summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio-0.1.11
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/tokio-0.1.11')
-rw-r--r--third_party/rust/tokio-0.1.11/.cargo-checksum.json1
-rw-r--r--third_party/rust/tokio-0.1.11/CHANGELOG.md80
-rw-r--r--third_party/rust/tokio-0.1.11/CONTRIBUTING.md387
-rw-r--r--third_party/rust/tokio-0.1.11/Cargo.toml111
-rw-r--r--third_party/rust/tokio-0.1.11/LICENSE25
-rw-r--r--third_party/rust/tokio-0.1.11/README.md189
-rw-r--r--third_party/rust/tokio-0.1.11/benches/latency.rs117
-rw-r--r--third_party/rust/tokio-0.1.11/benches/mio-ops.rs58
-rw-r--r--third_party/rust/tokio-0.1.11/benches/tcp.rs248
-rw-r--r--third_party/rust/tokio-0.1.11/ci/tsan33
-rw-r--r--third_party/rust/tokio-0.1.11/examples/README.md60
-rw-r--r--third_party/rust/tokio-0.1.11/examples/chat-combinator.rs150
-rw-r--r--third_party/rust/tokio-0.1.11/examples/chat.rs474
-rw-r--r--third_party/rust/tokio-0.1.11/examples/connect.rs245
-rw-r--r--third_party/rust/tokio-0.1.11/examples/echo-udp.rs73
-rw-r--r--third_party/rust/tokio-0.1.11/examples/echo.rs114
-rw-r--r--third_party/rust/tokio-0.1.11/examples/hello_world.rs70
-rw-r--r--third_party/rust/tokio-0.1.11/examples/manual-runtime.rs86
-rw-r--r--third_party/rust/tokio-0.1.11/examples/print_each_packet.rs149
-rw-r--r--third_party/rust/tokio-0.1.11/examples/proxy.rs128
-rw-r--r--third_party/rust/tokio-0.1.11/examples/tinydb.rs206
-rw-r--r--third_party/rust/tokio-0.1.11/examples/tinyhttp.rs308
-rw-r--r--third_party/rust/tokio-0.1.11/examples/udp-client.rs74
-rw-r--r--third_party/rust/tokio-0.1.11/examples/udp-codec.rs64
-rw-r--r--third_party/rust/tokio-0.1.11/src/async_await.rs26
-rw-r--r--third_party/rust/tokio-0.1.11/src/clock.rs15
-rw-r--r--third_party/rust/tokio-0.1.11/src/codec/length_delimited.rs971
-rw-r--r--third_party/rust/tokio-0.1.11/src/codec/mod.rs26
-rw-r--r--third_party/rust/tokio-0.1.11/src/executor/current_thread/mod.rs170
-rw-r--r--third_party/rust/tokio-0.1.11/src/executor/mod.rs145
-rw-r--r--third_party/rust/tokio-0.1.11/src/fs.rs12
-rw-r--r--third_party/rust/tokio-0.1.11/src/io.rs93
-rw-r--r--third_party/rust/tokio-0.1.11/src/lib.rs120
-rw-r--r--third_party/rust/tokio-0.1.11/src/net.rs85
-rw-r--r--third_party/rust/tokio-0.1.11/src/prelude.rs54
-rw-r--r--third_party/rust/tokio-0.1.11/src/reactor/mod.rs149
-rw-r--r--third_party/rust/tokio-0.1.11/src/reactor/poll_evented.rs539
-rw-r--r--third_party/rust/tokio-0.1.11/src/runtime/builder.rs261
-rw-r--r--third_party/rust/tokio-0.1.11/src/runtime/current_thread/builder.rs88
-rw-r--r--third_party/rust/tokio-0.1.11/src/runtime/current_thread/mod.rs92
-rw-r--r--third_party/rust/tokio-0.1.11/src/runtime/current_thread/runtime.rs234
-rw-r--r--third_party/rust/tokio-0.1.11/src/runtime/mod.rs496
-rw-r--r--third_party/rust/tokio-0.1.11/src/runtime/shutdown.rs46
-rw-r--r--third_party/rust/tokio-0.1.11/src/runtime/task_executor.rs75
-rw-r--r--third_party/rust/tokio-0.1.11/src/timer.rs102
-rw-r--r--third_party/rust/tokio-0.1.11/src/util/future.rs87
-rw-r--r--third_party/rust/tokio-0.1.11/src/util/mod.rs14
-rw-r--r--third_party/rust/tokio-0.1.11/src/util/stream.rs62
-rw-r--r--third_party/rust/tokio-0.1.11/tests/buffered.rs63
-rw-r--r--third_party/rust/tokio-0.1.11/tests/clock.rs69
-rw-r--r--third_party/rust/tokio-0.1.11/tests/drop-core.rs42
-rw-r--r--third_party/rust/tokio-0.1.11/tests/global.rs136
-rw-r--r--third_party/rust/tokio-0.1.11/tests/length_delimited.rs564
-rw-r--r--third_party/rust/tokio-0.1.11/tests/line-frames.rs88
-rw-r--r--third_party/rust/tokio-0.1.11/tests/pipe-hup.rs88
-rw-r--r--third_party/rust/tokio-0.1.11/tests/reactor.rs89
-rw-r--r--third_party/rust/tokio-0.1.11/tests/runtime.rs404
-rw-r--r--third_party/rust/tokio-0.1.11/tests/timer.rs116
58 files changed, 9071 insertions, 0 deletions
diff --git a/third_party/rust/tokio-0.1.11/.cargo-checksum.json b/third_party/rust/tokio-0.1.11/.cargo-checksum.json
new file mode 100644
index 0000000000..0090f5eebd
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"CHANGELOG.md":"a1e6cce4e7ec3d2d83b05a4ae2ed84d547ac35cede41fa4da773e29585eaf332","CONTRIBUTING.md":"dc3eeb8c4f2bbf9ac909a6e797070c9ea26c8eeb0b7f430926951c8b94e3e2c0","Cargo.toml":"ba61efd66540563b475d5875b3f62aa86cfe81dd2452be9819db25ef9e46251a","LICENSE":"4899c290472c872cf8a1904a60e73ec58a1bc1db2e20bc143aa3d1498be49c96","README.md":"8d46731ef115749268a3f0cd6781d75e41f442fb7ad385b7722f91429e1fb7b7","benches/latency.rs":"b8f62578cf5784efa201549535e2a0d3bda78d78cf24d2be662851c35a1339df","benches/mio-ops.rs":"0df1a47f9bb3c8ed4291244da8c39d956b7a23cad9be7b2a5009fa58d39f8330","benches/tcp.rs":"851a4af3e8ae552605f16be158aa8778db2fa1e13bcf7b9347560b735a971e67","ci/tsan":"1c1773c80bd9bff2f2a5f60ca83e13952e523228650fc22e774c48f81f90c32a","examples/README.md":"c976ccc5c8b44caf31ef3a1c5ac13605898e087bc9b5f7e5a7ac9e8c44157a99","examples/chat-combinator.rs":"a0a621dfbc0ec63fe78c5ef49403787fcf44f9ecc83e0cae36dd2e6f0b3480aa","examples/chat.rs":"c66333084964d9a8b2fb038c60fca6edc395ae910a61f0f3d8f3f5b9f60d0122","examples/connect.rs":"b9b3527bb0a9dcf2cd875c6136339b23ba7151789ca49a1446cda3fce63f5865","examples/echo-udp.rs":"3200231d92c47f516d760f89c88b6faadc85bfa2d7686d696e648cee9745b7b1","examples/echo.rs":"0819864913f0e390b48c620bb67a2b88d6c5d6e11229ec1f5eeb935092353dce","examples/hello_world.rs":"766db4454412ff30dad9655c80a5fcd43e15327ea4703c20771a4e7ac4112dac","examples/manual-runtime.rs":"45c1ec5c3b3cad2ee6c9aeed2283477705f9c28c61b45711bc769c675c1ef8e4","examples/print_each_packet.rs":"fa37cd7dcb426f3847ef0829959f8655c1873a69c2cd8edd0db05c5a0c7865df","examples/proxy.rs":"3f28f1a0bac9ae57c3bf6770679717d55220460fcfab05fb62e356f5f07586ee","examples/tinydb.rs":"b56ee3458dc18a284653fb099a9f72eb5612710d314085e72a6c8ed3edbfcce9","examples/tinyhttp.rs":"d402343998b3a2175d46b3801983999e0e1ffae59b8d415d46f8a71f818240d3","examples/udp-client.rs":"2df32c59e5dda17d7c18c6c7faf28a3f9ce2e07c97a908c5ee4ca97c3d775874","examples/udp-codec.rs":"ff1cfd19a7c0788de52a27857488a4ce117fe72b72ba340d836cb5d184e53696","src/async_await.rs":"a23eea1f6d1ac20248f4cd38bb1782a576775c81e0493d8fe8423478f0fa64e0","src/clock.rs":"ad45adb859163b40a51e566e0e53abff8682c8bbb7813fd106aa70ea55efe5f3","src/codec/length_delimited.rs":"da5a3b5c1139396019d0dbe86628e32baa36cf8ecf7fbaf488be39d0921ab057","src/codec/mod.rs":"249941c50f38b56aaac0688db0100b07b04bc038e759aae87dee9f3e26c986d8","src/executor/current_thread/mod.rs":"c6f183735fda8f2081e88960eaf10e7e9435fa7f9e3db118626f55366e22094f","src/executor/mod.rs":"418807abde295d8f728c027a8426d2bd702a6a93a73242a64c2adeb92c7cef12","src/fs.rs":"1a4dd1c0eacabfb22661174b2f1441bdce6941cd61ccd24b61d02cf3cbf339a3","src/io.rs":"dfd320da22ed8d6a66868fc2282fac61e8e042d64e83c4eef4a52ae47e6fa8ac","src/lib.rs":"24a388cf4eed4b75b0be3ba76875dc28dddf6ae7072a2a648c720b34d178bb98","src/net.rs":"e478a0ca41afc2fa39529045983b99104541526c486fa672b8d2d590da65a699","src/prelude.rs":"11624e3b508192bee12731044e36e5a98cf8a83b7b36f3efa7a89743c6059edf","src/reactor/mod.rs":"9b68b4d1aabe99b2e851e2f98135c35a891825a7017dc835e4d3de3c5f162bd5","src/reactor/poll_evented.rs":"6d1233e82ebdefe42c63c3bbca839d99aab5873aeca2bb11787660ecd39ad2f9","src/runtime/builder.rs":"1bfb071b81f7651425edebb7886b203cefd9606b14058abe81f0307f64910294","src/runtime/current_thread/builder.rs":"30f1dae794e0db2b4263eb1e96b71c12c91fc08d2845cbb7cb540cd31a3b1612","src/runtime/current_thread/mod.rs":"3b23d84b9db6ca594abccbe0dcc7e03611aba43f21240a5c086453c6a1693726","src/runtime/current_thread/runtime.rs":"e95b0e162e9aec999b4d749f4137e258fdedf761542da67712a6fbe2331d2833","src/runtime/mod.rs":"1cd29284700470a39118f41ae85df7de99ed5c72316074d7b716867011d29eac","src/runtime/shutdown.rs":"a3f23cbff014a0ac6dc8a75839f636bc71fce4d5e2e2d34fa76f4ba51ca3ff95","src/runtime/task_executor.rs":"8c6b122116a18377d6bda4c8778b37e4f8b91fc2a73b9511a1ff63d34264c293","src/timer.rs":"4ffd3244dad044bd0025c2bb1cf8710ae00a5136787a266c3f04a3010daed37f","src/util/future.rs":"915181c9d26f74ace2e151906864e8e7d5e7419d4c59a0036db7b4a214666fd7","src/util/mod.rs":"da2469ecae7a3bce199f12be54ae8757b6724c871ae3532efd73416c20d2af4b","src/util/stream.rs":"8bba870c5969ec5abbd02ff35d2441781b731adade2a7037f7487359b2d5eba6","tests/buffered.rs":"8c1444a7d3de1e897448805fa925964174fa282d6c91dacf89398a3fb6a5d844","tests/clock.rs":"890d40deabf559199f4c555937efe676839ad1c780e0d9b03333c42a1267c383","tests/drop-core.rs":"9a074dd521840d28e5c740a767aaae4c957614901a7f4c6b330cc1560ef50fd9","tests/global.rs":"3e3e3793a7aa2923014b5e5684cf00c877e2217806a8526902c8e2dd94b1ba10","tests/length_delimited.rs":"d5e7759a69288b985a60583db030ab61e7fb3429eb806ed23ca31049e343edc9","tests/line-frames.rs":"858849c9d260349a83289d6ae8ad7e1bc4c438bb0a89f2030b869d99e826c6f1","tests/pipe-hup.rs":"4b73016172ee8ee9c81cb9f92c786a3efb28e6649fcbc897a5c15b2d36ac9d1b","tests/reactor.rs":"179556b37cb99a25579ec438a5d1233f259501dc2687939a65a062dc5b22c9a9","tests/runtime.rs":"70205a34b1ed2f192efcb59e5b897267888c2f8e68b09d0a6c9c514314979ee9","tests/timer.rs":"10a5b654afd7cebf3927aab4cf29891f0e40cf01d08eed01082c14c5f2ac8ac4"},"package":"6e93c78d23cc61aa245a8acd2c4a79c4d7fa7fb5c3ca90d5737029f043a84895"} \ No newline at end of file
diff --git a/third_party/rust/tokio-0.1.11/CHANGELOG.md b/third_party/rust/tokio-0.1.11/CHANGELOG.md
new file mode 100644
index 0000000000..33e6e3febd
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/CHANGELOG.md
@@ -0,0 +1,80 @@
+This changelog only applies to the `tokio` crate proper. Each sub crate
+maintains its own changelog tracking changes made in each respective sub crate.
+
+# 0.1.11 (September 28, 2018)
+
+* Fix `tokio-async-await` dependency (#675).
+
+# 0.1.10 (September 27, 2018)
+
+* Fix minimal versions
+
+# 0.1.9 (September 27, 2018)
+
+* Experimental async/await improvements (#661).
+* Re-export `TaskExecutor` from `tokio-current-thread` (#652).
+* Improve `Runtime` builder API (#645).
+* `tokio::run` panics when called from the context of an executor
+ (#646).
+* Introduce `StreamExt` with a `timeout` helper (#573).
+* Move `length_delimited` into `tokio` (#575).
+* Re-organize `tokio::net` module (#548).
+* Re-export `tokio-current-thread::spawn` in current_thread runtime
+ (#579).
+
+# 0.1.8 (August 23, 2018)
+
+* Extract tokio::executor::current_thread to a sub crate (#370)
+* Add `Runtime::block_on` (#398)
+* Add `runtime::current_thread::block_on_all` (#477)
+* Misc documentation improvements (#450)
+* Implement `std::error::Error` for error types (#501)
+
+# 0.1.7 (June 6, 2018)
+
+* Add `Runtime::block_on` for concurrent runtime (#391).
+* Provide handle to `current_thread::Runtime` that allows spawning tasks from
+ other threads (#340).
+* Provide `clock::now()`, a configurable source of time (#381).
+
+# 0.1.6 (May 2, 2018)
+
+* Add asynchronous filesystem APIs (#323).
+* Add "current thread" runtime variant (#308).
+* `CurrentThread`: Expose inner `Park` instance.
+* Improve fairness of `CurrentThread` executor (#313).
+
+# 0.1.5 (March 30, 2018)
+
+* Provide timer API (#266)
+
+# 0.1.4 (March 22, 2018)
+
+* Fix build on FreeBSD (#218)
+* Shutdown the Runtime when the handle is dropped (#214)
+* Set Runtime thread name prefix for worker threads (#232)
+* Add builder for Runtime (#234)
+* Extract TCP and UDP types into separate crates (#224)
+* Optionally support futures 0.2.
+
+# 0.1.3 (March 09, 2018)
+
+* Fix `CurrentThread::turn` to block on idle (#212).
+
+# 0.1.2 (March 09, 2018)
+
+* Introduce Tokio Runtime (#141)
+* Provide `CurrentThread` for more flexible usage of current thread executor (#141).
+* Add Lio for platforms that support it (#142).
+* I/O resources now lazily bind to the reactor (#160).
+* Extract Reactor to dedicated crate (#169)
+* Add facade to sub crates and add prelude (#166).
+* Switch TCP/UDP fns to poll_ -> Poll<...> style (#175)
+
+# 0.1.1 (February 09, 2018)
+
+* Doc fixes
+
+# 0.1.0 (February 07, 2018)
+
+* Initial crate released based on [RFC](https://github.com/tokio-rs/tokio-rfcs/pull/3).
diff --git a/third_party/rust/tokio-0.1.11/CONTRIBUTING.md b/third_party/rust/tokio-0.1.11/CONTRIBUTING.md
new file mode 100644
index 0000000000..212fa3d42b
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/CONTRIBUTING.md
@@ -0,0 +1,387 @@
+# Contributing to Tokio
+
+:balloon: Thanks for your help improving the project! We are so happy to have
+you!
+
+There are opportunities to contribute to Tokio at any level. It doesn't matter if
+you are just getting started with Rust or are the most weathered expert, we can
+use your help.
+
+**No contribution is too small and all contributions are valued.**
+
+This guide will help you get started. **Do not let this guide intimidate you**.
+It should be considered a map to help you navigate the process.
+
+You may also get help with contributing in the [dev channel][dev], please join
+us!
+
+[dev]: https://gitter.im/tokio-rs/dev
+
+## Conduct
+
+The Tokio project adheres to the [Rust Code of Conduct][coc]. This describes
+the _minimum_ behavior expected from all contributors.
+
+[coc]: https://github.com/rust-lang/rust/blob/master/CODE_OF_CONDUCT.md
+
+## Contributing in Issues
+
+For any issue, there are fundamentally three ways an individual can contribute:
+
+1. By opening the issue for discussion: For instance, if you believe that you
+ have uncovered a bug in Tokio, creating a new issue in the tokio-rs/tokio
+ issue tracker is the way to report it.
+
+2. By helping to triage the issue: This can be done by providing
+ supporting details (a test case that demonstrates a bug), providing
+ suggestions on how to address the issue, or ensuring that the issue is tagged
+ correctly.
+
+3. By helping to resolve the issue: Typically this is done either in the form of
+ demonstrating that the issue reported is not a problem after all, or more
+ often, by opening a Pull Request that changes some bit of something in
+ Tokio in a concrete and reviewable manner.
+
+**Anybody can participate in any stage of contribution**. We urge you to
+participate in the discussion around bugs and participate in reviewing PRs.
+
+### Asking for General Help
+
+If you have reviewed existing documentation and still have questions or are
+having problems, you can open an issue asking for help.
+
+In exchange for receiving help, we ask that you contribute back a documentation
+PR that helps others avoid the problems that you encountered.
+
+### Submitting a Bug Report
+
+When opening a new issue in the Tokio issue tracker, users will be presented
+with a [basic template][template] that should be filled in. If you believe that you have
+uncovered a bug, please fill out this form, following the template to the best
+of your ability. Do not worry if you cannot answer every detail, just fill in
+what you can.
+
+The two most important pieces of information we need in order to properly
+evaluate the report is a description of the behavior you are seeing and a simple
+test case we can use to recreate the problem on our own. If we cannot recreate
+the issue, it becomes impossible for us to fix.
+
+In order to rule out the possibility of bugs introduced by userland code, test
+cases should be limited, as much as possible, to using only Tokio APIs.
+
+See [How to create a Minimal, Complete, and Verifiable example][mcve].
+
+[mcve]: https://stackoverflow.com/help/mcve
+[template]: .github/PULL_REQUEST_TEMPLATE.md
+
+### Triaging a Bug Report
+
+Once an issue has been opened, it is not uncommon for there to be discussion
+around it. Some contributors may have differing opinions about the issue,
+including whether the behavior being seen is a bug or a feature. This discussion
+is part of the process and should be kept focused, helpful, and professional.
+
+Short, clipped responses—that provide neither additional context nor supporting
+detail—are not helpful or professional. To many, such responses are simply
+annoying and unfriendly.
+
+Contributors are encouraged to help one another make forward progress as much as
+possible, empowering one another to solve issues collaboratively. If you choose
+to comment on an issue that you feel either is not a problem that needs to be
+fixed, or if you encounter information in an issue that you feel is incorrect,
+explain why you feel that way with additional supporting context, and be willing
+to be convinced that you may be wrong. By doing so, we can often reach the
+correct outcome much faster.
+
+### Resolving a Bug Report
+
+In the majority of cases, issues are resolved by opening a Pull Request. The
+process for opening and reviewing a Pull Request is similar to that of opening
+and triaging issues, but carries with it a necessary review and approval
+workflow that ensures that the proposed changes meet the minimal quality and
+functional guidelines of the Tokio project.
+
+## Pull Requests
+
+Pull Requests are the way concrete changes are made to the code, documentation,
+and dependencies in the Tokio repository.
+
+Even tiny pull requests (e.g., one character pull request fixing a typo in API
+documentation) are greatly appreciated. Before making a large change, it is
+usually a good idea to first open an issue describing the change to solicit
+feedback and guidance. This will increasethe likelihood of the PR getting
+merged.
+
+### Tests
+
+If the change being proposed alters code (as opposed to only documentation for
+example), it is either adding new functionality to Tokio or it is fixing
+existing, broken functionality. In both of these cases, the pull request should
+include one or more tests to ensure that Tokio does not regress in the future.
+There are two ways to write tests: integration tests and documentation tests
+(Tokio avoids unit tests as much as possible).
+
+#### Integration tests
+
+Integration tests go in the same crate as the code they are testing. Each sub
+crate should have a `dev-dependency` on `tokio` itself. This makes all Tokio
+utilities available to use in tests, no matter the crate being tested.
+
+The best strategy for writing a new integration test is to look at existing
+integration tests in the crate and follow the style.
+
+#### Documentation tests
+
+Ideally, every API has at least one [documentation test] that demonstrates how to
+use the API. Documentation tests are run with `cargo test --doc`. This ensures
+that the example is correct and provides additional test coverage.
+
+The trick to documentation tests is striking a balance between being succinct
+for a reader to understand and actually testing the API.
+
+Same as with integration tests, when writing a documentation test, the full
+`tokio` crate is available. This is especially useful for getting access to the
+runtime to run the example.
+
+The documentation tests will be visible from both the crate specific
+documentation **and** the `tokio` facade documentation via the re-export. The
+example should be written from the point of view of a user that is using the
+`tokio` crate. As such, the example should use the API via the facade and not by
+directly referencing the crate.
+
+The type level example for `tokio_timer::Timeout` provides a good example of a
+documentation test:
+
+```
+/// # extern crate futures;
+/// # extern crate tokio;
+/// // import the `timeout` function, usually this is done
+/// // with `use tokio::prelude::*`
+/// use tokio::prelude::FutureExt;
+/// use futures::Stream;
+/// use futures::sync::mpsc;
+/// use std::time::Duration;
+///
+/// # fn main() {
+/// let (tx, rx) = mpsc::unbounded();
+/// # tx.unbounded_send(()).unwrap();
+/// # drop(tx);
+///
+/// let process = rx.for_each(|item| {
+/// // do something with `item`
+/// # drop(item);
+/// # Ok(())
+/// });
+///
+/// # tokio::runtime::current_thread::block_on_all(
+/// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
+/// process.timeout(Duration::from_millis(10))
+/// # ).unwrap();
+/// # }
+```
+
+Given that this is a *type* level documentation test and the primary way users
+of `tokio` will create an instance of `Timeout` is by using
+`FutureExt::timeout`, this is how the documentation test is structured.
+
+Lines that start with `/// #` are removed when the documentation is generated.
+They are only there to get the test to run. The `block_on_all` function is the
+easiest way to execute a future from a test.
+
+If this were a documentation test for the `Timeout::new` function, then the
+example would explicitly use `Timeout::new`. For example:
+
+```
+/// # extern crate futures;
+/// # extern crate tokio;
+/// use tokio::timer::Timeout;
+/// use futures::Future;
+/// use futures::sync::oneshot;
+/// use std::time::Duration;
+///
+/// # fn main() {
+/// let (tx, rx) = oneshot::channel();
+/// # tx.send(()).unwrap();
+///
+/// # tokio::runtime::current_thread::block_on_all(
+/// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
+/// Timeout::new(rx, Duration::from_millis(10))
+/// # ).unwrap();
+/// # }
+```
+
+### Commits
+
+It is a recommended best practice to keep your changes as logically grouped as
+possible within individual commits. There is no limit to the number of commits
+any single Pull Request may have, and many contributors find it easier to review
+changes that are split across multiple commits.
+
+That said, if you have a number of commits that are "checkpoints" and don't
+represent a single logical change, please squash those together.
+
+Note that multiple commits often get squashed when they are landed (see the
+notes about [commit squashing]).
+
+#### Commit message guidelines
+
+A good commit message should describe what changed and why.
+
+1. The first line should:
+
+ * contain a short description of the change (preferably 50 characters or less,
+ and no more than 72 characters)
+ * be entirely in lowercase with the exception of proper nouns, acronyms, and
+ the words that refer to code, like function/variable names
+ * be prefixed with the name of the sub crate being changed (without the `tokio-`
+ prefix) and start with an imperative verb. If modifying `tokio` proper,
+ omit the crate prefix.
+
+ Examples:
+
+ * timer: introduce `Timeout` and deprecate `Deadline`
+ * export `Encoder`, `Decoder`, `Framed*` from tokio_codec
+
+2. Keep the second line blank.
+3. Wrap all other lines at 72 columns (except for long URLs).
+4. If your patch fixes an open issue, you can add a reference to it at the end
+ of the log. Use the `Fixes: #` prefix and the issue number. For other
+ references use `Refs: #`. `Refs` may include multiple issues, separated by a
+ comma.
+
+ Examples:
+
+ - `Fixes: #1337`
+ - `Refs: #1234`
+
+Sample complete commit message:
+
+```txt
+subcrate: explain the commit in one line
+
+Body of commit message is a few lines of text, explaining things
+in more detail, possibly giving some background about the issue
+being fixed, etc.
+
+The body of the commit message can be several paragraphs, and
+please do proper word-wrap and keep columns shorter than about
+72 characters or so. That way, `git log` will show things
+nicely even when it is indented.
+
+Fixes: #1337
+Refs: #453, #154
+```
+
+### Opening the Pull Request
+
+From within GitHub, opening a new Pull Request will present you with a
+[template] that should be filled out. Please try to do your best at filling out
+the details, but feel free to skip parts if you're not sure what to put.
+
+[template]: .github/PULL_REQUEST_TEMPLATE.md
+
+### Discuss and update
+
+You will probably get feedback or requests for changes to your Pull Request.
+This is a big part of the submission process so don't be discouraged! Some
+contributors may sign off on the Pull Request right away, others may have
+more detailed comments or feedback. This is a necessary part of the process
+in order to evaluate whether the changes are correct and necessary.
+
+**Any community member can review a PR and you might get conflicting feedback**.
+Keep an eye out for comments from code owners to provide guidance on conflicting
+feedback.
+
+**Once the PR is open, do not rebase the commits**. See [Commit Squashing] for
+more details.
+
+### Commit Squashing
+
+In most cases, **do not squash commits that you add to your Pull Request during
+the review process**. When the commits in your Pull Request land, they may be
+squashed into one commit per logical change. Metadata will be added to the
+commit message (including links to the Pull Request, links to relevant issues,
+and the names of the reviewers). The commit history of your Pull Request,
+however, will stay intact on the Pull Request page.
+
+## Reviewing Pull Requests
+
+**Any Tokio community member is welcome to review any pull request**.
