diff options
Diffstat (limited to 'third_party/rust/sha-1/src/utils.rs')
-rw-r--r-- | third_party/rust/sha-1/src/utils.rs | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/third_party/rust/sha-1/src/utils.rs b/third_party/rust/sha-1/src/utils.rs new file mode 100644 index 0000000000..e8b941a6ee --- /dev/null +++ b/third_party/rust/sha-1/src/utils.rs @@ -0,0 +1,300 @@ +#![cfg_attr(feature = "cargo-clippy", allow(many_single_char_names))] + +use consts::{BLOCK_LEN, K0, K1, K2, K3}; +use block_buffer::byteorder::{BE, ByteOrder}; +use simd::u32x4; +use digest::generic_array::GenericArray; +use digest::generic_array::typenum::U64; + +type Block = GenericArray<u8, U64>; + +/// Not an intrinsic, but gets the first element of a vector. +#[inline] +pub fn sha1_first(w0: u32x4) -> u32 { + w0.0 +} + +/// Not an intrinsic, but adds a word to the first element of a vector. +#[inline] +pub fn sha1_first_add(e: u32, w0: u32x4) -> u32x4 { + let u32x4(a, b, c, d) = w0; + u32x4(e.wrapping_add(a), b, c, d) +} + +/// Emulates `llvm.x86.sha1msg1` intrinsic. +fn sha1msg1(a: u32x4, b: u32x4) -> u32x4 { + let u32x4(_, _, w2, w3) = a; + let u32x4(w4, w5, _, _) = b; + a ^ u32x4(w2, w3, w4, w5) +} + +/// Emulates `llvm.x86.sha1msg2` intrinsic. +fn sha1msg2(a: u32x4, b: u32x4) -> u32x4 { + let u32x4(x0, x1, x2, x3) = a; + let u32x4(_, w13, w14, w15) = b; + + let w16 = (x0 ^ w13).rotate_left(1); + let w17 = (x1 ^ w14).rotate_left(1); + let w18 = (x2 ^ w15).rotate_left(1); + let w19 = (x3 ^ w16).rotate_left(1); + + u32x4(w16, w17, w18, w19) +} + +/// Performs 4 rounds of the message schedule update. +/* +pub fn sha1_schedule_x4(v0: u32x4, v1: u32x4, v2: u32x4, v3: u32x4) -> u32x4 { + sha1msg2(sha1msg1(v0, v1) ^ v2, v3) +} +*/ + +/// Emulates `llvm.x86.sha1nexte` intrinsic. +#[inline] +fn sha1_first_half(abcd: u32x4, msg: u32x4) -> u32x4 { + sha1_first_add(sha1_first(abcd).rotate_left(30), msg) +} + +/// Emulates `llvm.x86.sha1rnds4` intrinsic. +/// Performs 4 rounds of the message block digest. +fn sha1_digest_round_x4(abcd: u32x4, work: u32x4, i: i8) -> u32x4 { + const K0V: u32x4 = u32x4(K0, K0, K0, K0); + const K1V: u32x4 = u32x4(K1, K1, K1, K1); + const K2V: u32x4 = u32x4(K2, K2, K2, K2); + const K3V: u32x4 = u32x4(K3, K3, K3, K3); + + match i { + 0 => sha1rnds4c(abcd, work + K0V), + 1 => sha1rnds4p(abcd, work + K1V), + 2 => sha1rnds4m(abcd, work + K2V), + 3 => sha1rnds4p(abcd, work + K3V), + _ => unreachable!("unknown icosaround index"), + } +} + +/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic. +fn sha1rnds4c(abcd: u32x4, msg: u32x4) -> u32x4 { + let u32x4(mut a, mut b, mut c, mut d) = abcd; + let u32x4(t, u, v, w) = msg; + let mut e = 0u32; + + macro_rules! bool3ary_202 { + ($a:expr, $b:expr, $c:expr) => ($c ^ ($a & ($b ^ $c))) + } // Choose, MD5F, SHA1C + + e = e.wrapping_add(a.rotate_left(5)) + .wrapping_add(bool3ary_202!(b, c, d)) + .wrapping_add(t); + b = b.rotate_left(30); + + d = d.wrapping_add(e.rotate_left(5)) + .wrapping_add(bool3ary_202!(a, b, c)) + .wrapping_add(u); + a = a.rotate_left(30); + + c = c.wrapping_add(d.rotate_left(5)) + .wrapping_add(bool3ary_202!(e, a, b)) + .wrapping_add(v); + e = e.rotate_left(30); + + b = b.wrapping_add(c.rotate_left(5)) + .wrapping_add(bool3ary_202!