as u32) << 6 | ((b1 & !TAG_CONT) as u32); + match cp { + 0x80..=0x7FF => char::from_u32(cp).map(|cp| (cp, 2)), + _ => None, + } + } + 0b1110_0000..=0b1110_1111 => { + if src.len() < 3 { + return None; + } + let (b1, b2) = (src[1], src[2]); + if 0b11_000000 & b1 != TAG_CONT { + return None; + } + if 0b11_000000 & b2 != TAG_CONT { + return None; + } + let cp = ((b0 & !TAG_THREE) as u32) << 12 + | ((b1 & !TAG_CONT) as u32) << 6 + | ((b2 & !TAG_CONT) as u32); + match cp { + // char::from_u32 will disallow surrogate codepoints. + 0x800..=0xFFFF => char::from_u32(cp).map(|cp| (cp, 3)), + _ => None, + } + } + 0b11110_000..=0b11110_111 => { + if src.len() < 4 { + return None; + } + let (b1, b2, b3) = (src[1], src[2], src[3]); + if 0b11_000000 & b1 != TAG_CONT { + return None; + } + if 0b11_000000 & b2 != TAG_CONT { + return None; + } + if 0b11_000000 & b3 != TAG_CONT { + return None; + } + let cp = ((b0 & !TAG_FOUR) as u32) << 18 + | ((b1 & !TAG_CONT) as u32) << 12 + | ((b2 & !TAG_CONT) as u32) << 6 + | ((b3 & !TAG_CONT) as u32); + match cp { + 0x10000..=0x10FFFF => char::from_u32(cp).map(|cp| (cp, 4)), + _ => None, + } + } + _ => None, + } +} + +/// Like `decode_utf8`, but decodes the last UTF-8 sequence in `src` instead +/// of the first. +pub fn decode_last_utf8(src: &[u8]) -> Option<(char, usize)> { + if src.is_empty() { + return None; + } + let mut start = src.len() - 1; + if src[start] <= 0x7F { + return Some((src[start] as char, 1)); + } + while start > src.len().saturating_sub(4) { + start -= 1; + if is_start_byte(src[start]) { + break; + } + } + match decode_utf8(&src[start..]) { + None => None, + Some((_, n)) if n < src.len() - start => None, + Some((cp, n)) => Some((cp, n)), + } +} + +fn is_start_byte(b: u8) -> bool { + b & 0b11_000000 != 0b1_0000000 +} + +#[cfg(test)] +mod tests { + use std::str; + + use quickcheck::quickcheck; + + use super::{ + decode_last_utf8, decode_utf8, TAG_CONT, TAG_FOUR, TAG_THREE, TAG_TWO, + }; + + #[test] + fn prop_roundtrip() { + fn p(given_cp: char) -> bool { + let mut tmp = [0; 4]; + let encoded_len = given_cp.encode_utf8(&mut tmp).len(); + let (got_cp, got_len) = decode_utf8(&tmp[..encoded_len]).unwrap(); + encoded_len == got_len && given_cp == got_cp + } + quickcheck(p as fn(char) -> bool) + } + + #[test] + fn prop_roundtrip_last() { + fn p(given_cp: char) -> bool { + let mut tmp = [0; 4]; + let encoded_len = given_cp.encode_utf8(&mut tmp).len(); + let (got_cp, got_len) = + decode_last_utf8(&tmp[..encoded_len]).unwrap(); + encoded_len == got_len && given_cp == got_cp + } + quickcheck(p as fn(char) -> bool) + } + + #[test] + fn prop_encode_matches_std() { + fn p(cp: char) -> bool { + let mut got = [0; 4]; + let n = cp.encode_utf8(&mut got).len(); + let expected = cp.to_string(); + &got[..n] == expected.as_bytes() + } + quickcheck(p as fn(char) -> bool) + } + + #[test] + fn prop_decode_matches_std() { + fn p(given_cp: char) -> bool { + let mut tmp = [0; 4]; + let n = given_cp.encode_utf8(&mut tmp).len(); + let (got_cp, _) = decode_utf8(&tmp[..n]).unwrap(); + let expected_cp = + str::from_utf8(&tmp[..n]).unwrap().chars().next().unwrap(); + got_cp == expected_cp + } + quickcheck(p as fn(char) -> bool) + } + + #[test] + fn prop_decode_last_matches_std() { + fn p(given_cp: char) -> bool { + let mut tmp = [0; 4]; + let n = given_cp.encode_utf8(&mut tmp).len(); + let (got_cp, _) = decode_last_utf8(&tmp[..n]).unwrap(); + let expected_cp = str::from_utf8(&tmp[..n]) + .unwrap() + .chars() + .rev() + .next() + .unwrap(); + got_cp == expected_cp + } + quickcheck(p as fn(char) -> bool) + } + + #[test] + fn reject_invalid() { + // Invalid start byte + assert_eq!(decode_utf8(&[0xFF]), None); + // Surrogate pair + assert_eq!(decode_utf8(&[0xED, 0xA0, 0x81]), None); + // Invalid continuation byte. + assert_eq!(decode_utf8(&[0xD4, 0xC2]), None); + // Bad lengths + assert_eq!(decode_utf8(&[0xC3]), None); // 2 bytes + assert_eq!(decode_utf8(&[0xEF, 0xBF]), None); // 3 bytes + assert_eq!(decode_utf8(&[0xF4, 0x8F, 0xBF]), None); // 4 bytes + // Not a minimal UTF-8 sequence + assert_eq!(decode_utf8(&[TAG_TWO, TAG_CONT | b'a']), None); + assert_eq!(decode_utf8(&[TAG_THREE, TAG_CONT, TAG_CONT | b'a']), None); + assert_eq!( + decode_utf8(&[TAG_FOUR, TAG_CONT, TAG_CONT, TAG_CONT | b'a',]), + None + ); + } + + #[test] + fn reject_invalid_last() { + // Invalid start byte + assert_eq!(decode_last_utf8(&[0xFF]), None); + // Surrogate pair + assert_eq!(decode_last_utf8(&[0xED, 0xA0, 0x81]), None); + // Bad lengths + assert_eq!(decode_last_utf8(&[0xC3]), None); // 2 bytes + assert_eq!(decode_last_utf8(&[0xEF, 0xBF]), None); // 3 bytes + assert_eq!(decode_last_utf8(&[0xF4, 0x8F, 0xBF]), None); // 4 bytes + // Not a minimal UTF-8 sequence + assert_eq!(decode_last_utf8(&[TAG_TWO, TAG_CONT | b'a']), None); + assert_eq!( + decode_last_utf8(&[TAG_THREE, TAG_CONT, TAG_CONT | b'a',]), + None + ); + assert_eq!( + decode_last_utf8( + &[TAG_FOUR, TAG_CONT, TAG_CONT, TAG_CONT | b'a',] + ), + None + ); + } +} |