+
+All Tokio contributors who choose to review and provide feedback on Pull
+Requests have a responsibility to both the project and the individual making the
+contribution. Reviews and feedback must be helpful, insightful, and geared
+towards improving the contribution as opposed to simply blocking it. If there
+are reasons why you feel the PR should not land, explain what those are. Do not
+expect to be able to block a Pull Request from advancing simply because you say
+"No" without giving an explanation. Be open to having your mind changed. Be open
+to working with the contributor to make the Pull Request better.
+
+Reviews that are dismissive or disrespectful of the contributor or any other
+reviewers are strictly counter to the Code of Conduct.
+
+When reviewing a Pull Request, the primary goals are for the codebase to improve
+and for the person submitting the request to succeed. **Even if a Pull Request
+does not land, the submitters should come away from the experience feeling like
+their effort was not wasted or unappreciated**. Every Pull Request from a new
+contributor is an opportunity to grow the community.
+
+### Review a bit at a time.
+
+Do not overwhelm new contributors.
+
+It is tempting to micro-optimize and make everything about relative performance,
+perfect grammar, or exact style matches. Do not succumb to that temptation.
+
+Focus first on the most significant aspects of the change:
+
+1. Does this change make sense for Tokio?
+2. Does this change make Tokio better, even if only incrementally?
+3. Are there clear bugs or larger scale issues that need attending to?
+4. Is the commit message readable and correct? If it contains a breaking change
+ is it clear enough?
+
+Note that only **incremental** improvement is needed to land a PR. This means
+that the PR does not need to be perfect, only better than the status quo. Follow
+up PRs may be opened to continue iterating.
+
+When changes are necessary, *request* them, do not *demand* them, and **do not
+assume that the submitter already knows how to add a test or run a benchmark**.
+
+Specific performance optimization techniques, coding styles and conventions
+change over time. The first impression you give to a new contributor never does.
+
+Nits (requests for small changes that are not essential) are fine, but try to
+avoid stalling the Pull Request. Most nits can typically be fixed by the Tokio
+Collaborator landing the Pull Request but they can also be an opportunity for
+the contributor to learn a bit more about the project.
+
+It is always good to clearly indicate nits when you comment: e.g.
+`Nit: change foo() to bar(). But this is not blocking.`
+
+If your comments were addressed but were not folded automatically after new
+commits or if they proved to be mistaken, please, [hide them][hiding-a-comment]
+with the appropriate reason to keep the conversation flow concise and relevant.
+
+### Be aware of the person behind the code
+
+Be aware that *how* you communicate requests and reviews in your feedback can
+have a significant impact on the success of the Pull Request. Yes, we may land
+a particular change that makes Tokio better, but the individual might just not
+want to have anything to do with Tokio ever again. The goal is not just having
+good code.
+
+### Abandoned or Stalled Pull Requests
+
+If a Pull Request appears to be abandoned or stalled, it is polite to first
+check with the contributor to see if they intend to continue the work before
+checking if they would mind if you took it over (especially if it just has nits
+left). When doing so, it is courteous to give the original contributor credit
+for the work they started (either by preserving their name and email address in
+the commit log, or by using an `Author: ` meta-data tag in the commit.
+
+_Adapted from the [Node.js contributing guide][node]_
+
+[node]: https://github.com/nodejs/node/blob/master/CONTRIBUTING.md.
+[hiding-a-comment]: https://help.github.com/articles/managing-disruptive-comments/#hiding-a-comment
+[documentation test]: https://doc.rust-lang.org/rustdoc/documentation-tests.html
diff --git a/third_party/rust/tokio-0.1.11/Cargo.toml b/third_party/rust/tokio-0.1.11/Cargo.toml
new file mode 100644
index 0000000000..5cad3149b7
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/Cargo.toml
@@ -0,0 +1,111 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g. crates.io) dependencies
+#
+# If you believe there's an error in this file please file an
+# issue against the rust-lang/cargo repository. If you're
+# editing this file be aware that the upstream Cargo.toml
+# will likely look very different (and much more reasonable)
+
+[package]
+name = "tokio"
+version = "0.1.11"
+authors = ["Carl Lerche <me@carllerche.com>"]
+description = "An event-driven, non-blocking I/O platform for writing asynchronous I/O\nbacked applications.\n"
+homepage = "https://tokio.rs"
+documentation = "https://docs.rs/tokio/0.1.11/tokio/"
+readme = "README.md"
+keywords = ["io", "async", "non-blocking", "futures"]
+categories = ["asynchronous", "network-programming"]
+license = "MIT"
+repository = "https://github.com/tokio-rs/tokio"
+[dependencies.bytes]
+version = "0.4"
+
+[dependencies.futures]
+version = "0.1.20"
+
+[dependencies.mio]
+version = "0.6.14"
+
+[dependencies.tokio-async-await]
+version = "0.1.0"
+optional = true
+
+[dependencies.tokio-codec]
+version = "0.1.0"
+
+[dependencies.tokio-current-thread]
+version = "0.1.3"
+
+[dependencies.tokio-executor]
+version = "0.1.5"
+
+[dependencies.tokio-fs]
+version = "0.1.3"
+
+[dependencies.tokio-io]
+version = "0.1.6"
+
+[dependencies.tokio-reactor]
+version = "0.1.1"
+
+[dependencies.tokio-tcp]
+version = "0.1.0"
+
+[dependencies.tokio-threadpool]
+version = "0.1.4"
+
+[dependencies.tokio-timer]
+version = "0.2.6"
+
+[dependencies.tokio-udp]
+version = "0.1.0"
+[dev-dependencies.env_logger]
+version = "0.5"
+default-features = false
+
+[dev-dependencies.flate2]
+version = "1"
+features = ["tokio"]
+
+[dev-dependencies.futures-cpupool]
+version = "0.1"
+
+[dev-dependencies.http]
+version = "0.1"
+
+[dev-dependencies.httparse]
+version = "1.0"
+
+[dev-dependencies.libc]
+version = "0.2"
+
+[dev-dependencies.num_cpus]
+version = "1.0"
+
+[dev-dependencies.serde]
+version = "1.0"
+
+[dev-dependencies.serde_derive]
+version = "1.0"
+
+[dev-dependencies.serde_json]
+version = "1.0"
+
+[dev-dependencies.time]
+version = "0.1"
+
+[features]
+async-await-preview = ["tokio-async-await/async-await-preview"]
+[target."cfg(unix)".dependencies.tokio-uds]
+version = "0.2.1"
+[badges.appveyor]
+id = "s83yxhy9qeb58va7"
+repository = "carllerche/tokio"
+
+[badges.travis-ci]
+repository = "tokio-rs/tokio"
diff --git a/third_party/rust/tokio-0.1.11/LICENSE b/third_party/rust/tokio-0.1.11/LICENSE
new file mode 100644
index 0000000000..38c1e27b8e
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/LICENSE
@@ -0,0 +1,25 @@
+Copyright (c) 2018 Tokio Contributors
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/third_party/rust/tokio-0.1.11/README.md b/third_party/rust/tokio-0.1.11/README.md
new file mode 100644
index 0000000000..32ec4968e5
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/README.md
@@ -0,0 +1,189 @@
+# Tokio
+
+A runtime for writing reliable, asynchronous, and slim applications with
+the Rust programming language. It is:
+
+* **Fast**: Tokio's zero-cost abstractions give you bare-metal
+ performance.
+
+* **Reliable**: Tokio leverages Rust's ownership, type system, and
+ concurrency model to reduce bugs and ensure thread safety.
+
+* **Scalable**: Tokio has a minimal footprint, and handles backpressure
+ and cancellation naturally.
+
+[![Crates.io][crates-badge]][crates-url]
+[![MIT licensed][mit-badge]][mit-url]
+[![Travis Build Status][travis-badge]][travis-url]
+[![Appveyor Build Status][appveyor-badge]][appveyor-url]
+[![Gitter chat][gitter-badge]][gitter-url]
+
+[crates-badge]: https://img.shields.io/crates/v/tokio.svg
+[crates-url]: https://crates.io/crates/tokio
+[mit-badge]: https://img.shields.io/badge/license-MIT-blue.svg
+[mit-url]: LICENSE-MIT
+[travis-badge]: https://travis-ci.org/tokio-rs/tokio.svg?branch=master
+[travis-url]: https://travis-ci.org/tokio-rs/tokio
+[appveyor-badge]: https://ci.appveyor.com/api/projects/status/s83yxhy9qeb58va7/branch/master?svg=true
+[appveyor-url]: https://ci.appveyor.com/project/carllerche/tokio/branch/master
+[gitter-badge]: https://img.shields.io/gitter/room/tokio-rs/tokio.svg
+[gitter-url]: https://gitter.im/tokio-rs/tokio
+
+[Website](https://tokio.rs) |
+[Guides](https://tokio.rs/docs/getting-started/hello-world/) |
+[API Docs](https://docs.rs/tokio) |
+[Chat](https://gitter.im/tokio-rs/tokio)
+
+The API docs for the master branch are published [here][master-dox].
+
+[master-dox]: https://tokio-rs.github.io/tokio/tokio/
+
+## Overview
+
+Tokio is an event-driven, non-blocking I/O platform for writing
+asynchronous applications with the Rust programming language. At a high
+level, it provides a few major components:
+
+* A multithreaded, work-stealing based task [scheduler].
+* A [reactor] backed by the operating system's event queue (epoll, kqueue,
+ IOCP, etc...).
+* Asynchronous [TCP and UDP][net] sockets.
+
+These components provide the runtime components necessary for building
+an asynchronous application.
+
+[net]: https://docs.rs/tokio/0.1/tokio/net/index.html
+[reactor]: https://docs.rs/tokio/0.1/tokio/reactor/index.html
+[scheduler]: https://tokio-rs.github.io/tokio/tokio/runtime/index.html
+
+## Example
+
+A basic TCP echo server with Tokio:
+
+```rust
+extern crate tokio;
+
+use tokio::prelude::*;
+use tokio::io::copy;
+use tokio::net::TcpListener;
+
+fn main() {
+ // Bind the server's socket.
+ let addr = "127.0.0.1:12345".parse().unwrap();
+ let listener = TcpListener::bind(&addr)
+ .expect("unable to bind TCP listener");
+
+ // Pull out a stream of sockets for incoming connections
+ let server = listener.incoming()
+ .map_err(|e| eprintln!("accept failed = {:?}", e))
+ .for_each(|sock| {
+ // Split up the reading and writing parts of the
+ // socket.
+ let (reader, writer) = sock.split();
+
+ // A future that echos the data and returns how
+ // many bytes were copied...
+ let bytes_copied = copy(reader, writer);
+
+ // ... after which we'll print what happened.
+ let handle_conn = bytes_copied.map(|amt| {
+ println!("wrote {:?} bytes", amt)
+ }).map_err(|err| {
+ eprintln!("IO error {:?}", err)
+ });
+
+ // Spawn the future as a concurrent task.
+ tokio::spawn(handle_conn)
+ });
+
+ // Start the Tokio runtime
+ tokio::run(server);
+}
+```
+
+More examples can be found [here](examples).
+
+## Getting Help
+
+First, see if the answer to your question can be found in the [Guides] or the
+[API documentation]. If the answer is not there, there is an active community in
+the [Tokio Gitter channel][chat]. We would be happy to try to answer your
+question. Last, if that doesn't work, try opening an [issue] with the question.
+
+[chat]: https://gitter.im/tokio-rs/tokio
+[issue]: https://github.com/tokio-rs/tokio/issues/new
+
+## Contributing
+
+:balloon: Thanks for your help improving the project! We are so happy to have
+you! We have a [contributing guide][guide] to help you get involved in the Tokio
+project.
+
+[guide]: CONTRIBUTING.md
+
+## Project layout
+
+The `tokio` crate, found at the root, is primarily intended for use by
+application developers. Library authors should depend on the sub crates, which
+have greater guarantees of stability.
+
+The crates included as part of Tokio are:
+
+* [`tokio-async-await`]: Experimental `async` / `await` support.
+
+* [`tokio-codec`]: Utilities for encoding and decoding protocol frames.
+
+* [`tokio-current-thread`]: Schedule the execution of futures on the current
+ thread.
+
+* [`tokio-executor`]: Task execution related traits and utilities.
+
+* [`tokio-fs`]: Filesystem (and standard in / out) APIs.
+
+* [`tokio-io`]: Asynchronous I/O related traits and utilities.
+
+* [`tokio-reactor`]: Event loop that drives I/O resources (like TCP and UDP
+ sockets).
+
+* [`tokio-tcp`]: TCP bindings for use with `tokio-io` and `tokio-reactor`.
+
+* [`tokio-threadpool`]: Schedules the execution of futures across a pool of
+ threads.
+
+* [ `tokio-timer`]: Time related APIs.
+
+* [`tokio-udp`]: UDP bindings for use with `tokio-io` and `tokio-reactor`.
+
+* [`tokio-uds`]: Unix Domain Socket bindings for use with `tokio-io` and
+ `tokio-reactor`.
+
+[`tokio-async-await`]: tokio-async-await
+[`tokio-codec`]: tokio-codec
+[`tokio-current-thread`]: tokio-current-thread
+[`tokio-executor`]: tokio-executor
+[`tokio-fs`]: tokio-fs
+[`tokio-io`]: tokio-io
+[`tokio-reactor`]: tokio-reactor
+[`tokio-tcp`]: tokio-tcp
+[`tokio-threadpool`]: tokio-threadpool
+[`tokio-timer`]: tokio-timer
+[`tokio-udp`]: tokio-udp
+[`tokio-uds`]: tokio-uds
+
+## Supported Rust Versions
+
+Tokio is built against the latest stable, nightly, and beta Rust releases. The
+minimum version supported is the stable release from three months before the
+current stable release version. For example, if the latest stable Rust is 1.29,
+the minimum version supported is 1.26. The current Tokio version is not
+guaranteed to build on Rust versions earlier than the minimum supported version.
+
+## License
+
+This project is licensed under the [MIT license](LICENSE).
+
+### Contribution
+
+Unless you explicitly state otherwise, any contribution intentionally submitted
+for inclusion in Tokio by you, shall be licensed as MIT, without any additional
+terms or conditions.
diff --git a/third_party/rust/tokio-0.1.11/benches/latency.rs b/third_party/rust/tokio-0.1.11/benches/latency.rs
new file mode 100644
index 0000000000..c2619b7115
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/benches/latency.rs
@@ -0,0 +1,117 @@
+#![feature(test)]
+#![deny(warnings)]
+
+extern crate test;
+#[macro_use]
+extern crate futures;
+extern crate tokio;
+
+use std::io;
+use std::net::SocketAddr;
+use std::thread;
+
+use futures::sync::oneshot;
+use futures::sync::mpsc;
+use futures::{Future, Poll, Sink, Stream};
+use test::Bencher;
+use tokio::net::UdpSocket;
+
+/// UDP echo server
+struct EchoServer {
+ socket: UdpSocket,
+ buf: Vec<u8>,
+ to_send: Option<(usize, SocketAddr)>,
+}
+
+impl EchoServer {
+ fn new(s: UdpSocket) -> Self {
+ EchoServer {
+ socket: s,
+ to_send: None,
+ buf: vec![0u8; 1600],
+ }
+ }
+}
+
+impl Future for EchoServer {
+ type Item = ();
+ type Error = io::Error;
+
+ fn poll(&mut self) -> Poll<(), io::Error> {
+ loop {
+ if let Some(&(size, peer)) = self.to_send.as_ref() {
+ try_ready!(self.socket.poll_send_to(&self.buf[..size], &peer));
+ self.to_send = None;
+ }
+ self.to_send = Some(try_ready!(self.socket.poll_recv_from(&mut self.buf)));
+ }
+ }
+}
+
+#[bench]
+fn udp_echo_latency(b: &mut Bencher) {
+ let any_addr = "127.0.0.1:0".to_string();
+ let any_addr = any_addr.parse::<SocketAddr>().unwrap();
+
+ let (stop_c, stop_p) = oneshot::channel::<()>();
+ let (tx, rx) = oneshot::channel();
+
+ let child = thread::spawn(move || {
+
+ let socket = tokio::net::UdpSocket::bind(&any_addr).unwrap();
+ tx.send(socket.local_addr().unwrap()).unwrap();
+
+ let server = EchoServer::new(socket);
+ let server = server.select(stop_p.map_err(|_| panic!()));
+ let server = server.map_err(|_| ());
+ server.wait().unwrap();
+ });
+
+
+ let client = std::net::UdpSocket::bind(&any_addr).unwrap();
+
+ let server_addr = rx.wait().unwrap();
+ let mut buf = [0u8; 1000];
+
+ // warmup phase; for some reason initial couple of
+ // runs are much slower
+ //
+ // TODO: Describe the exact reasons; caching? branch predictor? lazy closures?
+ for _ in 0..8 {
+ client.send_to(&buf, &server_addr).unwrap();
+ let _ = client.recv_from(&mut buf).unwrap();
+ }
+
+ b.iter(|| {
+ client.send_to(&buf, &server_addr).unwrap();
+ let _ = client.recv_from(&mut buf).unwrap();
+ });
+
+ stop_c.send(()).unwrap();
+ child.join().unwrap();
+}
+
+#[bench]
+fn futures_channel_latency(b: &mut Bencher) {
+ let (mut in_tx, in_rx) = mpsc::channel(32);
+ let (out_tx, out_rx) = mpsc::channel::<_>(32);
+
+ let child = thread::spawn(|| out_tx.send_all(in_rx.then(|r| r.unwrap())).wait());
+ let mut rx_iter = out_rx.wait();
+
+ // warmup phase; for some reason initial couple of runs are much slower
+ //
+ // TODO: Describe the exact reasons; caching? branch predictor? lazy closures?
+ for _ in 0..8 {
+ in_tx.start_send(Ok(1usize)).unwrap();
+ let _ = rx_iter.next();
+ }
+
+ b.iter(|| {
+ in_tx.start_send(Ok(1usize)).unwrap();
+ let _ = rx_iter.next();
+ });
+
+ drop(in_tx);
+ child.join().unwrap().unwrap();
+}
diff --git a/third_party/rust/tokio-0.1.11/benches/mio-ops.rs b/third_party/rust/tokio-0.1.11/benches/mio-ops.rs
new file mode 100644
index 0000000000..6a71bebfe0
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/benches/mio-ops.rs
@@ -0,0 +1,58 @@
+// Measure cost of different operations
+// to get a sense of performance tradeoffs
+#![feature(test)]
+#![deny(warnings)]
+
+extern crate test;
+extern crate mio;
+
+use test::Bencher;
+
+use mio::tcp::TcpListener;
+use mio::{Token, Ready, PollOpt};
+
+
+#[bench]
+fn mio_register_deregister(b: &mut Bencher) {
+ let addr = "127.0.0.1:0".parse().unwrap();
+ // Setup the server socket
+ let sock = TcpListener::bind(&addr).unwrap();
+ let poll = mio::Poll::new().unwrap();
+
+ const CLIENT: Token = Token(1);
+
+ b.iter(|| {
+ poll.register(&sock, CLIENT, Ready::readable(),
+ PollOpt::edge()).unwrap();
+ poll.deregister(&sock).unwrap();
+ });
+}
+
+#[bench]
+fn mio_reregister(b: &mut Bencher) {
+ let addr = "127.0.0.1:0".parse().unwrap();
+ // Setup the server socket
+ let sock = TcpListener::bind(&addr).unwrap();
+ let poll = mio::Poll::new().unwrap();
+
+ const CLIENT: Token = Token(1);
+ poll.register(&sock, CLIENT, Ready::readable(),
+ PollOpt::edge()).unwrap();
+
+ b.iter(|| {
+ poll.reregister(&sock, CLIENT, Ready::readable(),
+ PollOpt::edge()).unwrap();
+ });
+ poll.deregister(&sock).unwrap();
+}
+
+#[bench]
+fn mio_poll(b: &mut Bencher) {
+ let poll = mio::Poll::new().unwrap();
+ let timeout = std::time::Duration::new(0, 0);
+ let mut events = mio::Events::with_capacity(1024);
+
+ b.iter(|| {
+ poll.poll(&mut events, Some(timeout)).unwrap();
+ });
+}
diff --git a/third_party/rust/tokio-0.1.11/benches/tcp.rs b/third_party/rust/tokio-0.1.11/benches/tcp.rs
new file mode 100644
index 0000000000..fde72ce092
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/benches/tcp.rs
@@ -0,0 +1,248 @@
+#![feature(test)]
+#![deny(warnings)]
+
+extern crate futures;
+extern crate tokio;
+
+#[macro_use]
+extern crate tokio_io;
+
+pub extern crate test;
+
+mod prelude {
+ pub use futures::*;
+ pub use tokio::reactor::Reactor;
+ pub use tokio::net::{TcpListener, TcpStream};
+ pub use tokio_io::io::read_to_end;
+
+ pub use test::{self, Bencher};
+ pub use std::thread;
+ pub use std::time::Duration;
+ pub use std::io::{self, Read, Write};
+}
+
+mod connect_churn {
+ use ::prelude::*;
+
+ const NUM: usize = 300;
+ const CONCURRENT: usize = 8;
+
+ #[bench]
+ fn one_thread(b: &mut Bencher) {
+ let addr = "127.0.0.1:0".parse().unwrap();
+
+ b.iter(move || {
+ let listener = TcpListener::bind(&addr).unwrap();
+ let addr = listener.local_addr().unwrap();
+
+ // Spawn a single future that accepts & drops connections
+ let serve_incomings = listener.incoming()
+ .map_err(|e| panic!("server err: {:?}", e))
+ .for_each(|_| Ok(()));
+
+ let connects = stream::iter_result((0..NUM).map(|_| {
+ Ok(TcpStream::connect(&addr)
+ .and_then(|sock| {
+ sock.set_linger(Some(Duration::from_secs(0))).unwrap();
+ read_to_end(sock, vec![])
+ }))
+ }));
+
+ let connects_concurrent = connects.buffer_unordered(CONCURRENT)
+ .map_err(|e| panic!("client err: {:?}", e))
+ .for_each(|_| Ok(()));
+
+ serve_incomings.select(connects_concurrent)
+ .map(|_| ()).map_err(|_| ())
+ .wait().unwrap();
+ });
+ }
+
+ fn n_workers(n: usize, b: &mut Bencher) {
+ let (shutdown_tx, shutdown_rx) = sync::oneshot::channel();
+ let (addr_tx, addr_rx) = sync::oneshot::channel();
+
+ // Spawn reactor thread
+ let server_thread = thread::spawn(move || {
+ // Bind the TCP listener
+ let listener = TcpListener::bind(
+ &"127.0.0.1:0".parse().unwrap()).unwrap();
+
+ // Get the address being listened on.
+ let addr = listener.local_addr().unwrap();
+
+ // Send the remote & address back to the main thread
+ addr_tx.send(addr).unwrap();
+
+ // Spawn a single future that accepts & drops connections
+ let serve_incomings = listener.incoming()
+ .map_err(|e| panic!("server err: {:?}", e))
+ .for_each(|_| Ok(()));
+
+ // Run server
+ serve_incomings.select(shutdown_rx)
+ .map(|_| ()).map_err(|_| ())
+ .wait().unwrap();
+ });
+
+ // Get the bind addr of the server
+ let addr = addr_rx.wait().unwrap();
+
+ b.iter(move || {
+ use std::sync::{Barrier, Arc};
+
+ // Create a barrier to coordinate threads
+ let barrier = Arc::new(Barrier::new(n + 1));
+
+ // Spawn worker threads
+ let threads: Vec<_> = (0..n).map(|_| {
+ let barrier = barrier.clone();
+ let addr = addr.clone();
+
+ thread::spawn(move || {
+ let connects = stream::iter_result((0..(NUM / n)).map(|_| {
+ Ok(TcpStream::connect(&addr)
+ .map_err(|e| panic!("connect err: {:?}", e))
+ .and_then(|sock| {
+ sock.set_linger(Some(Duration::from_secs(0))).unwrap();
+ read_to_end(sock, vec![])
+ }))
+ }));
+
+ barrier.wait();
+
+ connects.buffer_unordered(CONCURRENT)
+ .map_err(|e| panic!("client err: {:?}", e))
+ .for_each(|_| Ok(())).wait().unwrap();
+ })
+ }).collect();
+
+ barrier.wait();
+
+ for th in threads {
+ th.join().unwrap();
+ }
+ });
+
+ // Shutdown the server
+ shutdown_tx.send(()).unwrap();
+ server_thread.join().unwrap();
+ }
+
+ #[bench]
+ fn two_threads(b: &mut Bencher) {
+ n_workers(1, b);
+ }
+
+ #[bench]
+ fn multi_threads(b: &mut Bencher) {
+ n_workers(4, b);
+ }
+}
+
+mod transfer {
+ use ::prelude::*;
+ use std::{cmp, mem};
+
+ const MB: usize = 3 * 1024 * 1024;
+
+ struct Drain {
+ sock: TcpStream,
+ chunk: usize,
+ }
+
+ impl Future for Drain {
+ type Item = ();
+ type Error = io::Error;
+
+ fn poll(&mut self) -> Poll<(), io::Error> {
+ let mut buf: [u8; 1024] = unsafe { mem::uninitialized() };
+
+ loop {
+ match try_nb!(self.sock.read(&mut buf[..self.chunk])) {
+ 0 => return Ok(Async::Ready(())),
+ _ => {}
+ }
+ }
+ }
+ }
+
+ struct Transfer {
+ sock: TcpStream,
+ rem: usize,
+ chunk: usize,
+ }
+
+ impl Future for Transfer {
+ type Item = ();
+ type Error = io::Error;
+
+ fn poll(&mut self) -> Poll<(), io::Error> {
+ while self.rem > 0 {
+ let len = cmp::min(self.rem, self.chunk);
+ let buf = &DATA[..len];
+
+ let n = try_nb!(self.sock.write(&buf));
+ self.rem -= n;
+ }
+
+ Ok(Async::Ready(()))
+ }
+ }
+
+ static DATA: [u8; 1024] = [0; 1024];
+
+ fn one_thread(b: &mut Bencher, read_size: usize, write_size: usize) {
+ let addr = "127.0.0.1:0".parse().unwrap();
+
+ b.iter(move || {
+ let listener = TcpListener::bind(&addr).unwrap();
+ let addr = listener.local_addr().unwrap();
+
+ // Spawn a single future that accepts 1 connection, Drain it and drops
+ let server = listener.incoming()
+ .into_future() // take the first connection
+ .map_err(|(e, _other_incomings)| e)
+ .map(|(connection, _other_incomings)| connection.unwrap())
+ .and_then(|sock| {
+ sock.set_linger(Some(Duration::from_secs(0))).unwrap();
+ let drain = Drain {
+ sock: sock,
+ chunk: read_size,
+ };
+ drain.map(|_| ()).map_err(|e| panic!("server error: {:?}", e))
+ })
+ .map_err(|e| panic!("server err: {:?}", e));
+
+ let client = TcpStream::connect(&addr)
+ .and_then(move |sock| {
+ Transfer {
+ sock: sock,
+ rem: MB,
+ chunk: write_size,
+ }
+ })
+ .map_err(|e| panic!("client err: {:?}", e));
+
+ server.join(client).wait().unwrap();
+ });
+ }
+
+ mod small_chunks {
+ use ::prelude::*;
+
+ #[bench]
+ fn one_thread(b: &mut Bencher) {
+ super::one_thread(b, 32, 32);
+ }
+ }
+
+ mod big_chunks {
+ use ::prelude::*;
+
+ #[bench]
+ fn one_thread(b: &mut Bencher) {
+ super::one_thread(b, 1_024, 1_024);
+ }
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/ci/tsan b/third_party/rust/tokio-0.1.11/ci/tsan
new file mode 100644
index 0000000000..65d65eff24
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/ci/tsan
@@ -0,0 +1,33 @@
+# TSAN suppressions file for Tokio
+
+# TSAN does not understand fences and `Arc::drop` is implemented using a fence.