(d, e, a)) + .wrapping_add(w); + d = d.rotate_left(30); + + u32x4(b, c, d, e) +} + +/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic. +fn sha1rnds4p(abcd: u32x4, msg: u32x4) -> u32x4 { + let u32x4(mut a, mut b, mut c, mut d) = abcd; + let u32x4(t, u, v, w) = msg; + let mut e = 0u32; + + macro_rules! bool3ary_150 { + ($a:expr, $b:expr, $c:expr) => ($a ^ $b ^ $c) + } // Parity, XOR, MD5H, SHA1P + + e = e.wrapping_add(a.rotate_left(5)) + .wrapping_add(bool3ary_150!(b, c, d)) + .wrapping_add(t); + b = b.rotate_left(30); + + d = d.wrapping_add(e.rotate_left(5)) + .wrapping_add(bool3ary_150!(a, b, c)) + .wrapping_add(u); + a = a.rotate_left(30); + + c = c.wrapping_add(d.rotate_left(5)) + .wrapping_add(bool3ary_150!(e, a, b)) + .wrapping_add(v); + e = e.rotate_left(30); + + b = b.wrapping_add(c.rotate_left(5)) + .wrapping_add(bool3ary_150!(d, e, a)) + .wrapping_add(w); + d = d.rotate_left(30); + + u32x4(b, c, d, e) +} + +/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic. +fn sha1rnds4m(abcd: u32x4, msg: u32x4) -> u32x4 { + let u32x4(mut a, mut b, mut c, mut d) = abcd; + let u32x4(t, u, v, w) = msg; + let mut e = 0u32; + + macro_rules! bool3ary_232 { + ($a:expr, $b:expr, $c:expr) => (($a & $b) ^ ($a & $c) ^ ($b & $c)) + } // Majority, SHA1M + + e = e.wrapping_add(a.rotate_left(5)) + .wrapping_add(bool3ary_232!(b, c, d)) + .wrapping_add(t); + b = b.rotate_left(30); + + d = d.wrapping_add(e.rotate_left(5)) + .wrapping_add(bool3ary_232!(a, b, c)) + .wrapping_add(u); + a = a.rotate_left(30); + + c = c.wrapping_add(d.rotate_left(5)) + .wrapping_add(bool3ary_232!(e, a, b)) + .wrapping_add(v); + e = e.rotate_left(30); + + b = b.wrapping_add(c.rotate_left(5)) + .wrapping_add(bool3ary_232!(d, e, a)) + .wrapping_add(w); + d = d.rotate_left(30); + + u32x4(b, c, d, e) +} + +/// Process a block with the SHA-1 algorithm. +fn sha1_digest_block_u32(state: &mut [u32; 5], block: &[u32; 16]) { + + macro_rules! schedule { + ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => ( + sha1msg2(sha1msg1($v0, $v1) ^ $v2, $v3) + ) + } + + macro_rules! rounds4 { + ($h0:ident, $h1:ident, $wk:expr, $i:expr) => ( + sha1_digest_round_x4($h0, sha1_first_half($h1, $wk), $i) + ) + } + + // Rounds 0..20 + // TODO: replace with `u32x4::load` + let mut h0 = u32x4(state[0], state[1], state[2], state[3]); + let mut w0 = u32x4(block[0], block[1], block[2], block[3]); + let mut h1 = sha1_digest_round_x4(h0, sha1_first_add(state[4], w0), 0); + let mut w1 = u32x4(block[4], block[5], block[6], block[7]); + h0 = rounds4!(h1, h0, w1, 0); + let mut w2 = u32x4(block[8], block[9], block[10], block[11]); + h1 = rounds4!(h0, h1, w2, 0); + let mut w3 = u32x4(block[12], block[13], block[14], block[15]); + h0 = rounds4!(h1, h0, w3, 0); + let mut w4 = schedule!(w0, w1, w2, w3); + h1 = rounds4!(h0, h1, w4, 0); + + // Rounds 20..40 + w0 = schedule!(w1, w2, w3, w4); + h0 = rounds4!(h1, h0, w0, 1); + w1 = schedule!(w2, w3, w4, w0); + h1 = rounds4!(h0, h1, w1, 1); + w2 = schedule!(w3, w4, w0, w1); + h0 = rounds4!(h1, h0, w2, 1); + w3 = schedule!(w4, w0, w1, w2); + h1 = rounds4!(h0, h1, w3, 1); + w4 = schedule!(w0, w1, w2, w3); + h0 = rounds4!(h1, h0, w4, 1); + + // Rounds 40..60 + w0 = schedule!