+# This causes many false positives.
+race:Arc*drop
+race:Weak*drop
+
+# `std` mpsc is not used in any Tokio code base. This race is triggered by some
+# rust runtime logic.
+race:std*mpsc_queue
+
+# Probably more fences in std.
+race:__call_tls_dtors
+
+# The epoch-based GC uses fences.
+race:crossbeam_epoch
+
+# Push and steal operations in crossbeam-deque may cause data races, but such
+# data races are safe. If a data race happens, the value read by `steal` is
+# forgotten and the steal operation is then retried.
+race:crossbeam_deque*push
+race:crossbeam_deque*steal
+
+# This filters out expected data race in the Treiber stack implementations.
+# Treiber stacks are inherently racy. The pop operation will attempt to access
+# the "next" pointer on the node it is attempting to pop. However, at this
+# point it has not gained ownership of the node and another thread might beat
+# it and take ownership of the node first (touching the next pointer). The
+# original pop operation will fail due to the ABA guard, but tsan still picks
+# up the access on the next pointer.
+race:Backup::next_sleeper
+race:Backup::set_next_sleeper
+race:WorkerEntry::set_next_sleeper
diff --git a/third_party/rust/tokio-0.1.11/examples/README.md b/third_party/rust/tokio-0.1.11/examples/README.md
new file mode 100644
index 0000000000..63634c82b6
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/README.md
@@ -0,0 +1,60 @@
+## Examples of how to use Tokio
+
+This directory contains a number of examples showcasing various capabilities of
+the `tokio` crate.
+
+All examples can be executed with:
+
+```
+cargo run --example $name
+```
+
+A high level description of each example is:
+
+* [`hello_world`](hello_world.rs) - a tiny server that writes "hello world" to
+ all connected clients and then terminates the connection, should help see how
+ to create and initialize `tokio`.
+
+* [`echo`](echo.rs) - this is your standard TCP "echo server" which accepts
+ connections and then echos back any contents that are read from each connected
+ client.
+
+* [`print_each_packet`](print_each_packet.rs) - this server will create a TCP
+ listener, accept connections in a loop, and put down in the stdout everything
+ that's read off of each TCP connection.
+
+* [`echo-udp`](echo-udp.rs) - again your standard "echo server", except for UDP
+ instead of TCP. This will echo back any packets received to the original
+ sender.
+
+* [`connect`](connect.rs) - this is a `nc`-like clone which can be used to
+ interact with most other examples. The program creates a TCP connection or UDP
+ socket to sends all information read on stdin to the remote peer, displaying
+ any data received on stdout. Often quite useful when interacting with the
+ various other servers here!
+
+* [`chat`](chat.rs) - this spins up a local TCP server which will broadcast from
+ any connected client to all other connected clients. You can connect to this
+ in multiple terminals and use it to chat between the terminals.
+
+* [`chat-combinator`](chat-combinator.rs) - Similar to `chat`, but this uses a
+ much more functional programming approach using combinators.
+
+* [`proxy`](proxy.rs) - an example proxy server that will forward all connected
+ TCP clients to the remote address specified when starting the program.
+
+* [`tinyhttp`](tinyhttp.rs) - a tiny HTTP/1.1 server which doesn't support HTTP
+ request bodies showcasing running on multiple cores, working with futures and
+ spawning tasks, and finally framing a TCP connection to discrete
+ request/response objects.
+
+* [`tinydb`](tinydb.rs) - an in-memory database which shows sharing state
+ between all connected clients, notably the key/value store of this database.
+
+* [`udp-client`](udp-client.rs) - a simple `send_dgram`/`recv_dgram` example.
+
+* [`manual-runtime`](manual-runtime.rs) - manually composing a runtime.
+
+If you've got an example you'd like to see here, please feel free to open an
+issue. Otherwise if you've got an example you'd like to add, please feel free
+to make a PR!
diff --git a/third_party/rust/tokio-0.1.11/examples/chat-combinator.rs b/third_party/rust/tokio-0.1.11/examples/chat-combinator.rs
new file mode 100644
index 0000000000..1175418370
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/chat-combinator.rs
@@ -0,0 +1,150 @@
+//! A chat server that broadcasts a message to all connections.
+//!
+//! This is a line-based server which accepts connections, reads lines from
+//! those connections, and broadcasts the lines to all other connected clients.
+//!
+//! This example is similar to chat.rs, but uses combinators and a much more
+//! functional style.
+//!
+//! You can test this out by running:
+//!
+//! cargo run --example chat
+//!
+//! And then in another window run:
+//!
+//! cargo run --example connect 127.0.0.1:8080
+//!
+//! You can run the second command in multiple windows and then chat between the
+//! two, seeing the messages from the other client as they're received. For all
+//! connected clients they'll all join the same room and see everyone else's
+//! messages.
+
+#![deny(warnings)]
+
+extern crate tokio;
+extern crate futures;
+
+use tokio::io;
+use tokio::net::TcpListener;
+use tokio::prelude::*;
+
+use std::collections::HashMap;
+use std::iter;
+use std::env;
+use std::io::{BufReader};
+use std::sync::{Arc, Mutex};
+
+fn main() {
+ // Create the TCP listener we'll accept connections on.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse().unwrap();
+
+ let socket = TcpListener::bind(&addr).unwrap();
+ println!("Listening on: {}", addr);
+
+ // This is running on the Tokio runtime, so it will be multi-threaded. The
+ // `Arc<Mutex<...>>` allows state to be shared across the threads.
+ let connections = Arc::new(Mutex::new(HashMap::new()));
+
+ // The server task asynchronously iterates over and processes each incoming
+ // connection.
+ let srv = socket.incoming()
+ .map_err(|e| println!("failed to accept socket; error = {:?}", e))
+ .for_each(move |stream| {
+ // The client's socket address
+ let addr = stream.peer_addr().unwrap();
+
+ println!("New Connection: {}", addr);
+
+ // Split the TcpStream into two separate handles. One handle for reading
+ // and one handle for writing. This lets us use separate tasks for
+ // reading and writing.
+ let (reader, writer) = stream.split();
+
+ // Create a channel for our stream, which other sockets will use to
+ // send us messages. Then register our address with the stream to send
+ // data to us.
+ let (tx, rx) = futures::sync::mpsc::unbounded();
+ connections.lock().unwrap().insert(addr, tx);
+
+ // Define here what we do for the actual I/O. That is, read a bunch of
+ // lines from the socket and dispatch them while we also write any lines
+ // from other sockets.
+ let connections_inner = connections.clone();
+ let reader = BufReader::new(reader);
+
+ // Model the read portion of this socket by mapping an infinite
+ // iterator to each line off the socket. This "loop" is then
+ // terminated with an error once we hit EOF on the socket.
+ let iter = stream::iter_ok::<_, io::Error>(iter::repeat(()));
+
+ let socket_reader = iter.fold(reader, move |reader, _| {
+ // Read a line off the socket, failing if we're at EOF
+ let line = io::read_until(reader, b'\n', Vec::new());
+ let line = line.and_then(|(reader, vec)| {
+ if vec.len() == 0 {
+ Err(io::Error::new(io::ErrorKind::BrokenPipe, "broken pipe"))
+ } else {
+ Ok((reader, vec))
+ }
+ });
+
+ // Convert the bytes we read into a string, and then send that
+ // string to all other connected clients.
+ let line = line.map(|(reader, vec)| {
+ (reader, String::from_utf8(vec))
+ });
+
+ // Move the connection state into the closure below.
+ let connections = connections_inner.clone();
+
+ line.map(move |(reader, message)| {
+ println!("{}: {:?}", addr, message);
+ let mut conns = connections.lock().unwrap();
+
+ if let Ok(msg) = message {
+ // For each open connection except the sender, send the
+ // string via the channel.
+ let iter = conns.iter_mut()
+ .filter(|&(&k, _)| k != addr)
+ .map(|(_, v)| v);
+ for tx in iter {
+ tx.unbounded_send(format!("{}: {}", addr, msg)).unwrap();
+ }
+ } else {
+ let tx = conns.get_mut(&addr).unwrap();
+ tx.unbounded_send("You didn't send valid UTF-8.".to_string()).unwrap();
+ }
+
+ reader
+ })
+ });
+
+ // Whenever we receive a string on the Receiver, we write it to
+ // `WriteHalf<TcpStream>`.
+ let socket_writer = rx.fold(writer, |writer, msg| {
+ let amt = io::write_all(writer, msg.into_bytes());
+ let amt = amt.map(|(writer, _)| writer);
+ amt.map_err(|_| ())
+ });
+
+ // Now that we've got futures representing each half of the socket, we
+ // use the `select` combinator to wait for either half to be done to
+ // tear down the other. Then we spawn off the result.
+ let connections = connections.clone();
+ let socket_reader = socket_reader.map_err(|_| ());
+ let connection = socket_reader.map(|_| ()).select(socket_writer.map(|_| ()));
+
+ // Spawn a task to process the connection
+ tokio::spawn(connection.then(move |_| {
+ connections.lock().unwrap().remove(&addr);
+ println!("Connection {} closed.", addr);
+ Ok(())
+ }));
+
+ Ok(())
+ });
+
+ // execute server
+ tokio::run(srv);
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/chat.rs b/third_party/rust/tokio-0.1.11/examples/chat.rs
new file mode 100644
index 0000000000..bdc742c9d1
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/chat.rs
@@ -0,0 +1,474 @@
+//! A chat server that broadcasts a message to all connections.
+//!
+//! This example is explicitly more verbose than it has to be. This is to
+//! illustrate more concepts.
+//!
+//! A chat server for telnet clients. After a telnet client connects, the first
+//! line should contain the client's name. After that, all lines sent by a
+//! client are broadcasted to all other connected clients.
+//!
+//! Because the client is telnet, lines are delimited by "\r\n".
+//!
+//! You can test this out by running:
+//!
+//! cargo run --example chat
+//!
+//! And then in another terminal run:
+//!
+//! telnet localhost 6142
+//!
+//! You can run the `telnet` command in any number of additional windows.
+//!
+//! You can run the second command in multiple windows and then chat between the
+//! two, seeing the messages from the other client as they're received. For all
+//! connected clients they'll all join the same room and see everyone else's
+//! messages.
+
+#![deny(warnings)]
+
+extern crate tokio;
+#[macro_use]
+extern crate futures;
+extern crate bytes;
+
+use tokio::io;
+use tokio::net::{TcpListener, TcpStream};
+use tokio::prelude::*;
+use futures::sync::mpsc;
+use futures::future::{self, Either};
+use bytes::{BytesMut, Bytes, BufMut};
+
+use std::collections::HashMap;
+use std::net::SocketAddr;
+use std::sync::{Arc, Mutex};
+
+/// Shorthand for the transmit half of the message channel.
+type Tx = mpsc::UnboundedSender<Bytes>;
+
+/// Shorthand for the receive half of the message channel.
+type Rx = mpsc::UnboundedReceiver<Bytes>;
+
+/// Data that is shared between all peers in the chat server.
+///
+/// This is the set of `Tx` handles for all connected clients. Whenever a
+/// message is received from a client, it is broadcasted to all peers by
+/// iterating over the `peers` entries and sending a copy of the message on each
+/// `Tx`.
+struct Shared {
+ peers: HashMap<SocketAddr, Tx>,
+}
+
+/// The state for each connected client.
+struct Peer {
+ /// Name of the peer.
+ ///
+ /// When a client connects, the first line sent is treated as the client's
+ /// name (like alice or bob). The name is used to preface all messages that
+ /// arrive from the client so that we can simulate a real chat server:
+ ///
+ /// ```text
+ /// alice: Hello everyone.
+ /// bob: Welcome to telnet chat!
+ /// ```
+ name: BytesMut,
+
+ /// The TCP socket wrapped with the `Lines` codec, defined below.
+ ///
+ /// This handles sending and receiving data on the socket. When using
+ /// `Lines`, we can work at the line level instead of having to manage the
+ /// raw byte operations.
+ lines: Lines,
+
+ /// Handle to the shared chat state.
+ ///
+ /// This is used to broadcast messages read off the socket to all connected
+ /// peers.
+ state: Arc<Mutex<Shared>>,
+
+ /// Receive half of the message channel.
+ ///
+ /// This is used to receive messages from peers. When a message is received
+ /// off of this `Rx`, it will be written to the socket.
+ rx: Rx,
+
+ /// Client socket address.
+ ///
+ /// The socket address is used as the key in the `peers` HashMap. The
+ /// address is saved so that the `Peer` drop implementation can clean up its
+ /// entry.
+ addr: SocketAddr,
+}
+
+/// Line based codec
+///
+/// This decorates a socket and presents a line based read / write interface.
+///
+/// As a user of `Lines`, we can focus on working at the line level. So, we send
+/// and receive values that represent entire lines. The `Lines` codec will
+/// handle the encoding and decoding as well as reading from and writing to the
+/// socket.
+#[derive(Debug)]
+struct Lines {
+ /// The TCP socket.
+ socket: TcpStream,
+
+ /// Buffer used when reading from the socket. Data is not returned from this
+ /// buffer until an entire line has been read.
+ rd: BytesMut,
+
+ /// Buffer used to stage data before writing it to the socket.
+ wr: BytesMut,
+}
+
+impl Shared {
+ /// Create a new, empty, instance of `Shared`.
+ fn new() -> Self {
+ Shared {
+ peers: HashMap::new(),
+ }
+ }
+}
+
+impl Peer {
+ /// Create a new instance of `Peer`.
+ fn new(name: BytesMut,
+ state: Arc<Mutex<Shared>>,
+ lines: Lines) -> Peer
+ {
+ // Get the client socket address
+ let addr = lines.socket.peer_addr().unwrap();
+
+ // Create a channel for this peer
+ let (tx, rx) = mpsc::unbounded();
+
+ // Add an entry for this `Peer` in the shared state map.
+ state.lock().unwrap()
+ .peers.insert(addr, tx);
+
+ Peer {
+ name,
+ lines,
+ state,
+ rx,
+ addr,
+ }
+ }
+}
+
+/// This is where a connected client is managed.
+///
+/// A `Peer` is also a future representing completely processing the client.
+///
+/// When a `Peer` is created, the first line (representing the client's name)
+/// has already been read. When the socket closes, the `Peer` future completes.
+///
+/// While processing, the peer future implementation will:
+///
+/// 1) Receive messages on its message channel and write them to the socket.
+/// 2) Receive messages from the socket and broadcast them to all peers.
+///
+impl Future for Peer {
+ type Item = ();
+ type Error = io::Error;
+
+ fn poll(&mut self) -> Poll<(), io::Error> {
+ // Tokio (and futures) use cooperative scheduling without any
+ // preemption. If a task never yields execution back to the executor,
+ // then other tasks may be starved.
+ //
+ // To deal with this, robust applications should not have any unbounded
+ // loops. In this example, we will read at most `LINES_PER_TICK` lines
+ // from the client on each tick.
+ //
+ // If the limit is hit, the current task is notified, informing the
+ // executor to schedule the task again asap.
+ const LINES_PER_TICK: usize = 10;
+
+ // Receive all messages from peers.
+ for i in 0..LINES_PER_TICK {
+ // Polling an `UnboundedReceiver` cannot fail, so `unwrap` here is
+ // safe.
+ match self.rx.poll().unwrap() {
+ Async::Ready(Some(v)) => {
+ // Buffer the line. Once all lines are buffered, they will
+ // be flushed to the socket (right below).
+ self.lines.buffer(&v);
+
+ // If this is the last iteration, the loop will break even
+ // though there could still be lines to read. Because we did
+ // not reach `Async::NotReady`, we have to notify ourselves
+ // in order to tell the executor to schedule the task again.
+ if i+1 == LINES_PER_TICK {
+ task::current().notify();
+ }
+ }
+ _ => break,
+ }
+ }
+
+ // Flush the write buffer to the socket
+ let _ = self.lines.poll_flush()?;
+
+ // Read new lines from the socket
+ while let Async::Ready(line) = self.lines.poll()? {
+ println!("Received line ({:?}) : {:?}", self.name, line);
+
+ if let Some(message) = line {
+ // Append the peer's name to the front of the line:
+ let mut line = self.name.clone();
+ line.extend_from_slice(b": ");
+ line.extend_from_slice(&message);
+ line.extend_from_slice(b"\r\n");
+
+ // We're using `Bytes`, which allows zero-copy clones (by
+ // storing the data in an Arc internally).
+ //
+ // However, before cloning, we must freeze the data. This
+ // converts it from mutable -> immutable, allowing zero copy
+ // cloning.
+ let line = line.freeze();
+
+ // Now, send the line to all other peers
+ for (addr, tx) in &self.state.lock().unwrap().peers {
+ // Don't send the message to ourselves
+ if *addr != self.addr {
+ // The send only fails if the rx half has been dropped,
+ // however this is impossible as the `tx` half will be
+ // removed from the map before the `rx` is dropped.
+ tx.unbounded_send(line.clone()).unwrap();
+ }
+ }
+ } else {
+ // EOF was reached. The remote client has disconnected. There is
+ // nothing more to do.
+ return Ok(Async::Ready(()));
+ }
+ }
+
+ // As always, it is important to not just return `NotReady` without
+ // ensuring an inner future also returned `NotReady`.
+ //
+ // We know we got a `NotReady` from either `self.rx` or `self.lines`, so
+ // the contract is respected.
+ Ok(Async::NotReady)
+ }
+}
+
+impl Drop for Peer {
+ fn drop(&mut self) {
+ self.state.lock().unwrap().peers
+ .remove(&self.addr);
+ }
+}
+
+impl Lines {
+ /// Create a new `Lines` codec backed by the socket
+ fn new(socket: TcpStream) -> Self {
+ Lines {
+ socket,
+ rd: BytesMut::new(),
+ wr: BytesMut::new(),
+ }
+ }
+
+ /// Buffer a line.
+ ///
+ /// This writes the line to an internal buffer. Calls to `poll_flush` will
+ /// attempt to flush this buffer to the socket.
+ fn buffer(&mut self, line: &[u8]) {
+ // Ensure the buffer has capacity. Ideally this would not be unbounded,
+ // but to keep the example simple, we will not limit this.
+ self.wr.reserve(line.len());
+
+ // Push the line onto the end of the write buffer.
+ //
+ // The `put` function is from the `BufMut` trait.
+ self.wr.put(line);
+ }
+
+ /// Flush the write buffer to the socket
+ fn poll_flush(&mut self) -> Poll<(), io::Error> {
+ // As long as there is buffered data to write, try to write it.
+ while !self.wr.is_empty() {
+ // Try to write some bytes to the socket
+ let n = try_ready!(self.socket.poll_write(&self.wr));
+
+ // As long as the wr is not empty, a successful write should
+ // never write 0 bytes.
+ assert!(n > 0);
+
+ // This discards the first `n` bytes of the buffer.
+ let _ = self.wr.split_to(n);
+ }
+
+ Ok(Async::Ready(()))
+ }
+
+ /// Read data from the socket.
+ ///
+ /// This only returns `Ready` when the socket has closed.
+ fn fill_read_buf(&mut self) -> Poll<(), io::Error> {
+ loop {
+ // Ensure the read buffer has capacity.
+ //
+ // This might result in an internal allocation.
+ self.rd.reserve(1024);
+
+ // Read data into the buffer.
+ let n = try_ready!(self.socket.read_buf(&mut self.rd));
+
+ if n == 0 {
+ return Ok(Async::Ready(()));
+ }
+ }
+ }
+}
+
+impl Stream for Lines {
+ type Item = BytesMut;
+ type Error = io::Error;
+
+ fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
+ // First, read any new data that might have been received off the socket
+ let sock_closed = self.fill_read_buf()?.is_ready();
+
+ // Now, try finding lines
+ let pos = self.rd.windows(2).enumerate()
+ .find(|&(_, bytes)| bytes == b"\r\n")
+ .map(|(i, _)| i);
+
+ if let Some(pos) = pos {
+ // Remove the line from the read buffer and set it to `line`.
+ let mut line = self.rd.split_to(pos + 2);
+
+ // Drop the trailing \r\n
+ line.split_off(pos);
+
+ // Return the line
+ return Ok(Async::Ready(Some(line)));
+ }
+
+ if sock_closed {
+ Ok(Async::Ready(None))
+ } else {
+ Ok(Async::NotReady)
+ }
+ }
+}
+
+/// Spawn a task to manage the socket.
+///
+/// This will read the first line from the socket to identify the client, then
+/// add the client to the set of connected peers in the chat service.
+fn process(socket: TcpStream, state: Arc<Mutex<Shared>>) {
+ // Wrap the socket with the `Lines` codec that we wrote above.
+ //
+ // By doing this, we can operate at the line level instead of doing raw byte
+ // manipulation.
+ let lines = Lines::new(socket);
+
+ // The first line is treated as the client's name. The client is not added
+ // to the set of connected peers until this line is received.
+ //
+ // We use the `into_future` combinator to extract the first item from the
+ // lines stream. `into_future` takes a `Stream` and converts it to a future
+ // of `(first, rest)` where `rest` is the original stream instance.
+ let connection = lines.into_future()
+ // `into_future` doesn't have the right error type, so map the error to
+ // make it work.
+ .map_err(|(e, _)| e)
+ // Process the first received line as the client's name.
+ .and_then(|(name, lines)| {
+ // If `name` is `None`, then the client disconnected without
+ // actually sending a line of data.
+ //
+ // Since the connection is closed, there is no further work that we
+ // need to do. So, we just terminate processing by returning
+ // `future::ok()`.
+ //
+ // The problem is that only a single future type can be returned
+ // from a combinator closure, but we want to return both
+ // `future::ok()` and `Peer` (below).
+ //
+ // This is a common problem, so the `futures` crate solves this by
+ // providing the `Either` helper enum that allows creating a single
+ // return type that covers two concrete future types.
+ let name = match name {
+ Some(name) => name,
+ None => {
+ // The remote client closed the connection without sending
+ // any data.
+ return Either::A(future::ok(()));
+ }
+ };
+
+ println!("`{:?}` is joining the chat", name);
+
+ // Create the peer.
+ //
+ // This is also a future that processes the connection, only
+ // completing when the socket closes.
+ let peer = Peer::new(
+ name,
+ state,
+ lines);
+
+ // Wrap `peer` with `Either::B` to make the return type fit.
+ Either::B(peer)
+ })
+ // Task futures have an error of type `()`, this ensures we handle the
+ // error. We do this by printing the error to STDOUT.
+ .map_err(|e| {
+ println!("connection error = {:?}", e);
+ });
+
+ // Spawn the task. Internally, this submits the task to a thread pool.
+ tokio::spawn(connection);
+}
+
+pub fn main() {
+ // Create the shared state. This is how all the peers communicate.
+ //
+ // The server task will hold a handle to this. For every new client, the
+ // `state` handle is cloned and passed into the task that processes the
+ // client connection.
+ let state = Arc::new(Mutex::new(Shared::new()));
+
+ let addr = "127.0.0.1:6142".parse().unwrap();
+
+ // Bind a TCP listener to the socket address.
+ //
+ // Note that this is the Tokio TcpListener, which is fully async.
+ let listener = TcpListener::bind(&addr).unwrap();
+
+ // The server task asynchronously iterates over and processes each
+ // incoming connection.
+ let server = listener.incoming().for_each(move |socket| {
+ // Spawn a task to process the connection
+ process(socket, state.clone());
+ Ok(())
+ })
+ .map_err(|err| {
+ // All tasks must have an `Error` type of `()`. This forces error
+ // handling and helps avoid silencing failures.
+ //
+ // In our example, we are only going to log the error to STDOUT.
+ println!("accept error = {:?}", err);
+ });
+
+ println!("server running on localhost:6142");
+
+ // Start the Tokio runtime.
+ //
+ // The Tokio is a pre-configured "out of the box" runtime for building
+ // asynchronous applications. It includes both a reactor and a task
+ // scheduler. This means applications are multithreaded by default.
+ //
+ // This function blocks until the runtime reaches an idle state. Idle is
+ // defined as all spawned tasks have completed and all I/O resources (TCP
+ // sockets in our case) have been dropped.
+ //
+ // In our example, we have not defined a shutdown strategy, so this will
+ // block until `ctrl-c` is pressed at the terminal.
+ tokio::run(server);
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/connect.rs b/third_party/rust/tokio-0.1.11/examples/connect.rs
new file mode 100644
index 0000000000..fa3824c4a1
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/connect.rs
@@ -0,0 +1,245 @@
+//! An example of hooking up stdin/stdout to either a TCP or UDP stream.
+//!
+//! This example will connect to a socket address specified in the argument list
+//! and then forward all data read on stdin to the server, printing out all data
+//! received on stdout. An optional `--udp` argument can be passed to specify
+//! that the connection should be made over UDP instead of TCP, translating each
+//! line entered on stdin to a UDP packet to be sent to the remote address.
+//!
+//! Note that this is not currently optimized for performance, especially
+//! around buffer management. Rather it's intended to show an example of
+//! working with a client.
+//!
+//! This example can be quite useful when interacting with the other examples in
+//! this repository! Many of them recommend running this as a simple "hook up
+//! stdin/stdout to a server" to get up and running.
+
+#![deny(warnings)]
+
+extern crate tokio;
+extern crate tokio_io;
+extern crate futures;
+extern crate bytes;
+
+use std::env;
+use std::io::{self, Read, Write};
+use std::net::SocketAddr;
+use std::thread;
+
+use tokio::prelude::*;
+use futures::sync::mpsc;
+
+fn main() {
+ // Determine if we're going to run in TCP or UDP mode
+ let mut args = env::args().skip(1).collect::<Vec<_>>();
+ let tcp = match args.iter().position(|a| a == "--udp") {
+ Some(i) => {
+ args.remove(i);
+ false
+ }
+ None => true,
+ };
+
+ // Parse what address we're going to connect to
+ let addr = args.first().unwrap_or_else(|| {
+ panic!("this program requires at least one argument")
+ });
+ let addr = addr.parse::<SocketAddr>().unwrap();
+
+ // Right now Tokio doesn't support a handle to stdin running on the event
+ // loop, so we farm out that work to a separate thread. This thread will
+ // read data (with blocking I/O) from stdin and then send it to the event
+ // loop over a standard futures channel.
+ let (stdin_tx, stdin_rx) = mpsc::channel(0);
+ thread::spawn(|| read_stdin(stdin_tx));
+ let stdin_rx = stdin_rx.map_err(|_| panic!()); // errors not possible on rx
+
+ // Now that we've got our stdin read we either set up our TCP connection or
+ // our UDP connection to get a stream of bytes we're going to emit to
+ // stdout.
+ let stdout = if tcp {
+ tcp::connect(&addr, Box::new(stdin_rx))
+ } else {
+ udp::connect(&addr, Box::new(stdin_rx))
+ };
+
+ // And now with our stream of bytes to write to stdout, we execute that in
+ // the event loop! Note that this is doing blocking I/O to emit data to
+ // stdout, and in general it's a no-no to do that sort of work on the event
+ // loop. In this case, though, we know it's ok as the event loop isn't
+ // otherwise running anything useful.
+ let mut out = io::stdout();
+
+ tokio::run({
+ stdout
+ .for_each(move |chunk| {
+ out.write_all(&chunk)
+ })
+ .map_err(|e| println!("error reading stdout; error = {:?}", e))
+ });
+}
+
+mod codec {
+ use std::io;
+ use bytes::{BufMut, BytesMut};
+ use tokio::codec::{Encoder, Decoder};
+
+ /// A simple `Codec` implementation that just ships bytes around.
+ ///
+ /// This type is used for "framing" a TCP/UDP stream of bytes but it's really
+ /// just a convenient method for us to work with streams/sinks for now.
+ /// This'll just take any data read and interpret it as a "frame" and
+ /// conversely just shove data into the output location without looking at
+ /// it.
+ pub struct Bytes;
+
+ impl Decoder for Bytes {
+ type Item = BytesMut;
+ type Error = io::Error;
+
+ fn decode(&mut self, buf: &mut BytesMut) -> io::Result<Option<BytesMut>> {
+ if buf.len() > 0 {
+ let len = buf.len();
+ Ok(Some(buf.split_to(len)))
+ } else {
+ Ok(None)
+ }
+ }
+ }
+
+ impl Encoder for Bytes {
+ type Item = Vec<u8>;
+ type Error = io::Error;
+
+ fn encode(&mut self, data: Vec<u8>, buf: &mut BytesMut) -> io::Result<()> {
+ buf.put(&data[..]);
+ Ok(())
+ }
+ }
+}
+
+mod tcp {
+ use tokio;
+ use tokio::net::TcpStream;
+ use tokio::prelude::*;
+ use tokio::codec::Decoder;
+
+ use bytes::BytesMut;
+ use codec::Bytes;
+
+ use std::io;
+ use std::net::SocketAddr;
+
+ pub fn connect(addr: &SocketAddr,
+ stdin: Box<Stream<Item = Vec<u8>, Error = io::Error> + Send>)
+ -> Box<Stream<Item = BytesMut, Error = io::Error> + Send>
+ {
+ let tcp = TcpStream::connect(addr);
+
+ // After the TCP connection has been established, we set up our client
+ // to start forwarding data.
+ //
+ // First we use the `Io::framed` method with a simple implementation of
+ // a `Codec` (listed below) that just ships bytes around. We then split
+ // that in two to work with the stream and sink separately.
+ //
+ // Half of the work we're going to do is to take all data we receive on
+ // `stdin` and send that along the TCP stream (`sink`). The second half
+ // is to take all the data we receive (`stream`) and then write that to
+ // stdout. We'll be passing this handle back out from this method.
+ //
+ // You'll also note that we *spawn* the work to read stdin and write it
+ // to the TCP stream. This is done to ensure that happens concurrently
+ // with us reading data from the stream.
+ Box::new(tcp.map(move |stream| {
+ let (sink, stream) = Bytes.framed(stream).split();
+
+ tokio::spawn(stdin.forward(sink).then(|result| {
+ if let Err(e) = result {
+ panic!("failed to write to socket: {}", e)
+ }
+ Ok(())
+ }));
+
+ stream
+ }).flatten_stream())
+ }
+}
+
+mod udp {
+ use std::io;
+ use std::net::SocketAddr;
+
+ use tokio;
+ use tokio::net::{UdpSocket, UdpFramed};
+ use tokio::prelude::*;
+ use bytes::BytesMut;
+
+ use codec::Bytes;
+
+ pub fn connect(&addr: &SocketAddr,
+ stdin: Box<Stream<Item = Vec<u8>, Error = io::Error> + Send>)
+ -> Box<Stream<Item = BytesMut, Error = io::Error> + Send>
+ {
+ // We'll bind our UDP socket to a local IP/port, but for now we
+ // basically let the OS pick both of those.
+ let addr_to_bind = if addr.ip().is_ipv4() {
+ "0.0.0.0:0".parse().unwrap()
+ } else {
+ "[::]:0".parse().unwrap()
+ };
+ let udp = UdpSocket::bind(&addr_to_bind)
+ .expect("failed to bind socket");
+
+ // Like above with TCP we use an instance of `Bytes` codec to transform
+ // this UDP socket into a framed sink/stream which operates over
+ // discrete values. In this case we're working with *pairs* of socket
+ // addresses and byte buffers.
+ let (sink, stream) = UdpFramed::new(udp, Bytes).split();
+
+ // All bytes from `stdin` will go to the `addr` specified in our
+ // argument list. Like with TCP this is spawned concurrently
+ let forward_stdin = stdin.map(move |chunk| {
+ (chunk, addr)
+ }).forward(sink).then(|result| {
+ if let Err(e) = result {
+ panic!("failed to write to socket: {}", e)
+ }
+ Ok(())
+ });
+
+ // With UDP we could receive data from any source, so filter out
+ // anything coming from a different address
+ let receive = stream.filter_map(move |(chunk, src)| {
+ if src == addr {
+ Some(chunk.into())
+ } else {
+ None
+ }
+ });
+
+ Box::new(future::lazy(|| {
+ tokio::spawn(forward_stdin);
+ future::ok(receive)
+ }).flatten_stream())
+ }
+}
+
+// Our helper method which will read data from stdin and send it along the
+// sender provided.
+fn read_stdin(mut tx: mpsc::Sender<Vec<u8>>) {
+ let mut stdin = io::stdin();
+ loop {
+ let mut buf = vec![0; 1024];
+ let n = match stdin.read(&mut buf) {
+ Err(_) |
+ Ok(0) => break,
+ Ok(n) => n,
+ };
+ buf.truncate(n);
+ tx = match tx.send(buf).wait() {
+ Ok(tx) => tx,
+ Err(_) => break,
+ };
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/echo-udp.rs b/third_party/rust/tokio-0.1.11/examples/echo-udp.rs
new file mode 100644
index 0000000000..89cc3d16e0
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/echo-udp.rs
@@ -0,0 +1,73 @@
+//! An UDP echo server that just sends back everything that it receives.
+//!
+//! If you're on Unix you can test this out by in one terminal executing:
+//!
+//! cargo run --example echo-udp
+//!
+//! and in another terminal you can run:
+//!
+//! cargo run --example connect -- --udp 127.0.0.1:8080
+//!
+//! Each line you type in to the `nc` terminal should be echo'd back to you!
+
+#![deny(warnings)]
+
+#[macro_use]
+extern crate futures;
+extern crate tokio;
+
+use std::{env, io};
+use std::net::SocketAddr;
+
+use tokio::prelude::*;
+use tokio::net::UdpSocket;
+
+struct Server {
+ socket: UdpSocket,
+ buf: Vec<u8>,
+ to_send: Option<(usize, SocketAddr)>,
+}
+
+impl Future for Server {
+ type Item = ();
+ type Error = io::Error;
+
+ fn poll(&mut self) -> Poll<(), io::Error> {
+ loop {
+ // First we check to see if there's a message we need to echo back.
+ // If so then we try to send it back to the original source, waiting
+ // until it's writable and we're able to do so.
+ if let Some((size, peer)) = self.to_send {
+ let amt = try_ready!(self.socket.poll_send_to(&self.buf[..size], &peer));
+ println!("Echoed {}/{} bytes to {}", amt, size, peer);
+ self.to_send = None;
+ }
+
+ // If we're here then `to_send` is `None`, so we take a look for the
+ // next message we're going to echo back.
+ self.to_send = Some(try_ready!(self.socket.poll_recv_from(&mut self.buf)));
+ }
+ }
+}
+
+fn main() {
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>().unwrap();
+
+ let socket = UdpSocket::bind(&addr).unwrap();
+ println!("Listening on: {}", socket.local_addr().unwrap());
+
+ let server = Server {
+ socket: socket,
+ buf: vec![0; 1024],
+ to_send: None,
+ };
+
+ // This starts the server task.
+ //
+ // `map_err` handles the error by logging it and maps the future to a type
+ // that can be spawned.
+ //
+ // `tokio::run` spawns the task on the Tokio runtime and starts running.
+ tokio::run(server.map_err(|e| println!("server error = {:?}", e)));
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/echo.rs b/third_party/rust/tokio-0.1.11/examples/echo.rs
new file mode 100644
index 0000000000..92d65a90ff
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/echo.rs
@@ -0,0 +1,114 @@
+//! A "hello world" echo server with Tokio
+//!
+//! This server will create a TCP listener, accept connections in a loop, and
+//! write back everything that's read off of each TCP connection.
+//!
+//! Because the Tokio runtime uses a thread pool, each TCP connection is
+//! processed concurrently with all other TCP connections across multiple
+//! threads.
+//!
+//! To see this server in action, you can run this in one terminal:
+//!
+//! cargo run --example echo
+//!
+//! and in another terminal you can run:
+//!
+//! cargo run --example connect 127.0.0.1:8080
+//!
+//! Each line you type in to the `connect` terminal should be echo'd back to
+//! you! If you open up multiple terminals running the `connect` example you
+//! should be able to see them all make progress simultaneously.
+
+#![deny(warnings)]
+
+extern crate tokio;
+
+use tokio::io;
+use tokio::net::TcpListener;
+use tokio::prelude::*;
+
+use std::env;
+use std::net::SocketAddr;
+
+fn main() {
+ // Allow passing an address to listen on as the first argument of this
+ // program, but otherwise we'll just set up our TCP listener on
+ // 127.0.0.1:8080 for connections.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>().unwrap();
+
+ // Next up we create a TCP listener which will listen for incoming
+ // connections. This TCP listener is bound to the address we determined
+ // above and must be associated with an event loop, so we pass in a handle
+ // to our event loop. After the socket's created we inform that we're ready
+ // to go and start accepting connections.
+ let socket = TcpListener::bind(&addr).unwrap();
+ println!("Listening on: {}", addr);
+
+ // Here we convert the `TcpListener` to a stream of incoming connections
+ // with the `incoming` method. We then define how to process each element in
+ // the stream with the `for_each` method.
+ //
+ // This combinator, defined on the `Stream` trait, will allow us to define a
+ // computation to happen for all items on the stream (in this case TCP
+ // connections made to the server). The return value of the `for_each`
+ // method is itself a future representing processing the entire stream of
+ // connections, and ends up being our server.
+ let done = socket.incoming()
+ .map_err(|e| println!("failed to accept socket; error = {:?}", e))
+ .for_each(move |socket| {
+ // Once we're inside this closure this represents an accepted client
+ // from our server. The `socket` is the client connection (similar to
+ // how the standard library operates).
+ //
+ // We just want to copy all data read from the socket back onto the
+ // socket itself (e.g. "echo"). We can use the standard `io::copy`
+ // combinator in the `tokio-core` crate to do precisely this!
+ //
+ // The `copy` function takes two arguments, where to read from and where
+ // to write to. We only have one argument, though, with `socket`.
+ // Luckily there's a method, `Io::split`, which will split an Read/Write
+ // stream into its two halves. This operation allows us to work with
+ // each stream independently, such as pass them as two arguments to the
+ // `copy` function.
+ //
+ // The `copy` function then returns a future, and this future will be
+ // resolved when the copying operation is complete, resolving to the
+ // amount of data that was copied.
+ let (reader, writer) = socket.split();
+ let amt = io::copy(reader, writer);
+
+ // After our copy operation is complete we just print out some helpful
+ // information.
+ let msg = amt.then(move |result| {
+ match result {
+ Ok((amt, _, _)) => println!("wrote {} bytes", amt),
+ Err(e) => println!("error: {}", e),
+ }
+
+ Ok(())
+ });
+
+
+ // And this is where much of the magic of this server happens. We
+ // crucially want all clients to make progress concurrently, rather than
+ // blocking one on completion of another. To achieve this we use the
+ // `tokio::spawn` function to execute the work in the background.
+ //
+ // This function will transfer ownership of the future (`msg` in this
+ // case) to the Tokio runtime thread pool that. The thread pool will
+ // drive the future to completion.
+ //
+ // Essentially here we're executing a new task to run concurrently,
+ // which will allow all of our clients to be processed concurrently.
+ tokio::spawn(msg)
+ });
+
+ // And finally now that we've define what our server is, we run it!
+ //
+ // This starts the Tokio runtime, spawns the server task, and blocks the
+ // current thread until all tasks complete execution. Since the `done` task
+ // never completes (it just keeps accepting sockets), `tokio::run` blocks
+ // forever (until ctrl-c is pressed).
+ tokio::run(done);
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/hello_world.rs b/third_party/rust/tokio-0.1.11/examples/hello_world.rs
new file mode 100644
index 0000000000..398ec11aac
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/hello_world.rs
@@ -0,0 +1,70 @@
+//! Hello world server.
+//!
+//! A simple server that accepts connections, writes "hello world\n", and closes
+//! the connection.
+//!
+//! You can test this out by running:
+//!
+//! cargo run --example hello_world
+//!
+//! And then in another terminal run:
+//!
+//! telnet localhost 6142
+//!
+
+#![deny(warnings)]
+
+extern crate tokio;
+
+use tokio::io;
+use tokio::net::TcpListener;
+use tokio::prelude::*;
+
+pub fn main() {
+ let addr = "127.0.0.1:6142".parse().unwrap();
+
+ // Bind a TCP listener to the socket address.
+ //
+ // Note that this is the Tokio TcpListener, which is fully async.
+ let listener = TcpListener::bind(&addr).unwrap();
+
+ // The server task asynchronously iterates over and processes each
+ // incoming connection.
+ let server = listener.incoming().for_each(|socket| {
+ println!("accepted socket; addr={:?}", socket.peer_addr().unwrap());
+
+ let connection = io::write_all(socket, "hello world\n")
+ .then(|res| {
+ println!("wrote message; success={:?}", res.is_ok());
+ Ok(())
+ });
+
+ // Spawn a new task that processes the socket:
+ tokio::spawn(connection);
+
+ Ok(())
+ })
+ .map_err(|err| {
+ // All tasks must have an `Error` type of `()`. This forces error
+ // handling and helps avoid silencing failures.
+ //
+ // In our example, we are only going to log the error to STDOUT.
+ println!("accept error = {:?}", err);
+ });
+
+ println!("server running on localhost:6142");
+
+ // Start the Tokio runtime.
+ //
+ // The Tokio is a pre-configured "out of the box" runtime for building
+ // asynchronous applications. It includes both a reactor and a task
+ // scheduler. This means applications are multithreaded by default.
+ //
+ // This function blocks until the runtime reaches an idle state. Idle is
+ // defined as all spawned tasks have completed and all I/O resources (TCP
+ // sockets in our case) have been dropped.
+ //
+ // In our example, we have not defined a shutdown strategy, so this will
+ // block until `ctrl-c` is pressed at the terminal.
+ tokio::run(server);
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/manual-runtime.rs b/third_party/rust/tokio-0.1.11/examples/manual-runtime.rs
new file mode 100644
index 0000000000..6cbb8cd45c
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/manual-runtime.rs
@@ -0,0 +1,86 @@
+//! An example how to manually assemble a runtime and run some tasks on it.
+//!
+//! This is closer to the single-threaded runtime than the default tokio one, as it is simpler to
+//! grasp. There are conceptually similar, but the multi-threaded one would be more code. If you
+//! just want to *use* a single-threaded runtime, use the one provided by tokio directly
+//! (`tokio::runtime::current_thread::Runtime::new()`. This is a demonstration only.
+//!
+//! Note that the error handling is a bit left out. Also, the `run` could be modified to return the
+//! result of the provided future.
+
+extern crate futures;
+extern crate tokio;
+extern crate tokio_current_thread;
+extern crate tokio_executor;
+extern crate tokio_reactor;
+extern crate tokio_timer;
+
+use std::io::Error as IoError;
+use std::time::{Duration, Instant};
+
+use futures::{future, Future};
+use tokio_current_thread::CurrentThread;
+use tokio_reactor::Reactor;
+use tokio_timer::timer::{self, Timer};
+
+/// Creates a "runtime".
+///
+/// This is similar to running `tokio::runtime::current_thread::Runtime::new()`.
+fn run<F: Future<Item = (), Error = ()>>(f: F) -> Result<(), IoError> {
+ // We need a reactor to receive events about IO objects from kernel
+ let reactor = Reactor::new()?;
+ let reactor_handle = reactor.handle();
+ // Place a timer wheel on top of the reactor. If there are no timeouts to fire, it'll let the
+ // reactor pick up some new external events.
+ let timer = Timer::new(reactor);
+ let timer_handle = timer.handle();
+ // And now put a single-threaded executor on top of the timer. When there are no futures ready
+ // to do something, it'll let the timer or the reactor generate some new stimuli for the
+ // futures to continue in their life.
+ let mut executor = CurrentThread::new_with_park(timer);
+ // Binds an executor to this thread
+ let mut enter = tokio_executor::enter().expect("Multiple executors at once");
+ // This will set the default handle and timer to use inside the closure and run the future.
+ tokio_reactor::with_default(&reactor_handle, &mut enter, |enter| {
+ timer::with_default(&timer_handle, enter, |enter| {
+ // The TaskExecutor is a fake executor that looks into the current single-threaded
+ // executor when used. This is a trick, because we need two mutable references to the
+ // executor (one to run the provided future, another to install as the default one). We
+ // use the fake one here as the default one.
+ let mut default_executor = tokio_current_thread::TaskExecutor::current();
+ tokio_executor::with_default(&mut default_executor, enter, |enter| {
+ let mut executor = executor.enter(enter);
+ // Run the provided future
+ executor.block_on(f).unwrap();
+ // Run all the other futures that are still left in the executor
+ executor.run().unwrap();
+ });
+ });
+ });
+ Ok(())
+}
+
+fn main() {
+ run(future::lazy(|| {
+ // Here comes the application logic. It can spawn further tasks by tokio_current_thread::spawn().
+ // It also can use the default reactor and create timeouts.
+
+ // Connect somewhere. And then do nothing with it. Yes, useless.
+ //
+ // This will use the default reactor which runs in the current thread.
+ let connect = tokio::net::TcpStream::connect(&"127.0.0.1:53".parse().unwrap())
+ .map(|_| println!("Connected"))
+ .map_err(|e| println!("Failed to connect: {}", e));
+ // We can spawn it without requiring Send. This would panic if we run it outside of the
+ // `run` (or outside of anything else)
+ tokio_current_thread::spawn(connect);
+
+ // We can also create timeouts.
+ let deadline = tokio::timer::Delay::new(Instant::now() + Duration::from_secs(5))
+ .map(|()| println!("5 seconds are over"))
+ .map_err(|e| println!("Failed to wait: {}", e));
+ // We can spawn on the default executor, which is also the local one.
+ tokio::executor::spawn(deadline);
+ Ok(())
+ })).unwrap();
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/print_each_packet.rs b/third_party/rust/tokio-0.1.11/examples/print_each_packet.rs
new file mode 100644
index 0000000000..644d144cf8
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/print_each_packet.rs
@@ -0,0 +1,149 @@
+//! A "print-each-packet" server with Tokio
+//!
+//! This server will create a TCP listener, accept connections in a loop, and
+//! put down in the stdout everything that's read off of each TCP connection.
+//!
+//! Because the Tokio runtime uses a thread pool, each TCP connection is
+//! processed concurrently with all other TCP connections across multiple
+//! threads.
+//!
+//! To see this server in action, you can run this in one terminal:
+//!
+//! cargo run --example print\_each\_packet
+//!
+//! and in another terminal you can run:
+//!
+//! cargo run --example connect 127.0.0.1:8080
+//!
+//! Each line you type in to the `connect` terminal should be written to terminal!
+//!
+//! Minimal js example:
+//!
+//! ```js
+//! var net = require("net");
+//!
+//! var listenPort = 8080;
+//!
+//! var server = net.createServer(function (socket) {
+//! socket.on("data", function (bytes) {
+//! console.log("bytes", bytes);
+//! });
+//!
+//! socket.on("end", function() {
+//! console.log("Socket received FIN packet and closed connection");
+//! });
+//! socket.on("error", function (error) {
+//! console.log("Socket closed with error", error);
+//! });
+//!
+//! socket.on("close", function (with_error) {
+//! if (with_error) {
+//! console.log("Socket closed with result: Err(SomeError)");
+//! } else {
+//! console.log("Socket closed with result: Ok(())");
+//! }
+//! });
+//!
+//! });
+//!
+//! server.listen(listenPort);
+//!
+//! console.log("Listening on:", listenPort);
+//! ```
+//!
+
+#![deny(warnings)]
+
+extern crate tokio;
+extern crate tokio_codec;
+
+use tokio_codec::BytesCodec;
+use tokio::net::TcpListener;
+use tokio::prelude::*;
+use tokio::codec::Decoder;
+
+use std::env;
+use std::net::SocketAddr;
+
+fn main() {
+ // Allow passing an address to listen on as the first argument of this
+ // program, but otherwise we'll just set up our TCP listener on
+ // 127.0.0.1:8080 for connections.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>().unwrap();
+
+ // Next up we create a TCP listener which will listen for incoming
+ // connections. This TCP listener is bound to the address we determined
+ // above and must be associated with an event loop, so we pass in a handle
+ // to our event loop. After the socket's created we inform that we're ready
+ // to go and start accepting connections.
+ let socket = TcpListener::bind(&addr).unwrap();
+ println!("Listening on: {}", addr);
+
+ // Here we convert the `TcpListener` to a stream of incoming connections
+ // with the `incoming` method. We then define how to process each element in
+ // the stream with the `for_each` method.
+ //
+ // This combinator, defined on the `Stream` trait, will allow us to define a
+ // computation to happen for all items on the stream (in this case TCP
+ // connections made to the server). The return value of the `for_each`
+ // method is itself a future representing processing the entire stream of
+ // connections, and ends up being our server.
+ let done = socket
+ .incoming()
+ .map_err(|e| println!("failed to accept socket; error = {:?}", e))
+ .for_each(move |socket| {
+ // Once we're inside this closure this represents an accepted client
+ // from our server. The `socket` is the client connection (similar to
+ // how the standard library operates).
+ //
+ // We're parsing each socket with the `BytesCodec` included in `tokio_io`,
+ // and then we `split` each codec into the reader/writer halves.
+ //
+ // See https://docs.rs/tokio-codec/0.1/src/tokio_codec/bytes_codec.rs.html
+ let framed = BytesCodec::new().framed(socket);
+ let (_writer, reader) = framed.split();
+
+ let processor = reader
+ .for_each(|bytes| {
+ println!("bytes: {:?}", bytes);
+ Ok(())
+ })
+ // After our copy operation is complete we just print out some helpful
+ // information.
+ .and_then(|()| {
+ println!("Socket received FIN packet and closed connection");
+ Ok(())
+ })
+ .or_else(|err| {
+ println!("Socket closed with error: {:?}", err);
+ // We have to return the error to catch it in the next ``.then` call
+ Err(err)
+ })
+ .then(|result| {
+ println!("Socket closed with result: {:?}", result);
+ Ok(())
+ });
+
+ // And this is where much of the magic of this server happens. We
+ // crucially want all clients to make progress concurrently, rather than
+ // blocking one on completion of another. To achieve this we use the
+ // `tokio::spawn` function to execute the work in the background.
+ //
+ // This function will transfer ownership of the future (`msg` in this
+ // case) to the Tokio runtime thread pool that. The thread pool will
+ // drive the future to completion.
+ //
+ // Essentially here we're executing a new task to run concurrently,
+ // which will allow all of our clients to be processed concurrently.
+ tokio::spawn(processor)
+ });
+
+ // And finally now that we've define what our server is, we run it!
+ //
+ // This starts the Tokio runtime, spawns the server task, and blocks the
+ // current thread until all tasks complete execution. Since the `done` task
+ // never completes (it just keeps accepting sockets), `tokio::run` blocks
+ // forever (until ctrl-c is pressed).
+ tokio::run(done);
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/proxy.rs b/third_party/rust/tokio-0.1.11/examples/proxy.rs
new file mode 100644
index 0000000000..bed8314a31
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/proxy.rs
@@ -0,0 +1,128 @@
+//! A proxy that forwards data to another server and forwards that server's
+//! responses back to clients.
+//!
+//! Because the Tokio runtime uses a thread pool, each TCP connection is
+//! processed concurrently with all other TCP connections across multiple
+//! threads.
+//!
+//! You can showcase this by running this in one terminal:
+//!
+//! cargo run --example proxy
+//!
+//! This in another terminal
+//!
+//! cargo run --example echo
+//!
+//! And finally this in another terminal
+//!
+//! cargo run --example connect 127.0.0.1:8081
+//!
+//! This final terminal will connect to our proxy, which will in turn connect to
+//! the echo server, and you'll be able to see data flowing between them.
+
+#![deny(warnings)]
+
+extern crate tokio;
+
+use std::sync::{Arc, Mutex};
+use std::env;
+use std::net::{Shutdown, SocketAddr};
+use std::io::{self, Read, Write};
+
+use tokio::io::{copy, shutdown};
+use tokio::net::{TcpListener, TcpStream};
+use tokio::prelude::*;
+
+fn main() {
+ let listen_addr = env::args().nth(1).unwrap_or("127.0.0.1:8081".to_string());
+ let listen_addr = listen_addr.parse::<SocketAddr>().unwrap();
+
+ let server_addr = env::args().nth(2).unwrap_or("127.0.0.1:8080".to_string());
+ let server_addr = server_addr.parse::<SocketAddr>().unwrap();
+
+ // Create a TCP listener which will listen for incoming connections.
+ let socket = TcpListener::bind(&listen_addr).unwrap();
+ println!("Listening on: {}", listen_addr);
+ println!("Proxying to: {}", server_addr);
+
+ let done = socket.incoming()
+ .map_err(|e| println!("error accepting socket; error = {:?}", e))
+ .for_each(move |client| {
+ let server = TcpStream::connect(&server_addr);
+ let amounts = server.and_then(move |server| {
+ // Create separate read/write handles for the TCP clients that we're
+ // proxying data between. Note that typically you'd use
+ // `AsyncRead::split` for this operation, but we want our writer
+ // handles to have a custom implementation of `shutdown` which
+ // actually calls `TcpStream::shutdown` to ensure that EOF is
+ // transmitted properly across the proxied connection.
+ //
+ // As a result, we wrap up our client/server manually in arcs and
+ // use the impls below on our custom `MyTcpStream` type.
+ let client_reader = MyTcpStream(Arc::new(Mutex::new(client)));
+ let client_writer = client_reader.clone();
+ let server_reader = MyTcpStream(Arc::new(Mutex::new(server)));
+ let server_writer = server_reader.clone();
+
+ // Copy the data (in parallel) between the client and the server.
+ // After the copy is done we indicate to the remote side that we've
+ // finished by shutting down the connection.
+ let client_to_server = copy(client_reader, server_writer)
+ .and_then(|(n, _, server_writer)| {
+ shutdown(server_writer).map(move |_| n)
+ });
+
+ let server_to_client = copy(server_reader, client_writer)
+ .and_then(|(n, _, client_writer)| {
+ shutdown(client_writer).map(move |_| n)
+ });
+
+ client_to_server.join(server_to_client)
+ });
+
+ let msg = amounts.map(move |(from_client, from_server)| {
+ println!("client wrote {} bytes and received {} bytes",
+ from_client, from_server);
+ }).map_err(|e| {
+ // Don't panic. Maybe the client just disconnected too soon.
+ println!("error: {}", e);
+ });
+
+ tokio::spawn(msg);
+
+ Ok(())
+ });
+
+ tokio::run(done);
+}
+
+// This is a custom type used to have a custom implementation of the
+// `AsyncWrite::shutdown` method which actually calls `TcpStream::shutdown` to
+// notify the remote end that we're done writing.
+#[derive(Clone)]
+struct MyTcpStream(Arc<Mutex<TcpStream>>);
+
+impl Read for MyTcpStream {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ self.0.lock().unwrap().read(buf)
+ }
+}
+
+impl Write for MyTcpStream {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ self.0.lock().unwrap().write(buf)
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ Ok(())
+ }
+}
+
+impl AsyncRead for MyTcpStream {}
+
+impl AsyncWrite for MyTcpStream {
+ fn shutdown(&mut self) -> Poll<(), io::Error> {
+ try!(self.0.lock().unwrap().shutdown(Shutdown::Write));
+ Ok(().into())
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/tinydb.rs b/third_party/rust/tokio-0.1.11/examples/tinydb.rs
new file mode 100644
index 0000000000..134d01b15a
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/tinydb.rs
@@ -0,0 +1,206 @@
+//! A "tiny database" and accompanying protocol
+//!