(w1, w2, w3, w4); + h1 = rounds4!(h0, h1, w0, 2); + w1 = schedule!(w2, w3, w4, w0); + h0 = rounds4!(h1, h0, w1, 2); + w2 = schedule!(w3, w4, w0, w1); + h1 = rounds4!(h0, h1, w2, 2); + w3 = schedule!(w4, w0, w1, w2); + h0 = rounds4!(h1, h0, w3, 2); + w4 = schedule!(w0, w1, w2, w3); + h1 = rounds4!(h0, h1, w4, 2); + + // Rounds 60..80 + w0 = schedule!(w1, w2, w3, w4); + h0 = rounds4!(h1, h0, w0, 3); + w1 = schedule!(w2, w3, w4, w0); + h1 = rounds4!(h0, h1, w1, 3); + w2 = schedule!(w3, w4, w0, w1); + h0 = rounds4!(h1, h0, w2, 3); + w3 = schedule!(w4, w0, w1, w2); + h1 = rounds4!(h0, h1, w3, 3); + w4 = schedule!(w0, w1, w2, w3); + h0 = rounds4!(h1, h0, w4, 3); + + let e = sha1_first(h1).rotate_left(30); + let u32x4(a, b, c, d) = h0; + + state[0] = state[0].wrapping_add(a); + state[1] = state[1].wrapping_add(b); + state[2] = state[2].wrapping_add(c); + state[3] = state[3].wrapping_add(d); + state[4] = state[4].wrapping_add(e); +} + +/// Process a block with the SHA-1 algorithm. (See more...) +/// +/// SHA-1 is a cryptographic hash function, and as such, it operates +/// on an arbitrary number of bytes. This function operates on a fixed +/// number of bytes. If you call this function with anything other than +/// 64 bytes, then it will panic! This function takes two arguments: +/// +/// * `state` is reference to an **array** of 5 words. +/// * `block` is reference to a **slice** of 64 bytes. +/// +/// If you want the function that performs a message digest on an arbitrary +/// number of bytes, then see also the `Sha1` struct above. +/// +/// # Implementation +/// +/// First, some background. Both ARM and Intel are releasing documentation +/// that they plan to include instruction set extensions for SHA1 and SHA256 +/// sometime in the near future. Second, LLVM won't lower these intrinsics yet, +/// so these functions were written emulate these instructions. Finally, +/// the block function implemented with these emulated intrinsics turned out +/// to be quite fast! What follows is a discussion of this CPU-level view +/// of the SHA-1 algorithm and how it relates to the mathematical definition. +/// +/// The SHA instruction set extensions can be divided up into two categories: +/// +/// * message work schedule update calculation ("schedule" v., "work" n.) +/// * message block 80-round digest calculation ("digest" v., "block" n.) +/// +/// The schedule-related functions can be used to easily perform 4 rounds +/// of the message work schedule update calculation, as shown below: +/// +/// ```ignore +/// macro_rules! schedule_x4 { +/// ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => ( +/// sha1msg2(sha1msg1($v0, $v1) ^ $v2, $v3) +/// ) +/// } +/// +/// macro_rules! round_x4 { +/// ($h0:ident, $h1:ident, $wk:expr, $i:expr) => ( +/// sha1rnds4($h0, sha1_first_half($h1, $wk), $i) +/// ) +/// } +/// ``` +/// +/// and also shown above is how the digest-related functions can be used to +/// perform 4 rounds of the message block digest calculation. +/// +pub fn compress(state: &mut [u32; 5], block: &Block) { + let mut block_u32 = [0u32; BLOCK_LEN]; + BE::read_u32_into(block, &mut block_u32[..]); + sha1_digest_block_u32(state, &block_u32); +} |