+//! This example shows the usage of shared state amongst all connected clients,
+//! namely a database of key/value pairs. Each connected client can send a
+//! series of GET/SET commands to query the current value of a key or set the
+//! value of a key.
+//!
+//! This example has a simple protocol you can use to interact with the server.
+//! To run, first run this in one terminal window:
+//!
+//! cargo run --example tinydb
+//!
+//! and next in another windows run:
+//!
+//! cargo run --example connect 127.0.0.1:8080
+//!
+//! In the `connect` window you can type in commands where when you hit enter
+//! you'll get a response from the server for that command. An example session
+//! is:
+//!
+//!
+//! $ cargo run --example connect 127.0.0.1:8080
+//! GET foo
+//! foo = bar
+//! GET FOOBAR
+//! error: no key FOOBAR
+//! SET FOOBAR my awesome string
+//! set FOOBAR = `my awesome string`, previous: None
+//! SET foo tokio
+//! set foo = `tokio`, previous: Some("bar")
+//! GET foo
+//! foo = tokio
+//!
+//! Namely you can issue two forms of commands:
+//!
+//! * `GET $key` - this will fetch the value of `$key` from the database and
+//! return it. The server's database is initially populated with the key `foo`
+//! set to the value `bar`
+//! * `SET $key $value` - this will set the value of `$key` to `$value`,
+//! returning the previous value, if any.
+
+#![deny(warnings)]
+
+extern crate tokio;
+
+use std::collections::HashMap;
+use std::io::BufReader;
+use std::env;
+use std::net::SocketAddr;
+use std::sync::{Arc, Mutex};
+
+use tokio::io::{lines, write_all};
+use tokio::net::TcpListener;
+use tokio::prelude::*;
+
+/// The in-memory database shared amongst all clients.
+///
+/// This database will be shared via `Arc`, so to mutate the internal map we're
+/// going to use a `Mutex` for interior mutability.
+struct Database {
+ map: Mutex<HashMap<String, String>>,
+}
+
+/// Possible requests our clients can send us
+enum Request {
+ Get { key: String },
+ Set { key: String, value: String },
+}
+
+/// Responses to the `Request` commands above
+enum Response {
+ Value { key: String, value: String },
+ Set { key: String, value: String, previous: Option<String> },
+ Error { msg: String },
+}
+
+fn main() {
+ // Parse the address we're going to run this server on
+ // and set up our TCP listener to accept connections.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>().unwrap();
+ let listener = TcpListener::bind(&addr).expect("failed to bind");
+ println!("Listening on: {}", addr);
+
+ // Create the shared state of this server that will be shared amongst all
+ // clients. We populate the initial database and then create the `Database`
+ // structure. Note the usage of `Arc` here which will be used to ensure that
+ // each independently spawned client will have a reference to the in-memory
+ // database.
+ let mut initial_db = HashMap::new();
+ initial_db.insert("foo".to_string(), "bar".to_string());
+ let db = Arc::new(Database {
+ map: Mutex::new(initial_db),
+ });
+
+ let done = listener.incoming()
+ .map_err(|e| println!("error accepting socket; error = {:?}", e))
+ .for_each(move |socket| {
+ // As with many other small examples, the first thing we'll do is
+ // *split* this TCP stream into two separately owned halves. This'll
+ // allow us to work with the read and write halves independently.
+ let (reader, writer) = socket.split();
+
+ // Since our protocol is line-based we use `tokio_io`'s `lines` utility
+ // to convert our stream of bytes, `reader`, into a `Stream` of lines.
+ let lines = lines(BufReader::new(reader));
+
+ // Here's where the meat of the processing in this server happens. First
+ // we see a clone of the database being created, which is creating a
+ // new reference for this connected client to use. Also note the `move`
+ // keyword on the closure here which moves ownership of the reference
+ // into the closure, which we'll need for spawning the client below.
+ //
+ // The `map` function here means that we'll run some code for all
+ // requests (lines) we receive from the client. The actual handling here
+ // is pretty simple, first we parse the request and if it's valid we
+ // generate a response based on the values in the database.
+ let db = db.clone();
+ let responses = lines.map(move |line| {
+ let request = match Request::parse(&line) {
+ Ok(req) => req,
+ Err(e) => return Response::Error { msg: e },
+ };
+
+ let mut db = db.map.lock().unwrap();
+ match request {
+ Request::Get { key } => {
+ match db.get(&key) {
+ Some(value) => Response::Value { key, value: value.clone() },
+ None => Response::Error { msg: format!("no key {}", key) },
+ }
+ }
+ Request::Set { key, value } => {
+ let previous = db.insert(key.clone(), value.clone());
+ Response::Set { key, value, previous }
+ }
+ }
+ });
+
+ // At this point `responses` is a stream of `Response` types which we
+ // now want to write back out to the client. To do that we use
+ // `Stream::fold` to perform a loop here, serializing each response and
+ // then writing it out to the client.
+ let writes = responses.fold(writer, |writer, response| {
+ let mut response = response.serialize();
+ response.push('\n');
+ write_all(writer, response.into_bytes()).map(|(w, _)| w)
+ });
+
+ // Like with other small servers, we'll `spawn` this client to ensure it
+ // runs concurrently with all other clients, for now ignoring any errors
+ // that we see.
+ let msg = writes.then(move |_| Ok(()));
+
+ tokio::spawn(msg)
+ });
+
+ tokio::run(done);
+}
+
+impl Request {
+ fn parse(input: &str) -> Result<Request, String> {
+ let mut parts = input.splitn(3, " ");
+ match parts.next() {
+ Some("GET") => {
+ let key = match parts.next() {
+ Some(key) => key,
+ None => return Err(format!("GET must be followed by a key")),
+ };
+ if parts.next().is_some() {
+ return Err(format!("GET's key must not be followed by anything"))
+ }
+ Ok(Request::Get { key: key.to_string() })
+ }
+ Some("SET") => {
+ let key = match parts.next() {
+ Some(key) => key,
+ None => return Err(format!("SET must be followed by a key")),
+ };
+ let value = match parts.next() {
+ Some(value) => value,
+ None => return Err(format!("SET needs a value")),
+ };
+ Ok(Request::Set { key: key.to_string(), value: value.to_string() })
+ }
+ Some(cmd) => Err(format!("unknown command: {}", cmd)),
+ None => Err(format!("empty input")),
+ }
+ }
+}
+
+impl Response {
+ fn serialize(&self) -> String {
+ match *self {
+ Response::Value { ref key, ref value } => {
+ format!("{} = {}", key, value)
+ }
+ Response::Set { ref key, ref value, ref previous } => {
+ format!("set {} = `{}`, previous: {:?}", key, value, previous)
+ }
+ Response::Error { ref msg } => {
+ format!("error: {}", msg)
+ }
+ }
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/tinyhttp.rs b/third_party/rust/tokio-0.1.11/examples/tinyhttp.rs
new file mode 100644
index 0000000000..1e4f22bde6
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/tinyhttp.rs
@@ -0,0 +1,308 @@
+//! A "tiny" example of HTTP request/response handling using just tokio-core
+//!
+//! This example is intended for *learning purposes* to see how various pieces
+//! hook up together and how HTTP can get up and running. Note that this example
+//! is written with the restriction that it *can't* use any "big" library other
+//! than tokio-core, if you'd like a "real world" HTTP library you likely want a
+//! crate like Hyper.
+//!
+//! Code here is based on the `echo-threads` example and implements two paths,
+//! the `/plaintext` and `/json` routes to respond with some text and json,
+//! respectively. By default this will run I/O on all the cores your system has
+//! available, and it doesn't support HTTP request bodies.
+
+#![deny(warnings)]
+
+extern crate bytes;
+extern crate http;
+extern crate httparse;
+#[macro_use]
+extern crate serde_derive;
+extern crate serde_json;
+extern crate time;
+extern crate tokio;
+extern crate tokio_io;
+
+use std::{env, fmt, io};
+use std::net::SocketAddr;
+
+use tokio::net::{TcpStream, TcpListener};
+use tokio::prelude::*;
+use tokio::codec::{Encoder, Decoder};
+
+use bytes::BytesMut;
+use http::header::HeaderValue;
+use http::{Request, Response, StatusCode};
+
+fn main() {
+ // Parse the arguments, bind the TCP socket we'll be listening to, spin up
+ // our worker threads, and start shipping sockets to those worker threads.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>().unwrap();
+
+ let listener = TcpListener::bind(&addr).expect("failed to bind");
+ println!("Listening on: {}", addr);
+
+ tokio::run({
+ listener.incoming()
+ .map_err(|e| println!("failed to accept socket; error = {:?}", e))
+ .for_each(|socket| {
+ process(socket);
+ Ok(())
+ })
+ });
+}
+
+fn process(socket: TcpStream) {
+ let (tx, rx) =
+ // Frame the socket using the `Http` protocol. This maps the TCP socket
+ // to a Stream + Sink of HTTP frames.
+ Http.framed(socket)
+ // This splits a single `Stream + Sink` value into two separate handles
+ // that can be used independently (even on different tasks or threads).
+ .split();
+
+ // Map all requests into responses and send them back to the client.
+ let task = tx.send_all(rx.and_then(respond))
+ .then(|res| {
+ if let Err(e) = res {
+ println!("failed to process connection; error = {:?}", e);
+ }
+
+ Ok(())
+ });
+
+ // Spawn the task that handles the connection.
+ tokio::spawn(task);
+}
+
+/// "Server logic" is implemented in this function.
+///
+/// This function is a map from and HTTP request to a future of a response and
+/// represents the various handling a server might do. Currently the contents
+/// here are pretty uninteresting.
+fn respond(req: Request<()>)
+ -> Box<Future<Item = Response<String>, Error = io::Error> + Send>
+{
+ let mut ret = Response::builder();
+ let body = match req.uri().path() {
+ "/plaintext" => {
+ ret.header("Content-Type", "text/plain");
+ "Hello, World!".to_string()
+ }
+ "/json" => {
+ ret.header("Content-Type", "application/json");
+
+ #[derive(Serialize)]
+ struct Message {
+ message: &'static str,
+ }
+ serde_json::to_string(&Message { message: "Hello, World!" })
+ .unwrap()
+ }
+ _ => {
+ ret.status(StatusCode::NOT_FOUND);
+ String::new()
+ }
+ };
+ Box::new(future::ok(ret.body(body).unwrap()))
+}
+
+struct Http;
+
+/// Implementation of encoding an HTTP response into a `BytesMut`, basically
+/// just writing out an HTTP/1.1 response.
+impl Encoder for Http {
+ type Item = Response<String>;
+ type Error = io::Error;
+
+ fn encode(&mut self, item: Response<String>, dst: &mut BytesMut) -> io::Result<()> {
+ use std::fmt::Write;
+
+ write!(BytesWrite(dst), "\
+ HTTP/1.1 {}\r\n\
+ Server: Example\r\n\
+ Content-Length: {}\r\n\
+ Date: {}\r\n\
+ ", item.status(), item.body().len(), date::now()).unwrap();
+
+ for (k, v) in item.headers() {
+ dst.extend_from_slice(k.as_str().as_bytes());
+ dst.extend_from_slice(b": ");
+ dst.extend_from_slice(v.as_bytes());
+ dst.extend_from_slice(b"\r\n");
+ }
+
+ dst.extend_from_slice(b"\r\n");
+ dst.extend_from_slice(item.body().as_bytes());
+
+ return Ok(());
+
+ // Right now `write!` on `Vec<u8>` goes through io::Write and is not
+ // super speedy, so inline a less-crufty implementation here which
+ // doesn't go through io::Error.
+ struct BytesWrite<'a>(&'a mut BytesMut);
+
+ impl<'a> fmt::Write for BytesWrite<'a> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ self.0.extend_from_slice(s.as_bytes());
+ Ok(())
+ }
+
+ fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
+ fmt::write(self, args)
+ }
+ }
+ }
+}
+
+/// Implementation of decoding an HTTP request from the bytes we've read so far.
+/// This leverages the `httparse` crate to do the actual parsing and then we use
+/// that information to construct an instance of a `http::Request` object,
+/// trying to avoid allocations where possible.
+impl Decoder for Http {
+ type Item = Request<()>;
+ type Error = io::Error;
+
+ fn decode(&mut self, src: &mut BytesMut) -> io::Result<Option<Request<()>>> {
+ // TODO: we should grow this headers array if parsing fails and asks
+ // for more headers
+ let mut headers = [None; 16];
+ let (method, path, version, amt) = {
+ let mut parsed_headers = [httparse::EMPTY_HEADER; 16];
+ let mut r = httparse::Request::new(&mut parsed_headers);
+ let status = r.parse(src).map_err(|e| {
+ let msg = format!("failed to parse http request: {:?}", e);
+ io::Error::new(io::ErrorKind::Other, msg)
+ })?;
+
+ let amt = match status {
+ httparse::Status::Complete(amt) => amt,
+ httparse::Status::Partial => return Ok(None),
+ };
+
+ let toslice = |a: &[u8]| {
+ let start = a.as_ptr() as usize - src.as_ptr() as usize;
+ assert!(start < src.len());
+ (start, start + a.len())
+ };
+
+ for (i, header) in r.headers.iter().enumerate() {
+ let k = toslice(header.name.as_bytes());
+ let v = toslice(header.value);
+ headers[i] = Some((k, v));
+ }
+
+ (toslice(r.method.unwrap().as_bytes()),
+ toslice(r.path.unwrap().as_bytes()),
+ r.version.unwrap(),
+ amt)
+ };
+ if version != 1 {
+ return Err(io::Error::new(io::ErrorKind::Other, "only HTTP/1.1 accepted"))
+ }
+ let data = src.split_to(amt).freeze();
+ let mut ret = Request::builder();
+ ret.method(&data[method.0..method.1]);
+ ret.uri(data.slice(path.0, path.1));
+ ret.version(http::Version::HTTP_11);
+ for header in headers.iter() {
+ let (k, v) = match *header {
+ Some((ref k, ref v)) => (k, v),
+ None => break,
+ };
+ let value = unsafe {
+ HeaderValue::from_shared_unchecked(data.slice(v.0, v.1))
+ };
+ ret.header(&data[k.0..k.1], value);
+ }
+
+ let req = ret.body(()).map_err(|e| {
+ io::Error::new(io::ErrorKind::Other, e)
+ })?;
+ Ok(Some(req))
+ }
+}
+
+mod date {
+ use std::cell::RefCell;
+ use std::fmt::{self, Write};
+ use std::str;
+
+ use time::{self, Duration};
+
+ pub struct Now(());
+
+ /// Returns a struct, which when formatted, renders an appropriate `Date`
+ /// header value.
+ pub fn now() -> Now {
+ Now(())
+ }
+
+ // Gee Alex, doesn't this seem like premature optimization. Well you see
+ // there Billy, you're absolutely correct! If your server is *bottlenecked*
+ // on rendering the `Date` header, well then boy do I have news for you, you
+ // don't need this optimization.
+ //
+ // In all seriousness, though, a simple "hello world" benchmark which just
+ // sends back literally "hello world" with standard headers actually is
+ // bottlenecked on rendering a date into a byte buffer. Since it was at the
+ // top of a profile, and this was done for some competitive benchmarks, this
+ // module was written.
+ //
+ // Just to be clear, though, I was not intending on doing this because it
+ // really does seem kinda absurd, but it was done by someone else [1], so I
+ // blame them! :)
+ //
+ // [1]: https://github.com/rapidoid/rapidoid/blob/f1c55c0555007e986b5d069fe1086e6d09933f7b/rapidoid-commons/src/main/java/org/rapidoid/commons/Dates.java#L48-L66
+
+ struct LastRenderedNow {
+ bytes: [u8; 128],
+ amt: usize,
+ next_update: time::Timespec,
+ }
+
+ thread_local!(static LAST: RefCell<LastRenderedNow> = RefCell::new(LastRenderedNow {
+ bytes: [0; 128],
+ amt: 0,
+ next_update: time::Timespec::new(0, 0),
+ }));
+
+ impl fmt::Display for Now {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ LAST.with(|cache| {
+ let mut cache = cache.borrow_mut();
+ let now = time::get_time();
+ if now >= cache.next_update {
+ cache.update(now);
+ }
+ f.write_str(cache.buffer())
+ })
+ }
+ }
+
+ impl LastRenderedNow {
+ fn buffer(&self) -> &str {
+ str::from_utf8(&self.bytes[..self.amt]).unwrap()
+ }
+
+ fn update(&mut self, now: time::Timespec) {
+ self.amt = 0;
+ write!(LocalBuffer(self), "{}", time::at(now).rfc822()).unwrap();
+ self.next_update = now + Duration::seconds(1);
+ self.next_update.nsec = 0;
+ }
+ }
+
+ struct LocalBuffer<'a>(&'a mut LastRenderedNow);
+
+ impl<'a> fmt::Write for LocalBuffer<'a> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ let start = self.0.amt;
+ let end = start + s.len();
+ self.0.bytes[start..end].copy_from_slice(s.as_bytes());
+ self.0.amt += s.len();
+ Ok(())
+ }
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/udp-client.rs b/third_party/rust/tokio-0.1.11/examples/udp-client.rs
new file mode 100644
index 0000000000..3af7c3beaa
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/udp-client.rs
@@ -0,0 +1,74 @@
+//! A UDP client that just sends everything it gets via `stdio` in a single datagram, and then
+//! waits for a reply.
+//!
+//! For the reasons of simplicity data from `stdio` is read until `EOF` in a blocking manner.
+//!
+//! You can test this out by running an echo server:
+//!
+//! ```
+//! $ cargo run --example echo-udp -- 127.0.0.1:8080
+//! ```
+//!
+//! and running the client in another terminal:
+//!
+//! ```
+//! $ cargo run --example udp-client
+//! ```
+//!
+//! You can optionally provide any custom endpoint address for the client:
+//!
+//! ```
+//! $ cargo run --example udp-client -- 127.0.0.1:8080
+//! ```
+//!
+//! Don't forget to pass `EOF` to the standard input of the client!
+//!
+//! Please mind that since the UDP protocol doesn't have any capabilities to detect a broken
+//! connection the server needs to be run first, otherwise the client will block forever.
+
+extern crate futures;
+extern crate tokio;
+
+use std::env;
+use std::io::stdin;
+use std::net::SocketAddr;
+use tokio::net::UdpSocket;
+use tokio::prelude::*;
+
+fn get_stdin_data() -> Vec<u8> {
+ let mut buf = Vec::new();
+ stdin().read_to_end(&mut buf).unwrap();
+ buf
+}
+
+fn main() {
+ let remote_addr: SocketAddr = env::args()
+ .nth(1)
+ .unwrap_or("127.0.0.1:8080".into())
+ .parse()
+ .unwrap();
+ // We use port 0 to let the operating system allocate an available port for us.
+ let local_addr: SocketAddr = if remote_addr.is_ipv4() {
+ "0.0.0.0:0"
+ } else {
+ "[::]:0"
+ }.parse()
+ .unwrap();
+ let socket = UdpSocket::bind(&local_addr).unwrap();
+ const MAX_DATAGRAM_SIZE: usize = 65_507;
+ let processing = socket
+ .send_dgram(get_stdin_data(), &remote_addr)
+ .and_then(|(socket, _)| socket.recv_dgram(vec![0u8; MAX_DATAGRAM_SIZE]))
+ .map(|(_, data, len, _)| {
+ println!(
+ "Received {} bytes:\n{}",
+ len,
+ String::from_utf8_lossy(&data[..len])
+ )
+ })
+ .wait();
+ match processing {
+ Ok(_) => {}
+ Err(e) => eprintln!("Encountered an error: {}", e),
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/examples/udp-codec.rs b/third_party/rust/tokio-0.1.11/examples/udp-codec.rs
new file mode 100644
index 0000000000..b273a36061
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/examples/udp-codec.rs
@@ -0,0 +1,64 @@
+//! This example leverages `BytesCodec` to create a UDP client and server which
+//! speak a custom protocol.
+//!
+//! Here we're using the codec from tokio-io to convert a UDP socket to a stream of
+//! client messages. These messages are then processed and returned back as a
+//! new message with a new destination. Overall, we then use this to construct a
+//! "ping pong" pair where two sockets are sending messages back and forth.
+
+#![deny(warnings)]
+
+extern crate tokio;
+extern crate tokio_codec;
+extern crate tokio_io;
+extern crate env_logger;
+
+use std::net::SocketAddr;
+
+use tokio::prelude::*;
+use tokio::net::{UdpSocket, UdpFramed};
+use tokio_codec::BytesCodec;
+
+fn main() {
+ let _ = env_logger::init();
+
+ let addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
+
+ // Bind both our sockets and then figure out what ports we got.
+ let a = UdpSocket::bind(&addr).unwrap();
+ let b = UdpSocket::bind(&addr).unwrap();
+ let b_addr = b.local_addr().unwrap();
+
+ // We're parsing each socket with the `BytesCodec` included in `tokio_io`, and then we
+ // `split` each codec into the sink/stream halves.
+ let (a_sink, a_stream) = UdpFramed::new(a, BytesCodec::new()).split();
+ let (b_sink, b_stream) = UdpFramed::new(b, BytesCodec::new()).split();
+
+ // Start off by sending a ping from a to b, afterwards we just print out
+ // what they send us and continually send pings
+ // let pings = stream::iter((0..5).map(Ok));
+ let a = a_sink.send(("PING".into(), b_addr)).and_then(|a_sink| {
+ let mut i = 0;
+ let a_stream = a_stream.take(4).map(move |(msg, addr)| {
+ i += 1;
+ println!("[a] recv: {}", String::from_utf8_lossy(&msg));
+ (format!("PING {}", i).into(), addr)
+ });
+ a_sink.send_all(a_stream)
+ });
+
+ // The second client we have will receive the pings from `a` and then send
+ // back pongs.
+ let b_stream = b_stream.map(|(msg, addr)| {
+ println!("[b] recv: {}", String::from_utf8_lossy(&msg));
+ ("PONG".into(), addr)
+ });
+ let b = b_sink.send_all(b_stream);
+
+ // Spawn the sender of pongs and then wait for our pinger to finish.
+ tokio::run({
+ b.join(a)
+ .map(|_| ())
+ .map_err(|e| println!("error = {:?}", e))
+ });
+}
diff --git a/third_party/rust/tokio-0.1.11/src/async_await.rs b/third_party/rust/tokio-0.1.11/src/async_await.rs
new file mode 100644
index 0000000000..88903643ff
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/async_await.rs
@@ -0,0 +1,26 @@
+use std::future::{Future as StdFuture};
+
+async fn map_ok<T: StdFuture>(future: T) -> Result<(), ()> {
+ let _ = await!(future);
+ Ok(())
+}
+
+/// Like `tokio::run`, but takes an `async` block
+pub fn run_async<F>(future: F)
+where F: StdFuture<Output = ()> + Send + 'static,
+{
+ use tokio_async_await::compat::backward;
+ let future = backward::Compat::new(map_ok(future));
+
+ ::run(future);
+}
+
+/// Like `tokio::spawn`, but takes an `async` block
+pub fn spawn_async<F>(future: F)
+where F: StdFuture<Output = ()> + Send + 'static,
+{
+ use tokio_async_await::compat::backward;
+ let future = backward::Compat::new(map_ok(future));
+
+ ::spawn(future);
+}
diff --git a/third_party/rust/tokio-0.1.11/src/clock.rs b/third_party/rust/tokio-0.1.11/src/clock.rs
new file mode 100644
index 0000000000..7ddbbf37fe
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/clock.rs
@@ -0,0 +1,15 @@
+//! A configurable source of time.
+//!
+//! This module provides the [`now`][n] function, which returns an `Instant`
+//! representing "now". The source of time used by this function is configurable
+//! (via the [`tokio-timer`] crate) and allows mocking out the source of time in
+//! tests or performing caching operations to reduce the number of syscalls.
+//!
+//! Note that, because the source of time is configurable, it is possible to
+//! observe non-monotonic behavior when calling [`now`][n] from different
+//! executors.
+//!
+//! [n]: fn.now.html
+//! [`tokio-timer`]: https://docs.rs/tokio-timer/0.2/tokio_timer/clock/index.html
+
+pub use tokio_timer::clock::now;
diff --git a/third_party/rust/tokio-0.1.11/src/codec/length_delimited.rs b/third_party/rust/tokio-0.1.11/src/codec/length_delimited.rs
new file mode 100644
index 0000000000..54ec202bb1
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/codec/length_delimited.rs
@@ -0,0 +1,971 @@
+//! Frame a stream of bytes based on a length prefix
+//!
+//! Many protocols delimit their frames by prefacing frame data with a
+//! frame head that specifies the length of the frame. The
+//! `length_delimited` module provides utilities for handling the length
+//! based framing. This allows the consumer to work with entire frames
+//! without having to worry about buffering or other framing logic.
+//!
+//! # Getting started
+//!
+//! If implementing a protocol from scratch, using length delimited framing
+//! is an easy way to get started. [`Codec::new()`] will return a length
+//! delimited codec using default configuration values. This can then be
+//! used to construct a framer to adapt a full-duplex byte stream into a
+//! stream of frames.
+//!
+//! ```
+//! # extern crate tokio;
+//! use tokio::io::{AsyncRead, AsyncWrite};
+//! use tokio::codec::*;
+//!
+//! fn bind_transport<T: AsyncRead + AsyncWrite>(io: T)
+//! -> Framed<T, LengthDelimitedCodec>
+//! {
+//! Framed::new(io, LengthDelimitedCodec::new())
+//! }
+//! # pub fn main() {}
+//! ```
+//!
+//! The returned transport implements `Sink + Stream` for `BytesMut`. It
+//! encodes the frame with a big-endian `u32` header denoting the frame
+//! payload length:
+//!
+//! ```text
+//! +----------+--------------------------------+
+//! | len: u32 | frame payload |
+//! +----------+--------------------------------+
+//! ```
+//!
+//! Specifically, given the following:
+//!
+//! ```
+//! # extern crate tokio;
+//! # extern crate bytes;
+//! # extern crate futures;
+//! #
+//! use tokio::io::{AsyncRead, AsyncWrite};
+//! use tokio::codec::*;
+//! use bytes::Bytes;
+//! use futures::{Sink, Future};
+//!
+//! fn write_frame<T: AsyncRead + AsyncWrite>(io: T) {
+//! let mut transport = Framed::new(io, LengthDelimitedCodec::new());
+//! let frame = Bytes::from("hello world");
+//!
+//! transport.send(frame).wait().unwrap();
+//! }
+//! #
+//! # pub fn main() {}
+//! ```
+//!
+//! The encoded frame will look like this:
+//!
+//! ```text
+//! +---- len: u32 ----+---- data ----+
+//! | \x00\x00\x00\x0b | hello world |
+//! +------------------+--------------+
+//! ```
+//!
+//! # Decoding
+//!
+//! [`FramedRead`] adapts an [`AsyncRead`] into a `Stream` of [`BytesMut`],
+//! such that each yielded [`BytesMut`] value contains the contents of an
+//! entire frame. There are many configuration parameters enabling
+//! [`FramedRead`] to handle a wide range of protocols. Here are some
+//! examples that will cover the various options at a high level.
+//!
+//! ## Example 1
+//!
+//! The following will parse a `u16` length field at offset 0, including the
+//! frame head in the yielded `BytesMut`.
+//!
+//! ```
+//! # extern crate tokio;
+//! # use tokio::io::AsyncRead;
+//! # use tokio::codec::length_delimited;
+//! # fn bind_read<T: AsyncRead>(io: T) {
+//! length_delimited::Builder::new()
+//! .length_field_offset(0) // default value
+//! .length_field_length(2)
+//! .length_adjustment(0) // default value
+//! .num_skip(0) // Do not strip frame header
+//! .new_read(io);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! The following frame will be decoded as such:
+//!
+//! ```text
+//! INPUT DECODED
+//! +-- len ---+--- Payload ---+ +-- len ---+--- Payload ---+
+//! | \x00\x0B | Hello world | --> | \x00\x0B | Hello world |
+//! +----------+---------------+ +----------+---------------+
+//! ```
+//!
+//! The value of the length field is 11 (`\x0B`) which represents the length
+//! of the payload, `hello world`. By default, [`FramedRead`] assumes that
+//! the length field represents the number of bytes that **follows** the
+//! length field. Thus, the entire frame has a length of 13: 2 bytes for the
+//! frame head + 11 bytes for the payload.
+//!
+//! ## Example 2
+//!
+//! The following will parse a `u16` length field at offset 0, omitting the
+//! frame head in the yielded `BytesMut`.
+//!
+//! ```
+//! # extern crate tokio;
+//! # use tokio::io::AsyncRead;
+//! # use tokio::codec::length_delimited;
+//! # fn bind_read<T: AsyncRead>(io: T) {
+//! length_delimited::Builder::new()
+//! .length_field_offset(0) // default value
+//! .length_field_length(2)
+//! .length_adjustment(0) // default value
+//! // `num_skip` is not needed, the default is to skip
+//! .new_read(io);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! The following frame will be decoded as such:
+//!
+//! ```text
+//! INPUT DECODED
+//! +-- len ---+--- Payload ---+ +--- Payload ---+
+//! | \x00\x0B | Hello world | --> | Hello world |
+//! +----------+---------------+ +---------------+
+//! ```
+//!
+//! This is similar to the first example, the only difference is that the
+//! frame head is **not** included in the yielded `BytesMut` value.
+//!
+//! ## Example 3
+//!
+//! The following will parse a `u16` length field at offset 0, including the
+//! frame head in the yielded `BytesMut`. In this case, the length field
+//! **includes** the frame head length.
+//!
+//! ```
+//! # extern crate tokio;
+//! # use tokio::io::AsyncRead;
+//! # use tokio::codec::length_delimited;
+//! # fn bind_read<T: AsyncRead>(io: T) {
+//! length_delimited::Builder::new()
+//! .length_field_offset(0) // default value
+//! .length_field_length(2)
+//! .length_adjustment(-2) // size of head
+//! .num_skip(0)
+//! .new_read(io);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! The following frame will be decoded as such:
+//!
+//! ```text
+//! INPUT DECODED
+//! +-- len ---+--- Payload ---+ +-- len ---+--- Payload ---+
+//! | \x00\x0D | Hello world | --> | \x00\x0D | Hello world |
+//! +----------+---------------+ +----------+---------------+
+//! ```
+//!
+//! In most cases, the length field represents the length of the payload
+//! only, as shown in the previous examples. However, in some protocols the
+//! length field represents the length of the whole frame, including the
+//! head. In such cases, we specify a negative `length_adjustment` to adjust
+//! the value provided in the frame head to represent the payload length.
+//!
+//! ## Example 4
+//!
+//! The following will parse a 3 byte length field at offset 0 in a 5 byte
+//! frame head, including the frame head in the yielded `BytesMut`.
+//!
+//! ```
+//! # extern crate tokio;
+//! # use tokio::io::AsyncRead;
+//! # use tokio::codec::length_delimited;
+//! # fn bind_read<T: AsyncRead>(io: T) {
+//! length_delimited::Builder::new()
+//! .length_field_offset(0) // default value
+//! .length_field_length(3)
+//! .length_adjustment(2) // remaining head
+//! .num_skip(0)
+//! .new_read(io);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! The following frame will be decoded as such:
+//!
+//! ```text
+//! INPUT
+//! +---- len -----+- head -+--- Payload ---+
+//! | \x00\x00\x0B | \xCAFE | Hello world |
+//! +--------------+--------+---------------+
+//!
+//! DECODED
+//! +---- len -----+- head -+--- Payload ---+
+//! | \x00\x00\x0B | \xCAFE | Hello world |
+//! +--------------+--------+---------------+
+//! ```
+//!
+//! A more advanced example that shows a case where there is extra frame
+//! head data between the length field and the payload. In such cases, it is
+//! usually desirable to include the frame head as part of the yielded
+//! `BytesMut`. This lets consumers of the length delimited framer to
+//! process the frame head as needed.
+//!
+//! The positive `length_adjustment` value lets `FramedRead` factor in the
+//! additional head into the frame length calculation.
+//!
+//! ## Example 5
+//!
+//! The following will parse a `u16` length field at offset 1 of a 4 byte
+//! frame head. The first byte and the length field will be omitted from the
+//! yielded `BytesMut`, but the trailing 2 bytes of the frame head will be
+//! included.
+//!
+//! ```
+//! # extern crate tokio;
+//! # use tokio::io::AsyncRead;
+//! # use tokio::codec::length_delimited;
+//! # fn bind_read<T: AsyncRead>(io: T) {
+//! length_delimited::Builder::new()
+//! .length_field_offset(1) // length of hdr1
+//! .length_field_length(2)
+//! .length_adjustment(1) // length of hdr2
+//! .num_skip(3) // length of hdr1 + LEN
+//! .new_read(io);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! The following frame will be decoded as such:
+//!
+//! ```text
+//! INPUT
+//! +- hdr1 -+-- len ---+- hdr2 -+--- Payload ---+
+//! | \xCA | \x00\x0B | \xFE | Hello world |
+//! +--------+----------+--------+---------------+
+//!
+//! DECODED
+//! +- hdr2 -+--- Payload ---+
+//! | \xFE | Hello world |
+//! +--------+---------------+
+//! ```
+//!
+//! The length field is situated in the middle of the frame head. In this
+//! case, the first byte in the frame head could be a version or some other
+//! identifier that is not needed for processing. On the other hand, the
+//! second half of the head is needed.
+//!
+//! `length_field_offset` indicates how many bytes to skip before starting
+//! to read the length field. `length_adjustment` is the number of bytes to
+//! skip starting at the end of the length field. In this case, it is the
+//! second half of the head.
+//!
+//! ## Example 6
+//!
+//! The following will parse a `u16` length field at offset 1 of a 4 byte
+//! frame head. The first byte and the length field will be omitted from the
+//! yielded `BytesMut`, but the trailing 2 bytes of the frame head will be
+//! included. In this case, the length field **includes** the frame head
+//! length.
+//!
+//! ```
+//! # extern crate tokio;
+//! # use tokio::io::AsyncRead;
+//! # use tokio::codec::length_delimited;
+//! # fn bind_read<T: AsyncRead>(io: T) {
+//! length_delimited::Builder::new()
+//! .length_field_offset(1) // length of hdr1
+//! .length_field_length(2)
+//! .length_adjustment(-3) // length of hdr1 + LEN, negative
+//! .num_skip(3)
+//! .new_read(io);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! The following frame will be decoded as such:
+//!
+//! ```text
+//! INPUT
+//! +- hdr1 -+-- len ---+- hdr2 -+--- Payload ---+
+//! | \xCA | \x00\x0F | \xFE | Hello world |
+//! +--------+----------+--------+---------------+
+//!
+//! DECODED
+//! +- hdr2 -+--- Payload ---+
+//! | \xFE | Hello world |
+//! +--------+---------------+
+//! ```
+//!
+//! Similar to the example above, the difference is that the length field
+//! represents the length of the entire frame instead of just the payload.
+//! The length of `hdr1` and `len` must be counted in `length_adjustment`.
+//! Note that the length of `hdr2` does **not** need to be explicitly set
+//! anywhere because it already is factored into the total frame length that
+//! is read from the byte stream.
+//!
+//! # Encoding
+//!
+//! [`FramedWrite`] adapts an [`AsyncWrite`] into a `Sink` of [`BytesMut`],
+//! such that each submitted [`BytesMut`] is prefaced by a length field.
+//! There are fewer configuration options than [`FramedRead`]. Given
+//! protocols that have more complex frame heads, an encoder should probably
+//! be written by hand using [`Encoder`].
+//!
+//! Here is a simple example, given a `FramedWrite` with the following
+//! configuration:
+//!
+//! ```
+//! # extern crate tokio;
+//! # extern crate bytes;
+//! # use tokio::io::AsyncWrite;
+//! # use tokio::codec::length_delimited;
+//! # use bytes::BytesMut;
+//! # fn write_frame<T: AsyncWrite>(io: T) {
+//! # let _ =
+//! length_delimited::Builder::new()
+//! .length_field_length(2)
+//! .new_write(io);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! A payload of `hello world` will be encoded as:
+//!
+//! ```text
+//! +- len: u16 -+---- data ----+
+//! | \x00\x0b | hello world |
+//! +------------+--------------+
+//! ```
+//!
+//! [`FramedRead`]: struct.FramedRead.html
+//! [`FramedWrite`]: struct.FramedWrite.html
+//! [`AsyncRead`]: ../../trait.AsyncRead.html
+//! [`AsyncWrite`]: ../../trait.AsyncWrite.html
+//! [`Encoder`]: ../trait.Encoder.html
+//! [`BytesMut`]: https://docs.rs/bytes/0.4/bytes/struct.BytesMut.html
+
+use {
+ codec::{
+ Decoder, Encoder, FramedRead, FramedWrite, Framed
+ },
+ io::{
+ AsyncRead, AsyncWrite
+ },
+};
+
+use bytes::{Buf, BufMut, Bytes, BytesMut, IntoBuf};
+
+use std::{cmp, fmt};
+use std::error::Error as StdError;
+use std::io::{self, Cursor};
+
+/// Configure length delimited `LengthDelimitedCodec`s.
+///
+/// `Builder` enables constructing configured length delimited codecs. Note
+/// that not all configuration settings apply to both encoding and decoding. See
+/// the documentation for specific methods for more detail.
+#[derive(Debug, Clone, Copy)]
+pub struct Builder {
+ // Maximum frame length
+ max_frame_len: usize,
+
+ // Number of bytes representing the field length
+ length_field_len: usize,
+
+ // Number of bytes in the header before the length field
+ length_field_offset: usize,
+
+ // Adjust the length specified in the header field by this amount
+ length_adjustment: isize,
+
+ // Total number of bytes to skip before reading the payload, if not set,
+ // `length_field_len + length_field_offset`
+ num_skip: Option<usize>,
+
+ // Length field byte order (little or big endian)
+ length_field_is_big_endian: bool,
+}
+
+/// An error when the number of bytes read is more than max frame length.
+pub struct FrameTooBig {
+ _priv: (),
+}
+
+/// A codec for frames delimited by a frame head specifying their lengths.
+///
+/// This allows the consumer to work with entire frames without having to worry
+/// about buffering or other framing logic.
+///
+/// See [module level] documentation for more detail.
+///
+/// [module level]: index.html
+#[derive(Debug)]
+pub struct LengthDelimitedCodec {
+ // Configuration values
+ builder: Builder,
+
+ // Read state
+ state: DecodeState,
+}
+
+#[derive(Debug, Clone, Copy)]
+enum DecodeState {
+ Head,
+ Data(usize),
+}
+
+// ===== impl LengthDelimitedCodec ======
+
+impl LengthDelimitedCodec {
+ /// Creates a new `LengthDelimitedCodec` with the default configuration values.
+ pub fn new() -> Self {
+ Self {
+ builder: Builder::new(),
+ state: DecodeState::Head,
+ }
+ }
+
+ /// Returns the current max frame setting
+ ///
+ /// This is the largest size this codec will accept from the wire. Larger
+ /// frames will be rejected.
+ pub fn max_frame_length(&self) -> usize {
+ self.builder.max_frame_len
+ }
+
+ /// Updates the max frame setting.
+ ///
+ /// The change takes effect the next time a frame is decoded. In other
+ /// words, if a frame is currently in process of being decoded with a frame
+ /// size greater than `val` but less than the max frame length in effect
+ /// before calling this function, then the frame will be allowed.
+ pub fn set_max_frame_length(&mut self, val: usize) {
+ self.builder.max_frame_length(val);
+ }
+
+ fn decode_head(&mut self, src: &mut BytesMut) -> io::Result<Option<usize>> {
+ let head_len = self.builder.num_head_bytes();
+ let field_len = self.builder.length_field_len;
+
+ if src.len() < head_len {
+ // Not enough data
+ return Ok(None);
+ }
+
+ let n = {
+ let mut src = Cursor::new(&mut *src);
+
+ // Skip the required bytes
+ src.advance(self.builder.length_field_offset);
+
+ // match endianess
+ let n = if self.builder.length_field_is_big_endian {
+ src.get_uint_be(field_len)
+ } else {
+ src.get_uint_le(field_len)
+ };
+
+ if n > self.builder.max_frame_len as u64 {
+ return Err(io::Error::new(io::ErrorKind::InvalidData, FrameTooBig {
+ _priv: (),
+ }));
+ }
+
+ // The check above ensures there is no overflow
+ let n = n as usize;
+
+ // Adjust `n` with bounds checking
+ let n = if self.builder.length_adjustment < 0 {
+ n.checked_sub(-self.builder.length_adjustment as usize)
+ } else {
+ n.checked_add(self.builder.length_adjustment as usize)
+ };
+
+ // Error handling
+ match n {
+ Some(n) => n,
+ None => return Err(io::Error::new(io::ErrorKind::InvalidInput, "provided length would overflow after adjustment")),
+ }
+ };
+
+ let num_skip = self.builder.get_num_skip();
+
+ if num_skip > 0 {
+ let _ = src.split_to(num_skip);
+ }
+
+ // Ensure that the buffer has enough space to read the incoming
+ // payload
+ src.reserve(n);
+
+ return Ok(Some(n));
+ }
+
+ fn decode_data(&self, n: usize, src: &mut BytesMut) -> io::Result<Option<BytesMut>> {
+ // At this point, the buffer has already had the required capacity
+ // reserved. All there is to do is read.
+ if src.len() < n {
+ return Ok(None);
+ }
+
+ Ok(Some(src.split_to(n)))
+ }
+}
+
+impl Decoder for LengthDelimitedCodec {
+ type Item = BytesMut;
+ type Error = io::Error;
+
+ fn decode(&mut self, src: &mut BytesMut) -> io::Result<Option<BytesMut>> {
+ let n = match self.state {
+ DecodeState::Head => {
+ match try!(self.decode_head(src)) {
+ Some(n) => {
+ self.state = DecodeState::Data(n);
+ n
+ }
+ None => return Ok(None),
+ }
+ }
+ DecodeState::Data(n) => n,
+ };
+
+ match try!(self.decode_data(n, src)) {
+ Some(data) => {
+ // Update the decode state
+ self.state = DecodeState::Head;
+
+ // Make sure the buffer has enough space to read the next head
+ src.reserve(self.builder.num_head_bytes());
+
+ Ok(Some(data))
+ }
+ None => Ok(None),
+ }
+ }
+}
+
+impl Encoder for LengthDelimitedCodec {
+ type Item = Bytes;
+ type Error = io::Error;
+
+ fn encode(&mut self, data: Bytes, dst: &mut BytesMut) -> Result<(), io::Error> {
+ let n = (&data).into_buf().remaining();
+
+ if n > self.builder.max_frame_len {
+ return Err(io::Error::new(io::ErrorKind::InvalidInput, FrameTooBig {
+ _priv: (),
+ }));
+ }
+
+ // Adjust `n` with bounds checking
+ let n = if self.builder.length_adjustment < 0 {
+ n.checked_add(-self.builder.length_adjustment as usize)
+ } else {
+ n.checked_sub(self.builder.length_adjustment as usize)
+ };
+
+ let n = n.ok_or_else(|| io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "provided length would overflow after adjustment",
+ ))?;
+
+ if self.builder.length_field_is_big_endian {
+ dst.put_uint_be(n as u64, self.builder.length_field_len);
+ } else {
+ dst.put_uint_le(n as u64, self.builder.length_field_len);
+ }
+
+ // Write the frame to the buffer
+ dst.extend_from_slice(&data[..]);
+
+ Ok(())
+ }
+}
+
+// ===== impl Builder =====
+
+impl Builder {
+ /// Creates a new length delimited codec builder with default configuration
+ /// values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .length_field_offset(0)
+ /// .length_field_length(2)
+ /// .length_adjustment(0)
+ /// .num_skip(0)
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn new() -> Builder {
+ Builder {
+ // Default max frame length of 8MB
+ max_frame_len: 8 * 1_024 * 1_024,
+
+ // Default byte length of 4
+ length_field_len: 4,
+
+ // Default to the header field being at the start of the header.
+ length_field_offset: 0,
+
+ length_adjustment: 0,
+
+ // Total number of bytes to skip before reading the payload, if not set,
+ // `length_field_len + length_field_offset`
+ num_skip: None,
+
+ // Default to reading the length field in network (big) endian.
+ length_field_is_big_endian: true,
+ }
+ }
+
+ /// Read the length field as a big endian integer
+ ///
+ /// This is the default setting.
+ ///
+ /// This configuration option applies to both encoding and decoding.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .big_endian()
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn big_endian(&mut self) -> &mut Self {
+ self.length_field_is_big_endian = true;
+ self
+ }
+
+ /// Read the length field as a little endian integer
+ ///
+ /// The default setting is big endian.
+ ///
+ /// This configuration option applies to both encoding and decoding.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .little_endian()
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn little_endian(&mut self) -> &mut Self {
+ self.length_field_is_big_endian = false;
+ self
+ }
+
+ /// Read the length field as a native endian integer
+ ///
+ /// The default setting is big endian.
+ ///
+ /// This configuration option applies to both encoding and decoding.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .native_endian()
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn native_endian(&mut self) -> &mut Self {
+ if cfg!(target_endian = "big") {
+ self.big_endian()
+ } else {
+ self.little_endian()
+ }
+ }
+
+ /// Sets the max frame length
+ ///
+ /// This configuration option applies to both encoding and decoding. The
+ /// default value is 8MB.
+ ///
+ /// When decoding, the length field read from the byte stream is checked
+ /// against this setting **before** any adjustments are applied. When
+ /// encoding, the length of the submitted payload is checked against this
+ /// setting.
+ ///
+ /// When frames exceed the max length, an `io::Error` with the custom value
+ /// of the `FrameTooBig` type will be returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .max_frame_length(8 * 1024)
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn max_frame_length(&mut self, val: usize) -> &mut Self {
+ self.max_frame_len = val;
+ self
+ }
+
+ /// Sets the number of bytes used to represent the length field
+ ///
+ /// The default value is `4`. The max value is `8`.
+ ///
+ /// This configuration option applies to both encoding and decoding.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .length_field_length(4)
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn length_field_length(&mut self, val: usize) -> &mut Self {
+ assert!(val > 0 && val <= 8, "invalid length field length");
+ self.length_field_len = val;
+ self
+ }
+
+ /// Sets the number of bytes in the header before the length field
+ ///
+ /// This configuration option only applies to decoding.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .length_field_offset(1)
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn length_field_offset(&mut self, val: usize) -> &mut Self {
+ self.length_field_offset = val;
+ self
+ }
+
+ /// Delta between the payload length specified in the header and the real
+ /// payload length
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .length_adjustment(-2)
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn length_adjustment(&mut self, val: isize) -> &mut Self {
+ self.length_adjustment = val;
+ self
+ }
+
+ /// Sets the number of bytes to skip before reading the payload
+ ///
+ /// Default value is `length_field_len + length_field_offset`
+ ///
+ /// This configuration option only applies to decoding
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .num_skip(4)
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn num_skip(&mut self, val: usize) -> &mut Self {
+ self.num_skip = Some(val);
+ self
+ }
+
+ /// Create a configured length delimited `LengthDelimitedCodec`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ /// # pub fn main() {
+ /// Builder::new()
+ /// .length_field_offset(0)
+ /// .length_field_length(2)
+ /// .length_adjustment(0)
+ /// .num_skip(0)
+ /// .new_codec();
+ /// # }
+ /// ```
+ pub fn new_codec(&self) -> LengthDelimitedCodec {
+ LengthDelimitedCodec {
+ builder: *self,
+ state: DecodeState::Head,
+ }
+ }
+
+ /// Create a configured length delimited `FramedRead`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::io::AsyncRead;
+ /// use tokio::codec::length_delimited::Builder;
+ ///
+ /// # fn bind_read<T: AsyncRead>(io: T) {
+ /// Builder::new()
+ /// .length_field_offset(0)
+ /// .length_field_length(2)
+ /// .length_adjustment(0)
+ /// .num_skip(0)
+ /// .new_read(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn new_read<T>(&self, upstream: T) -> FramedRead<T, LengthDelimitedCodec>
+ where T: AsyncRead,
+ {
+ FramedRead::new(upstream, self.new_codec())
+ }
+
+ /// Create a configured length delimited `FramedWrite`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate bytes;
+ /// # use tokio::io::AsyncWrite;
+ /// # use tokio::codec::length_delimited;
+ /// # use bytes::BytesMut;
+ /// # fn write_frame<T: AsyncWrite>(io: T) {
+ /// length_delimited::Builder::new()
+ /// .length_field_length(2)
+ /// .new_write(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn new_write<T>(&self, inner: T) -> FramedWrite<T, LengthDelimitedCodec>
+ where T: AsyncWrite,
+ {
+ FramedWrite::new(inner, self.new_codec())
+ }
+
+ /// Create a configured length delimited `Framed`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate bytes;
+ /// # use tokio::io::{AsyncRead, AsyncWrite};
+ /// # use tokio::codec::length_delimited;
+ /// # use bytes::BytesMut;
+ /// # fn write_frame<T: AsyncRead + AsyncWrite>(io: T) {
+ /// # let _ =
+ /// length_delimited::Builder::new()
+ /// .length_field_length(2)
+ /// .new_framed(io);
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ pub fn new_framed<T>(&self, inner: T) -> Framed<T, LengthDelimitedCodec>
+ where T: AsyncRead + AsyncWrite,
+ {
+ Framed::new(inner, self.new_codec())
+ }
+
+ fn num_head_bytes(&self) -> usize {
+ let num = self.length_field_offset + self.length_field_len;
+ cmp::max(num, self.num_skip.unwrap_or(0))
+ }
+
+ fn get_num_skip(&self) -> usize {
+ self.num_skip.unwrap_or(self.length_field_offset + self.length_field_len)
+ }
+}
+
+
+// ===== impl FrameTooBig =====
+
+impl fmt::Debug for FrameTooBig {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_struct("FrameTooBig")
+ .finish()
+ }
+}
+
+impl fmt::Display for FrameTooBig {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.write_str(self.description())
+ }
+}
+
+impl StdError for FrameTooBig {
+ fn description(&self) -> &str {
+ "frame size too big"
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/codec/mod.rs b/third_party/rust/tokio-0.1.11/src/codec/mod.rs
new file mode 100644
index 0000000000..cb0fc922de
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/codec/mod.rs
@@ -0,0 +1,26 @@
+//! Utilities for encoding and decoding frames.
+//!
+//! Contains adapters to go from streams of bytes, [`AsyncRead`] and
+//! [`AsyncWrite`], to framed streams implementing [`Sink`] and [`Stream`].
+//! Framed streams are also known as [transports].
+//!
+//! [`AsyncRead`]: ../io/trait.AsyncRead.html
+//! [`AsyncWrite`]: ../io/trait.AsyncWrite.html
+//! [`Sink`]: https://docs.rs/futures/0.1/futures/sink/trait.Sink.html
+//! [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
+//! [transports]: https://tokio.rs/docs/going-deeper/frames/
+
+pub use tokio_codec::{
+ Decoder,
+ Encoder,
+ Framed,
+ FramedParts,
+ FramedRead,
+ FramedWrite,
+ BytesCodec,
+ LinesCodec,
+};
+
+pub mod length_delimited;
+
+pub use self::length_delimited::LengthDelimitedCodec;
diff --git a/third_party/rust/tokio-0.1.11/src/executor/current_thread/mod.rs b/third_party/rust/tokio-0.1.11/src/executor/current_thread/mod.rs
new file mode 100644
index 0000000000..6036aa997b
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/executor/current_thread/mod.rs
@@ -0,0 +1,170 @@
+#![allow(deprecated)]
+
+//! Execute many tasks concurrently on the current thread.
+//!
+//! [`CurrentThread`] is an executor that keeps tasks on the same thread that
+//! they were spawned from. This allows it to execute futures that are not
+//! `Send`.
+//!
+//! A single [`CurrentThread`] instance is able to efficiently manage a large
+//! number of tasks and will attempt to schedule all tasks fairly.
+//!
+//! All tasks that are being managed by a [`CurrentThread`] executor are able to
+//! spawn additional tasks by calling [`spawn`]. This function only works from
+//! within the context of a running [`CurrentThread`] instance.
+//!
+//! The easiest way to start a new [`CurrentThread`] executor is to call
+//! [`block_on_all`] with an initial task to seed the executor.
+//!
+//! For example:
+//!
+//! ```
+//! # extern crate tokio;
+//! # extern crate futures;
+//! # use tokio::executor::current_thread;
+//! use futures::future::lazy;
+//!
+//! // Calling execute here results in a panic
+//! // current_thread::spawn(my_future);
+//!
+//! # pub fn main() {
+//! current_thread::block_on_all(lazy(|| {
+//! // The execution context is setup, futures may be executed.
+//! current_thread::spawn(lazy(|| {
+//! println!("called from the current thread executor");
+//! Ok(())
+//! }));
+//!
+//! Ok::<_, ()>(())
+//! }));
+//! # }
+//! ```
+//!
+//! The `block_on_all` function will block the current thread until **all**
+//! tasks that have been spawned onto the [`CurrentThread`] instance have
+//! completed.
+//!
+//! More fine-grain control can be achieved by using [`CurrentThread`] directly.
+//!
+//! ```
+//! # extern crate tokio;
+//! # extern crate futures;
+//! # use tokio::executor::current_thread::CurrentThread;
+//! use futures::future::{lazy, empty};
+//! use std::time::Duration;
+//!
+//! // Calling execute here results in a panic
+//! // current_thread::spawn(my_future);
+//!
+//! # pub fn main() {
+//! let mut current_thread = CurrentThread::new();
+//!
+//! // Spawn a task, the task is not executed yet.
+//! current_thread.spawn(lazy(|| {
+//! println!("Spawning a task");
+//! Ok(())
+//! }));
+//!
+//! // Spawn a task that never completes
+//! current_thread.spawn(empty());
+//!
+//! // Run the executor, but only until the provided future completes. This
+//! // provides the opportunity to start executing previously spawned tasks.
+//! let res = current_thread.block_on(lazy(|| {
+//! Ok::<_, ()>("Hello")
+//! })).unwrap();
+//!
+//! // Now, run the executor for *at most* 1 second. Since a task was spawned
+//! // that never completes, this function will return with an error.
+//! current_thread.run_timeout(Duration::from_secs(1)).unwrap_err();
+//! # }
+//! ```
+//!
+//! # Execution model
+//!
+//! Internally, [`CurrentThread`] maintains a queue. When one of its tasks is
+//! notified, the task gets added to the queue. The executor will pop tasks from
+//! the queue and call [`Future::poll`]. If the task gets notified while it is
+//! being executed, it won't get re-executed until all other tasks currently in
+//! the queue get polled.
+//!
+//! Before the task is polled, a thread-local variable referencing the current
+//! [`CurrentThread`] instance is set. This enables [`spawn`] to spawn new tasks
+//! onto the same executor without having to thread through a handle value.
+//!
+//! If the [`CurrentThread`] instance still has uncompleted tasks, but none of
+//! these tasks are ready to be polled, the current thread is put to sleep. When
+//! a task is notified, the thread is woken up and processing resumes.
+//!
+//! All tasks managed by [`CurrentThread`] remain on the current thread. When a
+//! task completes, it is dropped.
+//!
+//! [`spawn`]: fn.spawn.html
+//! [`block_on_all`]: fn.block_on_all.html
+//! [`CurrentThread`]: struct.CurrentThread.html
+//! [`Future::poll`]: https://docs.rs/futures/0.1/futures/future/trait.Future.html#tymethod.poll
+
+pub use tokio_current_thread::{
+ BlockError,
+ CurrentThread,
+ Entered,
+ Handle,
+ RunError,
+ RunTimeoutError,
+ TaskExecutor,
+ Turn,
+ TurnError,
+ block_on_all,
+ spawn,
+};
+
+use std::cell::Cell;
+use std::marker::PhantomData;
+
+use futures::future::{self};
+
+#[deprecated(since = "0.1.2", note = "use block_on_all instead")]
+#[doc(hidden)]
+#[derive(Debug)]
+pub struct Context<'a> {
+ cancel: Cell<bool>,
+ _p: PhantomData<&'a ()>,
+}
+
+impl<'a> Context<'a> {
+ /// Cancels *all* executing futures.
+ pub fn cancel_all_spawned(&self) {
+ self.cancel.set(true);
+ }
+}
+
+#[deprecated(since = "0.1.2", note = "use block_on_all instead")]
+#[doc(hidden)]
+pub fn run<F, R>(f: F) -> R
+ where F: FnOnce(&mut Context) -> R
+{
+ let mut context = Context {
+ cancel: Cell::new(false),
+ _p: PhantomData,
+ };
+
+ let mut current_thread = CurrentThread::new();
+
+ let ret = current_thread
+ .block_on(future::lazy(|| Ok::<_, ()>(f(&mut context))))
+ .unwrap();
+
+ if context.cancel.get() {
+ return ret;
+ }
+
+ current_thread.run().unwrap();
+ ret
+}
+
+#[deprecated(since = "0.1.2", note = "use TaskExecutor::current instead")]
+#[doc(hidden)]
+pub fn task_executor() -> TaskExecutor {
+ TaskExecutor::current()
+}
+
diff --git a/third_party/rust/tokio-0.1.11/src/executor/mod.rs b/third_party/rust/tokio-0.1.11/src/executor/mod.rs
new file mode 100644
index 0000000000..e1e47ae1d6
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/executor/mod.rs
@@ -0,0 +1,145 @@
+//! Task execution utilities.
+//!
+//! In the Tokio execution model, futures are lazy. When a future is created, no
+//! work is performed. In order for the work defined by the future to happen,
+//! the future must be submitted to an executor. A future that is submitted to
+//! an executor is called a "task".
+//!
+//! The executor is responsible for ensuring that [`Future::poll`] is
+//! called whenever the task is [notified]. Notification happens when the
+//! internal state of a task transitions from "not ready" to ready. For
+//! example, a socket might have received data and a call to `read` will now be
+//! able to succeed.
+//!
+//! The specific strategy used to manage the tasks is left up to the
+//! executor. There are two main flavors of executors: single-threaded and
+//! multi-threaded. Tokio provides implementation for both of these in the
+//! [`runtime`] module.
+//!
+//! # `Executor` trait.
+//!
+//! This module provides the [`Executor`] trait (re-exported from
+//! [`tokio-executor`]), which describes the API that all executors must
+//! implement.
+//!
+//! A free [`spawn`] function is provided that allows spawning futures onto the
+//! default executor (tracked via a thread-local variable) without referencing a
+//! handle. It is expected that all executors will set a value for the default
+//! executor. This value will often be set to the executor itself, but it is
+//! possible that the default executor might be set to a different executor.
+//!
+//! For example, a single threaded executor might set the default executor to a
+//! thread pool instead of itself, allowing futures to spawn new tasks onto the
+//! thread pool when those tasks are `Send`.
+//!
+//! [`Future::poll`]: https://docs.rs/futures/0.1/futures/future/trait.Future.html#tymethod.poll
+//! [notified]: https://docs.rs/futures/0.1/futures/executor/trait.Notify.html#tymethod.notify
+//! [`runtime`]: ../runtime/index.html
+//! [`tokio-executor`]: https://docs.rs/tokio-executor/0.1
+//! [`Executor`]: trait.Executor.html
+//! [`spawn`]: fn.spawn.html
+
+#[deprecated(
+ since = "0.1.8",
+ note = "use tokio-current-thread crate or functions in tokio::runtime::current_thread instead",
+)]
+#[doc(hidden)]
+pub mod current_thread;
+
+#[deprecated(since = "0.1.8", note = "use tokio-threadpool crate instead")]
+#[doc(hidden)]
+/// Re-exports of [`tokio-threadpool`], deprecated in favor of the crate.
+///
+/// [`tokio-threadpool`]: https://docs.rs/tokio-threadpool/0.1
+pub mod thread_pool {
+ pub use tokio_threadpool::{
+ Builder,
+ Sender,
+ Shutdown,
+ ThreadPool,
+ };
+}
+
+pub use tokio_executor::{Executor, DefaultExecutor, SpawnError};
+
+use futures::{Future, IntoFuture};
+use futures::future::{self, FutureResult};
+
+/// Return value from the `spawn` function.
+///
+/// Currently this value doesn't actually provide any functionality. However, it
+/// provides a way to add functionality later without breaking backwards
+/// compatibility.
+///
+/// This also implements `IntoFuture` so that it can be used as the return value
+/// in a `for_each` loop.
+///
+/// See [`spawn`] for more details.
+///
+/// [`spawn`]: fn.spawn.html
+#[derive(Debug)]
+pub struct Spawn(());
+
+/// Spawns a future on the default executor.
+///
+/// In order for a future to do work, it must be spawned on an executor. The
+/// `spawn` function is the easiest way to do this. It spawns a future on the
+/// [default executor] for the current execution context (tracked using a
+/// thread-local variable).
+///
+/// The default executor is **usually** a thread pool.
+///
+/// # Examples
+///
+/// In this example, a server is started and `spawn` is used to start a new task
+/// that processes each received connection.
+///
+/// ```rust
+/// # extern crate tokio;
+/// # extern crate futures;
+/// # use futures::{Future, Stream};
+/// use tokio::net::TcpListener;
+///
+/// # fn process<T>(_: T) -> Box<Future<Item = (), Error = ()> + Send> {
+/// # unimplemented!();
+/// # }
+/// # fn dox() {
+/// # let addr = "127.0.0.1:8080".parse().unwrap();
+/// let listener = TcpListener::bind(&addr).unwrap();
+///
+/// let server = listener.incoming()
+/// .map_err(|e| println!("error = {:?}", e))
+/// .for_each(|socket| {
+/// tokio::spawn(process(socket))
+/// });
+///
+/// tokio::run(server);
+/// # }
+/// # pub fn main() {}
+/// ```
+///
+/// [default executor]: struct.DefaultExecutor.html
+///
+/// # Panics
+///
+/// This function will panic if the default executor is not set or if spawning
+/// onto the default executor returns an error. To avoid the panic, use
+/// [`DefaultExecutor`].
+///
+/// [`DefaultExecutor`]: struct.DefaultExecutor.html
+pub fn spawn<F>(f: F) -> Spawn
+where F: Future<Item = (), Error = ()> + 'static + Send
+{
+ ::tokio_executor::spawn(f);
+ Spawn(())
+}
+
+impl IntoFuture for Spawn {
+ type Future = FutureResult<(), ()>;
+ type Item = ();
+ type Error = ();
+
+ fn into_future(self) -> Self::Future {
+ future::ok(())
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/fs.rs b/third_party/rust/tokio-0.1.11/src/fs.rs
new file mode 100644
index 0000000000..689a601368
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/fs.rs
@@ -0,0 +1,12 @@
+//! Asynchronous filesystem manipulation operations.
+//!
+//! This module contains basic methods and types for manipulating the contents
+//! of the local filesystem from within the context of the Tokio runtime.
+//!
+//! Unlike *most* other Tokio APIs, the filesystem APIs **must** be used from
+//! the context of the Tokio runtime as they require Tokio specific features to
+//! function.
+
+pub use tokio_fs::{create_dir, create_dir_all, file, hard_link, metadata, os, read_dir, read_link};
+pub use tokio_fs::{remove_dir, remove_file, rename, set_permissions, symlink_metadata, File};
+pub use tokio_fs::OpenOptions;
diff --git a/third_party/rust/tokio-0.1.11/src/io.rs b/third_party/rust/tokio-0.1.11/src/io.rs
new file mode 100644
index 0000000000..1d6bfd3a70
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/io.rs
@@ -0,0 +1,93 @@
+//! Asynchronous I/O.
+//!
+//! This module is the asynchronous version of `std::io`. Primarily, it
+//! defines two traits, [`AsyncRead`] and [`AsyncWrite`], which extend the
+//! `Read` and `Write` traits of the standard library.
+//!
+//! # AsyncRead and AsyncWrite
+//!
+//! [`AsyncRead`] and [`AsyncWrite`] must only be implemented for
+//! non-blocking I/O types that integrate with the futures type system. In
+//! other words, these types must never block the thread, and instead the
+//! current task is notified when the I/O resource is ready.
+//!
+//! # Standard input and output
+//!
+//! Tokio provides asynchronous APIs to standard [input], [output], and [error].
+//! These APIs are very similar to the ones provided by `std`, but they also
+//! implement [`AsyncRead`] and [`AsyncWrite`].
+//!
+//! Unlike *most* other Tokio APIs, the standard input / output APIs
+//! **must** be used from the context of the Tokio runtime as they require
+//! Tokio specific features to function.
+//!
+//! [input]: fn.stdin.html
+//! [output]: fn.stdout.html
+//! [error]: fn.stderr.html
+//!
+//! # Utility functions
+//!
+//! Utilities functions are provided for working with [`AsyncRead`] /
+//! [`AsyncWrite`] types. For example, [`copy`] asynchronously copies all
+//! data from a source to a destination.
+//!
+//! # `std` re-exports
+//!
+//! Additionally, [`Read`], [`Write`], [`Error`], [`ErrorKind`], and
+//! [`Result`] are re-exported from `std::io` for ease of use.
+//!
+//! [`AsyncRead`]: trait.AsyncRead.html
+//! [`AsyncWrite`]: trait.AsyncWrite.html
+//! [`copy`]: fn.copy.html
+//! [`Read`]: trait.Read.html
+//! [`Write`]: trait.Write.html
+//! [`Error`]: struct.Error.html
+//! [`ErrorKind`]: enum.ErrorKind.html
+//! [`Result`]: type.Result.html
+
+pub use tokio_io::{
+ AsyncRead,
+ AsyncWrite,
+};
+
+// standard input, output, and error
+pub use tokio_fs::{
+ stdin,
+ Stdin,
+ stdout,
+ Stdout,
+ stderr,
+ Stderr,
+};
+
+// Utils
+pub use tokio_io::io::{
+ copy,
+ Copy,
+ flush,
+ Flush,
+ lines,
+ Lines,
+ read_exact,
+ ReadExact,
+ read_to_end,
+ ReadToEnd,
+ read_until,
+ ReadUntil,
+ ReadHalf,
+ shutdown,
+ Shutdown,
+ write_all,
+ WriteAll,
+ WriteHalf,
+};
+
+// Re-export io::Error so that users don't have to deal
+// with conflicts when `use`ing `futures::io` and `std::io`.
+pub use ::std::io::{
+ Error,
+ ErrorKind,
+ Result,
+ Read,
+ Write,
+};
diff --git a/third_party/rust/tokio-0.1.11/src/lib.rs b/third_party/rust/tokio-0.1.11/src/lib.rs
new file mode 100644
index 0000000000..f652e53a90
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/lib.rs
@@ -0,0 +1,120 @@
+#![doc(html_root_url = "https://docs.rs/tokio/0.1.11")]
+#![deny(missing_docs, warnings, missing_debug_implementations)]
+#![cfg_attr(feature = "async-await-preview", feature(
+ async_await,
+ await_macro,
+ futures_api,
+ ))]
+
+//! A runtime for writing reliable, asynchronous, and slim applications.
+//!
+//! Tokio is an event-driven, non-blocking I/O platform for writing asynchronous
+//! applications with the Rust programming language. At a high level, it
+//! provides a few major components:
+//!
+//! * A multi threaded, work-stealing based task [scheduler][runtime].
+//! * A [reactor] backed by the operating system's event queue (epoll, kqueue,
+//! IOCP, etc...).
+//! * Asynchronous [TCP and UDP][net] sockets.
+//! * Asynchronous [filesystem][fs] operations.
+//! * [Timer][timer] API for scheduling work in the future.
+//!
+//! Tokio is built using [futures] as the abstraction for managing the
+//! complexity of asynchronous programming.
+//!
+//! Guide level documentation is found on the [website].
+//!
+//! [website]: https://tokio.rs/docs/getting-started/hello-world/
+//! [futures]: http://docs.rs/futures/0.1
+//!
+//! # Examples
+//!
+//! A simple TCP echo server:
+//!
+//! ```no_run
+//! extern crate tokio;
+//!
+//! use tokio::prelude::*;
+//! use tokio::io::copy;
+//! use tokio::net::TcpListener;
+//!
+//! fn main() {
+//! // Bind the server's socket.
+//! let addr = "127.0.0.1:12345".parse().unwrap();
+//! let listener = TcpListener::bind(&addr)
+//! .expect("unable to bind TCP listener");
+//!
+//! // Pull out a stream of sockets for incoming connections
+//! let server = listener.incoming()
+//! .map_err(|e| eprintln!("accept failed = {:?}", e))
+//! .for_each(|sock| {
+//! // Split up the reading and writing parts of the
+//! // socket.
+//! let (reader, writer) = sock.split();
+//!
+//! // A future that echos the data and returns how
+//! // many bytes were copied...
+//! let bytes_copied = copy(reader, writer);
+//!
+//! // ... after which we'll print what happened.
+//! let handle_conn = bytes_copied.map(|amt| {
+//! println!("wrote {:?} bytes", amt)
+//! }).map_err(|err| {
+//! eprintln!("IO error {:?}", err)
+//! });
+//!
+//! // Spawn the future as a concurrent task.
+//! tokio::spawn(handle_conn)
+//! });
+//!
+//! // Start the Tokio runtime
+//! tokio::run(server);
+//! }
+//! ```
+
+extern crate bytes;
+#[macro_use]
+extern crate futures;
+extern crate mio;
+extern crate tokio_current_thread;
+extern crate tokio_io;
+extern crate tokio_executor;
+extern crate tokio_codec;
+extern crate tokio_fs;
+extern crate tokio_reactor;
+extern crate tokio_threadpool;
+extern crate tokio_timer;
+extern crate tokio_tcp;
+extern crate tokio_udp;
+
+#[cfg(feature = "async-await-preview")]
+extern crate tokio_async_await;
+
+#[cfg(unix)]
+extern crate tokio_uds;
+
+pub mod clock;
+pub mod codec;
+pub mod executor;
+pub mod fs;
+pub mod io;
+pub mod net;
+pub mod prelude;
+pub mod reactor;
+pub mod runtime;
+pub mod timer;
+pub mod util;
+
+pub use executor::spawn;
+pub use runtime::run;
+
+// ===== Experimental async/await support =====
+
+#[cfg(feature = "async-await-preview")]
+mod async_await;
+
+#[cfg(feature = "async-await-preview")]
+pub use async_await::{run_async, spawn_async};
+
+#[cfg(feature = "async-await-preview")]
+pub use tokio_async_await::await;
diff --git a/third_party/rust/tokio-0.1.11/src/net.rs b/third_party/rust/tokio-0.1.11/src/net.rs
new file mode 100644
index 0000000000..79810b6a73
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/net.rs
@@ -0,0 +1,85 @@
+//! TCP/UDP/Unix bindings for `tokio`.
+//!
+//! This module contains the TCP/UDP/Unix networking types, similar to the standard
+//! library, which can be used to implement networking protocols.
+//!
+//! # Organization
+//!
+//! * [`TcpListener`] and [`TcpStream`] provide functionality for communication over TCP
+//! * [`UdpSocket`] and [`UdpFramed`] provide functionality for communication over UDP
+//! * [`UnixListener`] and [`UnixStream`] provide functionality for communication over a
+//! Unix Domain Socket **(available on Unix only)**
+//!
+//! [`TcpListener`]: struct.TcpListener.html
+//! [`TcpStream`]: struct.TcpStream.html
+//! [`UdpSocket`]: struct.UdpSocket.html
+//! [`UdpFramed`]: struct.UdpFramed.html
+//! [`UnixListener`]: struct.UnixListener.html
+//! [`UnixStream`]: struct.UnixStream.html
+
+pub mod tcp {
+ //! TCP bindings for `tokio`.
+ //!
+ //! Connecting to an address, via TCP, can be done using [`TcpStream`]'s
+ //! [`connect`] method, which returns [`ConnectFuture`]. `ConnectFuture`
+ //! implements a future which returns a `TcpStream`.
+ //!
+ //! To listen on an address [`TcpListener`] can be used. `TcpListener`'s
+ //! [`incoming`][incoming_method] method can be used to accept new connections.
+ //! It return the [`Incoming`] struct, which implements a stream which returns
+ //! `TcpStream`s.
+ //!
+ //! [`TcpStream`]: struct.TcpStream.html
+ //! [`connect`]: struct.TcpStream.html#method.connect
+ //! [`ConnectFuture`]: struct.ConnectFuture.html
+ //! [`TcpListener`]: struct.TcpListener.html
+ //! [incoming_method]: struct.TcpListener.html#method.incoming
+ //! [`Incoming`]: struct.Incoming.html
+ pub use tokio_tcp::{ConnectFuture, Incoming, TcpListener, TcpStream};
+}
+pub use self::tcp::{TcpListener, TcpStream};
+
+#[deprecated(note = "use `tokio::net::tcp::ConnectFuture` instead")]
+#[doc(hidden)]
+pub type ConnectFuture = self::tcp::ConnectFuture;
+#[deprecated(note = "use `tokio::net::tcp::Incoming` instead")]
+#[doc(hidden)]
+pub type Incoming = self::tcp::Incoming;
+
+pub mod udp {
+ //! UDP bindings for `tokio`.
+ //!
+ //! The main struct for UDP is the [`UdpSocket`], which represents a UDP socket.
+ //! Reading and writing to it can be done using futures, which return the
+ //! [`RecvDgram`] and [`SendDgram`] structs respectively.
+ //!
+ //! For convenience it's also possible to convert raw datagrams into higher-level
+ //! frames.
+ //!
+ //! [`UdpSocket`]: struct.UdpSocket.html
+ //! [`RecvDgram`]: struct.RecvDgram.html
+ //! [`SendDgram`]: struct.SendDgram.html
+ //! [`UdpFramed`]: struct.UdpFramed.html
+ //! [`framed`]: struct.UdpSocket.html#method.framed
+ pub use tokio_udp::{RecvDgram, SendDgram, UdpFramed, UdpSocket};
+}
+pub use self::udp::{UdpFramed, UdpSocket};
+
+#[deprecated(note = "use `tokio::net::udp::RecvDgram` instead")]
+#[doc(hidden)]
+pub type RecvDgram<T> = self::udp::RecvDgram<T>;
+#[deprecated(note = "use `tokio::net::udp::SendDgram` instead")]
+#[doc(hidden)]
+pub type SendDgram<T> = self::udp::SendDgram<T>;
+
+#[cfg(unix)]
+pub mod unix {
+ //! Unix domain socket bindings for `tokio` (only available on unix systems).
+
+ pub use tokio_uds::{
+ ConnectFuture, Incoming, RecvDgram, SendDgram, UCred, UnixDatagram, UnixListener,
+ UnixStream,
+ };
+}
+#[cfg(unix)]
+pub use self::unix::{UnixListener, UnixStream};
diff --git a/third_party/rust/tokio-0.1.11/src/prelude.rs b/third_party/rust/tokio-0.1.11/src/prelude.rs
new file mode 100644
index 0000000000..ecd82fe40c
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/prelude.rs
@@ -0,0 +1,54 @@
+//! A "prelude" for users of the `tokio` crate.
+//!
+//! This prelude is similar to the standard library's prelude in that you'll
+//! almost always want to import its entire contents, but unlike the standard
+//! library's prelude you'll have to do so manually:
+//!
+//! ```
+//! use tokio::prelude::*;
+//! ```
+//!
+//! The prelude may grow over time as additional items see ubiquitous use.
+
+pub use tokio_io::{
+ AsyncRead,
+ AsyncWrite,
+};
+
+pub use util::{
+ FutureExt,
+ StreamExt,
+};
+
+pub use ::std::io::{
+ Read,
+ Write,
+};
+
+pub use futures::{
+ Future,
+ future,
+ Stream,
+ stream,
+ Sink,
+ IntoFuture,
+ Async,
+ AsyncSink,
+ Poll,
+ task,
+};
+
+#[cfg(feature = "async-await-preview")]
+#[doc(inline)]
+pub use tokio_async_await::{
+ io::{
+ AsyncReadExt,
+ AsyncWriteExt,
+ },
+ sink::{
+ SinkExt,
+ },
+ stream::{
+ StreamExt as StreamAsyncExt,
+ },
+};
diff --git a/third_party/rust/tokio-0.1.11/src/reactor/mod.rs b/third_party/rust/tokio-0.1.11/src/reactor/mod.rs
new file mode 100644
index 0000000000..a7263fd83c
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/reactor/mod.rs
@@ -0,0 +1,149 @@
+//! Event loop that drives Tokio I/O resources.
+//!
+//! This module contains [`Reactor`], which is the event loop that drives all
+//! Tokio I/O resources. It is the reactor's job to receive events from the
+//! operating system ([epoll], [kqueue], [IOCP], etc...) and forward them to
+//! waiting tasks. It is the bridge between operating system and the futures
+//! model.
+//!
+//! # Overview
+//!
+//! When using Tokio, all operations are asynchronous and represented by
+//! futures. These futures, representing the application logic, are scheduled by
+//! an executor (see [runtime model] for more details). Executors wait for
+//! notifications before scheduling the future for execution time, i.e., nothing
+//! happens until an event is received indicating that the task can make
+//! progress.
+//!
+//! The reactor receives events from the operating system and notifies the
+//! executor.
+//!
+//! Let's start with a basic example, establishing a TCP connection.
+//!
+//! ```rust
+//! # extern crate tokio;
+//! # fn dox() {
+//! use tokio::prelude::*;
+//! use tokio::net::TcpStream;
+//!
+//! let addr = "93.184.216.34:9243".parse().unwrap();
+//!
+//! let connect_future = TcpStream::connect(&addr);
+//!
+//! let task = connect_future
+//! .and_then(|socket| {
+//! println!("successfully connected");
+//! Ok(())
+//! })
+//! .map_err(|e| println!("failed to connect; err={:?}", e));
+//!
+//! tokio::run(task);
+//! # }
+//! # fn main() {}
+//! ```
+//!
+//! Establishing a TCP connection usually cannot be completed immediately.
+//! [`TcpStream::connect`] does not block the current thread. Instead, it
+//! returns a [future][connect-future] that resolves once the TCP connection has
+//! been established. The connect future itself has no way of knowing when the
+//! TCP connection has been established.
+//!
+//! Before returning the future, [`TcpStream::connect`] registers the socket
+//! with a reactor. This registration process, handled by [`Registration`], is
+//! what links the [`TcpStream`] with the [`Reactor`] instance. At this point,
+//! the reactor starts listening for connection events from the operating system
+//! for that socket.
+//!
+//! Once the connect future is passed to [`tokio::run`], it is spawned onto a
+//! thread pool. The thread pool waits until it is notified that the connection
+//! has completed.
+//!
+//! When the TCP connection is established, the reactor receives an event from
+//! the operating system. It then notifies the thread pool, telling it that the
+//! connect future can complete. At this point, the thread pool will schedule
+//! the task to run on one of its worker threads. This results in the `and_then`
+//! closure to get executed.
+//!
+//! ## Lazy registration
+//!
+//! Notice how the snippet above does not explicitly reference a reactor. When
+//! [`TcpStream::connect`] is called, it registers the socket with a reactor,
+//! but no reactor is specified. This works because the registration process
+//! mentioned above is actually lazy. It doesn't *actually* happen in the
+//! [`connect`] function. Instead, the registration is established the first
+//! time that the task is polled (again, see [runtime model]).
+//!
+//! A reactor instance is automatically made available when using the Tokio
+//! [runtime], which is done using [`tokio::run`]. The Tokio runtime's executor
+//! sets a thread-local variable referencing the associated [`Reactor`] instance
+//! and [`Handle::current`] (used by [`Registration`]) returns the reference.
+//!
+//! ## Implementation
+//!
+//! The reactor implementation uses [`mio`] to interface with the operating
+//! system's event queue. A call to [`Reactor::poll`] results in a single
+//! call to [`Poll::poll`] which in turn results in a single call to the
+//! operating system's selector.
+//!
+//! The reactor maintains state for each registered I/O resource. This tracks
+//! the executor task to notify when events are provided by the operating
+//! system's selector. This state is stored in a `Sync` data structure and
+//! referenced by [`Registration`]. When the [`Registration`] instance is
+//! dropped, this state is cleaned up. Because the state is stored in a `Sync`
+//! data structure, the [`Registration`] instance is able to be moved to other
+//! threads.
+//!
+//! By default, a runtime's default reactor runs on a background thread. This
+//! ensures that application code cannot significantly impact the reactor's
+//! responsiveness.
+//!
+//! ## Integrating with the reactor
+//!
+//! Tokio comes with a number of I/O resources, like TCP and UDP sockets, that
+//! automatically integrate with the reactor. However, library authors or
+//! applications may wish to implement their own resources that are also backed
+//! by the reactor.
+//!
+//! There are a couple of ways to do this.
+//!
+//! If the custom I/O resource implements [`mio::Evented`] and implements
+//! [`std::io::Read`] and / or [`std::io::Write`], then [`PollEvented`] is the
+//! most suited.
+//!
+//! Otherwise, [`Registration`] can be used directly. This provides the lowest
+//! level primitive needed for integrating with the reactor: a stream of
+//! readiness events.
+//!
+//! [`Reactor`]: struct.Reactor.html
+//! [`Registration`]: struct.Registration.html
+//! [runtime model]: https://tokio.rs/docs/getting-started/runtime-model/
+//! [epoll]: http://man7.org/linux/man-pages/man7/epoll.7.html
+//! [kqueue]: https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2
+//! [IOCP]: https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
+//! [`TcpStream::connect`]: ../net/struct.TcpStream.html#method.connect
+//! [`connect`]: ../net/struct.TcpStream.html#method.connect
+//! [connect-future]: ../net/struct.ConnectFuture.html
+//! [`tokio::run`]: ../runtime/fn.run.html
+//! [`TcpStream`]: ../net/struct.TcpStream.html
+//! [runtime]: ../runtime
+//! [`Handle::current`]: struct.Handle.html#method.current
+//! [`mio`]: https://github.com/carllerche/mio
+//! [`Reactor::poll`]: struct.Reactor.html#method.poll
+//! [`Poll::poll`]: https://docs.rs/mio/0.6/mio/struct.Poll.html#method.poll
+//! [`mio::Evented`]: https://docs.rs/mio/0.6/mio/trait.Evented.html
+//! [`PollEvented`]: struct.PollEvented.html
+//! [`std::io::Read`]: https://doc.rust-lang.org/std/io/trait.Read.html
+//! [`std::io::Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
+
+pub use tokio_reactor::{
+ Reactor,
+ Handle,
+ Background,
+ Turn,
+ Registration,
+ PollEvented as PollEvented2,
+};
+
+mod poll_evented;
+#[allow(deprecated)]
+pub use self::poll_evented::PollEvented;
diff --git a/third_party/rust/tokio-0.1.11/src/reactor/poll_evented.rs b/third_party/rust/tokio-0.1.11/src/reactor/poll_evented.rs
new file mode 100644
index 0000000000..d5f6750b6b
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/reactor/poll_evented.rs
@@ -0,0 +1,539 @@
+//! Readiness tracking streams, backing I/O objects.
+//!
+//! This module contains the core type which is used to back all I/O on object
+//! in `tokio-core`. The `PollEvented` type is the implementation detail of
+//! all I/O. Each `PollEvented` manages registration with a reactor,
+//! acquisition of a token, and tracking of the readiness state on the
+//! underlying I/O primitive.
+
+#![allow(deprecated, warnings)]
+
+use std::fmt;
+use std::io::{self, Read, Write};
+use std::sync::Mutex;
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering::Relaxed;
+
+use futures::{task, Async, Poll};
+use mio::event::Evented;
+use mio::Ready;
+use tokio_io::{AsyncRead, AsyncWrite};
+
+use reactor::{Handle, Registration};
+
+#[deprecated(since = "0.1.2", note = "PollEvented2 instead")]
+#[doc(hidden)]
+pub struct PollEvented<E> {
+ io: E,
+ inner: Inner,
+ handle: Handle,
+}
+
+struct Inner {
+ registration: Mutex<Registration>,
+
+ /// Currently visible read readiness
+ read_readiness: AtomicUsize,
+
+ /// Currently visible write readiness
+ write_readiness: AtomicUsize,
+}
+
+impl<E: fmt::Debug> fmt::Debug for PollEvented<E> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_struct("PollEvented")
+ .field("io", &self.io)
+ .finish()
+ }
+}
+
+impl<E> PollEvented<E> {
+ /// Creates a new readiness stream associated with the provided
+ /// `loop_handle` and for the given `source`.
+ pub fn new(io: E, handle: &Handle) -> io::Result<PollEvented<E>>
+ where E: Evented,
+ {
+ let registration = Registration::new();
+ registration.register(&io)?;
+
+ Ok(PollEvented {
+ io: io,
+ inner: Inner {
+ registration: Mutex::new(registration),
+ read_readiness: AtomicUsize::new(0),
+ write_readiness: AtomicUsize::new(0),
+ },
+ handle: handle.clone(),
+ })
+ }
+
+ /// Tests to see if this source is ready to be read from or not.
+ ///
+ /// If this stream is not ready for a read then `Async::NotReady` will be
+ /// returned and the current task will be scheduled to receive a
+ /// notification when the stream is readable again. In other words, this
+ /// method is only safe to call from within the context of a future's task,
+ /// typically done in a `Future::poll` method.
+ ///
+ /// This is mostly equivalent to `self.poll_ready(Ready::readable())`.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if called outside the context of a future's
+ /// task.
+ pub fn poll_read(&mut self) -> Async<()> {
+ if self.poll_read2().is_ready() {
+ return ().into();
+ }
+
+ Async::NotReady
+ }
+
+ fn poll_read2(&self) -> Async<Ready> {
+ let r = self.inner.registration.lock().unwrap();
+
+ // Load the cached readiness
+ match self.inner.read_readiness.load(Relaxed) {
+ 0 => {}
+ mut n => {
+ // Check what's new with the reactor.
+ if let Some(ready) = r.take_read_ready().unwrap() {
+ n |= ready2usize(ready);
+ self.inner.read_readiness.store(n, Relaxed);
+ }
+
+ return usize2ready(n).into();
+ }
+ }
+
+ let ready = match r.poll_read_ready().unwrap() {
+ Async::Ready(r) => r,
+ _ => return Async::NotReady,
+ };
+
+ // Cache the value
+ self.inner.read_readiness.store(ready2usize(ready), Relaxed);
+
+ ready.into()
+ }
+
+ /// Tests to see if this source is ready to be written to or not.
+ ///
+ /// If this stream is not ready for a write then `Async::NotReady` will be returned
+ /// and the current task will be scheduled to receive a notification when
+ /// the stream is writable again. In other words, this method is only safe
+ /// to call from within the context of a future's task, typically done in a
+ /// `Future::poll` method.
+ ///
+ /// This is mostly equivalent to `self.poll_ready(Ready::writable())`.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if called outside the context of a future's
+ /// task.
+ pub fn poll_write(&mut self) -> Async<()> {
+ let r = self.inner.registration.lock().unwrap();
+
+ match self.inner.write_readiness.load(Relaxed) {
+ 0 => {}
+ mut n => {
+ // Check what's new with the reactor.
+ if let Some(ready) = r.take_write_ready().unwrap() {
+ n |= ready2usize(ready);
+ self.inner.write_readiness.store(n, Relaxed);
+ }
+
+ return ().into();
+ }
+ }
+
+ let ready = match r.poll_write_ready().unwrap() {
+ Async::Ready(r) => r,
+ _ => return Async::NotReady,
+ };
+
+ // Cache the value
+ self.inner.write_readiness.store(ready2usize(ready), Relaxed);
+
+ ().into()
+ }
+
+ /// Test to see whether this source fulfills any condition listed in `mask`
+ /// provided.
+ ///
+ /// The `mask` given here is a mio `Ready` set of possible events. This can
+ /// contain any events like read/write but also platform-specific events
+ /// such as hup and error. The `mask` indicates events that are interested
+ /// in being ready.
+ ///
+ /// If any event in `mask` is ready then it is returned through
+ /// `Async::Ready`. The `Ready` set returned is guaranteed to not be empty
+ /// and contains all events that are currently ready in the `mask` provided.
+ ///
+ /// If no events are ready in the `mask` provided then the current task is
+ /// scheduled to receive a notification when any of them become ready. If
+ /// the `writable` event is contained within `mask` then this
+ /// `PollEvented`'s `write` task will be blocked and otherwise the `read`
+ /// task will be blocked. This is generally only relevant if you're working
+ /// with this `PollEvented` object on multiple tasks.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if called outside the context of a future's
+ /// task.
+ pub fn poll_ready(&mut self, mask: Ready) -> Async<Ready> {
+ let mut ret = Ready::empty();
+
+ if mask.is_empty() {
+ return ret.into();
+ }
+
+ if mask.is_writable() {
+ if self.poll_write().is_ready() {
+ ret = Ready::writable();
+ }
+ }
+
+ let mask = mask - Ready::writable();
+
+ if !mask.is_empty() {
+ if let Async::Ready(v) = self.poll_read2() {
+ ret |= v & mask;
+ }
+ }
+
+ if ret.is_empty() {
+ if mask.is_writable() {
+ let _ = self.need_write();
+ }
+
+ if mask.is_readable() {
+ let _ = self.need_read();
+ }
+
+ Async::NotReady
+ } else {
+ ret.into()
+ }
+ }
+
+ /// Indicates to this source of events that the corresponding I/O object is
+ /// no longer readable, but it needs to be.
+ ///
+ /// This function, like `poll_read`, is only safe to call from the context
+ /// of a future's task (typically in a `Future::poll` implementation). It
+ /// informs this readiness stream that the underlying object is no longer
+ /// readable, typically because a "would block" error was seen.
+ ///
+ /// *All* readiness bits associated with this stream except the writable bit
+ /// will be reset when this method is called. The current task is then
+ /// scheduled to receive a notification whenever anything changes other than
+ /// the writable bit. Note that this typically just means the readable bit
+ /// is used here, but if you're using a custom I/O object for events like
+ /// hup/error this may also be relevant.
+ ///
+ /// Note that it is also only valid to call this method if `poll_read`
+ /// previously indicated that the object is readable. That is, this function
+ /// must always be paired with calls to `poll_read` previously.
+ ///
+ /// # Errors
+ ///
+ /// This function will return an error if the `Reactor` that this `PollEvented`
+ /// is associated with has gone away (been destroyed). The error means that
+ /// the ambient futures task could not be scheduled to receive a
+ /// notification and typically means that the error should be propagated
+ /// outwards.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if called outside the context of a future's
+ /// task.
+ pub fn need_read(&mut self) -> io::Result<()> {
+ self.inner.read_readiness.store(0, Relaxed);
+
+ if self.poll_read().is_ready() {
+ // Notify the current task
+ task::current().notify();
+ }
+
+ Ok(())
+ }
+
+ /// Indicates to this source of events that the corresponding I/O object is
+ /// no longer writable, but it needs to be.
+ ///
+ /// This function, like `poll_write`, is only safe to call from the context
+ /// of a future's task (typically in a `Future::poll` implementation). It
+ /// informs this readiness stream that the underlying object is no longer
+ /// writable, typically because a "would block" error was seen.
+ ///
+ /// The flag indicating that this stream is writable is unset and the
+ /// current task is scheduled to receive a notification when the stream is
+ /// then again writable.
+ ///
+ /// Note that it is also only valid to call this method if `poll_write`
+ /// previously indicated that the object is writable. That is, this function
+ /// must always be paired with calls to `poll_write` previously.
+ ///
+ /// # Errors
+ ///
+ /// This function will return an error if the `Reactor` that this `PollEvented`
+ /// is associated with has gone away (been destroyed). The error means that
+ /// the ambient futures task could not be scheduled to receive a
+ /// notification and typically means that the error should be propagated
+ /// outwards.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if called outside the context of a future's
+ /// task.
+ pub fn need_write(&mut self) -> io::Result<()> {
+ self.inner.write_readiness.store(0, Relaxed);
+
+ if self.poll_write().is_ready() {
+ // Notify the current task
+ task::current().notify();
+ }
+
+ Ok(())
+ }
+
+ /// Returns a reference to the event loop handle that this readiness stream
+ /// is associated with.
+ pub fn handle(&self) -> &Handle {
+ &self.handle
+ }
+
+ /// Returns a shared reference to the underlying I/O object this readiness
+ /// stream is wrapping.
+ pub fn get_ref(&self) -> &E {
+ &self.io
+ }
+
+ /// Returns a mutable reference to the underlying I/O object this readiness
+ /// stream is wrapping.
+ pub fn get_mut(&mut self) -> &mut E {
+ &mut self.io
+ }
+
+ /// Consumes the `PollEvented` and returns the underlying I/O object
+ pub fn into_inner(self) -> E {
+ self.io
+ }
+
+ /// Deregisters this source of events from the reactor core specified.
+ ///
+ /// This method can optionally be called to unregister the underlying I/O
+ /// object with the event loop that the `handle` provided points to.
+ /// Typically this method is not required as this automatically happens when
+ /// `E` is dropped, but for some use cases the `E` object doesn't represent
+ /// an owned reference, so dropping it won't automatically unregister with
+ /// the event loop.
+ ///
+ /// This consumes `self` as it will no longer provide events after the
+ /// method is called, and will likely return an error if this `PollEvented`
+ /// was created on a separate event loop from the `handle` specified.
+ pub fn deregister(&self) -> io::Result<()>
+ where E: Evented,
+ {
+ self.inner.registration.lock().unwrap()
+ .deregister(&self.io)
+ }
+}
+
+impl<E: Read> Read for PollEvented<E> {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ if let Async::NotReady = self.poll_read() {
+ return Err(io::ErrorKind::WouldBlock.into())
+ }
+
+ let r = self.get_mut().read(buf);
+
+ if is_wouldblock(&r) {
+ self.need_read()?;
+ }
+
+ return r
+ }
+}
+
+impl<E: Write> Write for PollEvented<E> {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ if let Async::NotReady = self.poll_write() {
+ return Err(io::ErrorKind::WouldBlock.into())
+ }
+
+ let r = self.get_mut().write(buf);
+
+ if is_wouldblock(&r) {
+ self.need_write()?;
+ }
+
+ return r
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ if let Async::NotReady = self.poll_write() {
+ return Err(io::ErrorKind::WouldBlock.into())
+ }
+
+ let r = self.get_mut().flush();
+
+ if is_wouldblock(&r) {
+ self.need_write()?;
+ }
+
+ return r
+ }
+}
+
+impl<E: Read> AsyncRead for PollEvented<E> {
+}
+
+impl<E: Write> AsyncWrite for PollEvented<E> {
+ fn shutdown(&mut self) -> Poll<(), io::Error> {
+ Ok(().into())
+ }
+}
+
+fn is_wouldblock<T>(r: &io::Result<T>) -> bool {
+ match *r {
+ Ok(_) => false,
+ Err(ref e) => e.kind() == io::ErrorKind::WouldBlock,
+ }
+}
+
+const READ: usize = 1 << 0;
+const WRITE: usize = 1 << 1;
+
+fn ready2usize(ready: Ready) -> usize {
+ let mut bits = 0;
+ if ready.is_readable() {
+ bits |= READ;
+ }
+ if ready.is_writable() {
+ bits |= WRITE;
+ }
+ bits | platform::ready2usize(ready)
+}
+
+fn usize2ready(bits: usize) -> Ready {
+ let mut ready = Ready::empty();
+ if bits & READ != 0 {
+ ready.insert(Ready::readable());
+ }
+ if bits & WRITE != 0 {
+ ready.insert(Ready::writable());
+ }
+ ready | platform::usize2ready(bits)
+}
+
+#[cfg(unix)]
+mod platform {
+ use mio::Ready;
+ use mio::unix::UnixReady;
+
+ const HUP: usize = 1 << 2;
+ const ERROR: usize = 1 << 3;
+ const AIO: usize = 1 << 4;
+ const LIO: usize = 1 << 5;
+
+ #[cfg(any(target_os = "dragonfly", target_os = "freebsd"))]
+ fn is_aio(ready: &Ready) -> bool {
+ UnixReady::from(*ready).is_aio()
+ }
+
+ #[cfg(not(any(target_os = "dragonfly", target_os = "freebsd")))]
+ fn is_aio(_ready: &Ready) -> bool {
+ false
+ }
+
+ #[cfg(target_os = "freebsd")]
+ fn is_lio(ready: &Ready) -> bool {
+ UnixReady::from(*ready).is_lio()
+ }
+
+ #[cfg(not(target_os = "freebsd"))]
+ fn is_lio(_ready: &Ready) -> bool {
+ false
+ }
+
+ pub fn ready2usize(ready: Ready) -> usize {
+ let ready = UnixReady::from(ready);
+ let mut bits = 0;
+ if is_aio(&ready) {
+ bits |= AIO;
+ }
+ if is_lio(&ready) {
+ bits |= LIO;
+ }
+ if ready.is_error() {
+ bits |= ERROR;
+ }
+ if ready.is_hup() {
+ bits |= HUP;
+ }
+ bits
+ }
+
+ #[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios",
+ target_os = "macos"))]
+ fn usize2ready_aio(ready: &mut UnixReady) {
+ ready.insert(UnixReady::aio());
+ }
+
+ #[cfg(not(any(target_os = "dragonfly",
+ target_os = "freebsd", target_os = "ios", target_os = "macos")))]
+ fn usize2ready_aio(_ready: &mut UnixReady) {
+ // aio not available here → empty
+ }
+
+ #[cfg(target_os = "freebsd")]
+ fn usize2ready_lio(ready: &mut UnixReady) {
+ ready.insert(UnixReady::lio());
+ }
+
+ #[cfg(not(target_os = "freebsd"))]
+ fn usize2ready_lio(_ready: &mut UnixReady) {
+ // lio not available here → empty
+ }
+
+ pub fn usize2ready(bits: usize) -> Ready {
+ let mut ready = UnixReady::from(Ready::empty());
+ if bits & AIO != 0 {
+ usize2ready_aio(&mut ready);
+ }
+ if bits & LIO != 0 {
+ usize2ready_lio(&mut ready);
+ }
+ if bits & HUP != 0 {
+ ready.insert(UnixReady::hup());
+ }
+ if bits & ERROR != 0 {
+ ready.insert(UnixReady::error());
+ }
+ ready.into()
+ }
+}
+
+#[cfg(windows)]
+mod platform {
+ use mio::Ready;
+
+ pub fn all() -> Ready {
+ // No platform-specific Readinesses for Windows
+ Ready::empty()
+ }
+
+ pub fn hup() -> Ready {
+ Ready::empty()
+ }
+
+ pub fn ready2usize(_r: Ready) -> usize {
+ 0
+ }
+
+ pub fn usize2ready(_r: usize) -> Ready {
+ Ready::empty()
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/runtime/builder.rs b/third_party/rust/tokio-0.1.11/src/runtime/builder.rs
new file mode 100644
index 0000000000..43eb5ddee1
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/runtime/builder.rs
@@ -0,0 +1,261 @@
+use runtime::{Inner, Runtime};
+
+use reactor::Reactor;
+
+use std::io;
+
+use tokio_reactor;
+use tokio_threadpool::Builder as ThreadPoolBuilder;
+use tokio_threadpool::park::DefaultPark;
+use tokio_timer::clock::{self, Clock};
+use tokio_timer::timer::{self, Timer};
+
+/// Builds Tokio Runtime with custom configuration values.
+///
+/// Methods can be chained in order to set the configuration values. The
+/// Runtime is constructed by calling [`build`].
+///
+/// New instances of `Builder` are obtained via [`Builder::new`].
+///
+/// See function level documentation for details on the various configuration
+/// settings.
+///
+/// [`build`]: #method.build
+/// [`Builder::new`]: #method.new
+///
+/// # Examples
+///
+/// ```
+/// # extern crate tokio;
+/// # extern crate tokio_threadpool;
+/// # use tokio::runtime::Builder;
+///
+/// # pub fn main() {
+/// // create and configure ThreadPool
+/// let mut threadpool_builder = tokio_threadpool::Builder::new();
+/// threadpool_builder
+/// .name_prefix("my-runtime-worker-")
+/// .pool_size(4);
+///
+/// // build Runtime
+/// let runtime = Builder::new()
+/// .threadpool_builder(threadpool_builder)
+/// .build();
+/// // ... call runtime.run(...)
+/// # let _ = runtime;
+/// # }
+/// ```
+#[derive(Debug)]
+pub struct Builder {
+ /// Thread pool specific builder
+ threadpool_builder: ThreadPoolBuilder,
+
+ /// The clock to use
+ clock: Clock,
+}
+
+impl Builder {
+ /// Returns a new runtime builder initialized with default configuration
+ /// values.
+ ///
+ /// Configuration methods can be chained on the return value.
+ pub fn new() -> Builder {
+ let mut threadpool_builder = ThreadPoolBuilder::new();
+ threadpool_builder.name_prefix("tokio-runtime-worker-");
+
+ Builder {
+ threadpool_builder,
+ clock: Clock::new(),
+ }
+ }
+
+ /// Set the `Clock` instance that will be used by the runtime.
+ pub fn clock(&mut self, clock: Clock) -> &mut Self {
+ self.clock = clock;
+ self
+ }
+
+ /// Set builder to set up the thread pool instance.
+ #[deprecated(
+ since="0.1.9",
+ note="use the `core_threads`, `blocking_threads`, `name_prefix`, \
+ and `stack_size` functions on `runtime::Builder`, instead")]
+ #[doc(hidden)]
+ pub fn threadpool_builder(&mut self, val: ThreadPoolBuilder) -> &mut Self {
+ self.threadpool_builder = val;
+ self
+ }
+
+ /// Set the maximum number of worker threads for the `Runtime`'s thread pool.
+ ///
+ /// This must be a number between 1 and 32,768 though it is advised to keep
+ /// this value on the smaller side.
+ ///
+ /// The default value is the number of cores available to the system.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let mut rt = runtime::Builder::new()
+ /// .core_threads(4)
+ /// .build()
+ /// .unwrap();
+ /// # }
+ /// ```
+ pub fn core_threads(&mut self, val: usize) -> &mut Self {
+ self.threadpool_builder.pool_size(val);
+ self
+ }
+
+ /// Set the maximum number of concurrent blocking sections in the `Runtime`'s
+ /// thread pool.
+ ///
+ /// When the maximum concurrent `blocking` calls is reached, any further
+ /// calls to `blocking` will return `NotReady` and the task is notified once
+ /// previously in-flight calls to `blocking` return.
+ ///
+ /// This must be a number between 1 and 32,768 though it is advised to keep
+ /// this value on the smaller side.
+ ///
+ /// The default value is 100.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let mut rt = runtime::Builder::new()
+ /// .blocking_threads(200)
+ /// .build();
+ /// # }
+ /// ```
+ pub fn blocking_threads(&mut self, val: usize) -> &mut Self {
+ self.threadpool_builder.max_blocking(val);
+ self
+ }
+
+ /// Set name prefix of threads spawned by the `Runtime`'s thread pool.
+ ///
+ /// Thread name prefix is used for generating thread names. For example, if
+ /// prefix is `my-pool-`, then threads in the pool will get names like
+ /// `my-pool-1` etc.
+ ///
+ /// The default prefix is "tokio-runtime-worker-".
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let mut rt = runtime::Builder::new()
+ /// .name_prefix("my-pool-")
+ /// .build();
+ /// # }
+ /// ```
+ pub fn name_prefix<S: Into<String>>(&mut self, val: S) -> &mut Self {
+ self.threadpool_builder.name_prefix(val);
+ self
+ }
+
+ /// Set the stack size (in bytes) for worker threads.
+ ///
+ /// The actual stack size may be greater than this value if the platform
+ /// specifies minimal stack size.
+ ///
+ /// The default stack size for spawned threads is 2 MiB, though this
+ /// particular stack size is subject to change in the future.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let mut rt = runtime::Builder::new()
+ /// .stack_size(32 * 1024)
+ /// .build();
+ /// # }
+ /// ```
+ pub fn stack_size(&mut self, val: usize) -> &mut Self {
+ self.threadpool_builder.stack_size(val);
+ self
+ }
+
+ /// Create the configured `Runtime`.
+ ///
+ /// The returned `ThreadPool` instance is ready to spawn tasks.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # use tokio::runtime::Builder;
+ /// # pub fn main() {
+ /// let runtime = Builder::new().build().unwrap();
+ /// // ... call runtime.run(...)
+ /// # let _ = runtime;
+ /// # }
+ /// ```
+ pub fn build(&mut self) -> io::Result<Runtime> {
+ use std::collections::HashMap;
+ use std::sync::{Arc, Mutex};
+
+ // Get a handle to the clock for the runtime.
+ let clock1 = self.clock.clone();
+ let clock2 = clock1.clone();
+
+ let timers = Arc::new(Mutex::new(HashMap::<_, timer::Handle>::new()));
+ let t1 = timers.clone();
+
+ // Spawn a reactor on a background thread.
+ let reactor = Reactor::new()?.background()?;
+
+ // Get a handle to the reactor.
+ let reactor_handle = reactor.handle().clone();
+
+ let pool = self.threadpool_builder
+ .around_worker(move |w, enter| {
+ let timer_handle = t1.lock().unwrap()
+ .get(w.id()).unwrap()
+ .clone();
+
+ tokio_reactor::with_default(&reactor_handle, enter, |enter| {
+ clock::with_default(&clock1, enter, |enter| {
+ timer::with_default(&timer_handle, enter, |_| {
+ w.run();
+ });
+ })
+ });
+ })
+ .custom_park(move |worker_id| {
+ // Create a new timer
+ let timer = Timer::new_with_now(DefaultPark::new(), clock2.clone());
+
+ timers.lock().unwrap()
+ .insert(worker_id.clone(), timer.handle());
+
+ timer
+ })
+ .build();
+
+ Ok(Runtime {
+ inner: Some(Inner {
+ reactor,
+ pool,
+ }),
+ })
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/runtime/current_thread/builder.rs b/third_party/rust/tokio-0.1.11/src/runtime/current_thread/builder.rs
new file mode 100644
index 0000000000..72960fadf2
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/runtime/current_thread/builder.rs
@@ -0,0 +1,88 @@
+use executor::current_thread::CurrentThread;
+use runtime::current_thread::Runtime;
+
+use tokio_reactor::Reactor;
+use tokio_timer::clock::Clock;
+use tokio_timer::timer::Timer;
+
+use std::io;
+
+/// Builds a Single-threaded runtime with custom configuration values.
+///
+/// Methods can be chained in order to set the configuration values. The
+/// Runtime is constructed by calling [`build`].
+///
+/// New instances of `Builder` are obtained via [`Builder::new`].
+///
+/// See function level documentation for details on the various configuration
+/// settings.
+///
+/// [`build`]: #method.build
+/// [`Builder::new`]: #method.new
+///
+/// # Examples
+///
+/// ```
+/// extern crate tokio;
+/// extern crate tokio_timer;
+///
+/// use tokio::runtime::current_thread::Builder;
+/// use tokio_timer::clock::Clock;
+///
+/// # pub fn main() {
+/// // build Runtime
+/// let runtime = Builder::new()
+/// .clock(Clock::new())
+/// .build();
+/// // ... call runtime.run(...)
+/// # let _ = runtime;
+/// # }
+/// ```
+#[derive(Debug)]
+pub struct Builder {
+ /// The clock to use
+ clock: Clock,
+}
+
+impl Builder {
+ /// Returns a new runtime builder initialized with default configuration
+ /// values.
+ ///
+ /// Configuration methods can be chained on the return value.
+ pub fn new() -> Builder {
+ Builder {
+ clock: Clock::new(),
+ }
+ }
+
+ /// Set the `Clock` instance that will be used by the runtime.
+ pub fn clock(&mut self, clock: Clock) -> &mut Self {
+ self.clock = clock;
+ self
+ }
+
+ /// Create the configured `Runtime`.
+ pub fn build(&mut self) -> io::Result<Runtime> {
+ // We need a reactor to receive events about IO objects from kernel
+ let reactor = Reactor::new()?;
+ let reactor_handle = reactor.handle();
+
+ // Place a timer wheel on top of the reactor. If there are no timeouts to fire, it'll let the
+ // reactor pick up some new external events.
+ let timer = Timer::new_with_now(reactor, self.clock.clone());
+ let timer_handle = timer.handle();
+
+ // And now put a single-threaded executor on top of the timer. When there are no futures ready
+ // to do something, it'll let the timer or the reactor to generate some new stimuli for the
+ // futures to continue in their life.
+ let executor = CurrentThread::new_with_park(timer);
+
+ let runtime = Runtime::new2(
+ reactor_handle,
+ timer_handle,
+ self.clock.clone(),
+ executor);
+
+ Ok(runtime)
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/runtime/current_thread/mod.rs b/third_party/rust/tokio-0.1.11/src/runtime/current_thread/mod.rs
new file mode 100644
index 0000000000..dca41711e8
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/runtime/current_thread/mod.rs
@@ -0,0 +1,92 @@
+//! A runtime implementation that runs everything on the current thread.
+//!
+//! [`current_thread::Runtime`][rt] is similar to the primary
+//! [`Runtime`][concurrent-rt] except that it runs all components on the current
+//! thread instead of using a thread pool. This means that it is able to spawn
+//! futures that do not implement `Send`.
+//!
+//! Same as the default [`Runtime`][concurrent-rt], the
+//! [`current_thread::Runtime`][rt] includes:
+//!
+//! * A [reactor] to drive I/O resources.
+//! * An [executor] to execute tasks that use these I/O resources.
+//! * A [timer] for scheduling work to run after a set period of time.
+//!
+//! Note that [`current_thread::Runtime`][rt] does not implement `Send` itself
+//! and cannot be safely moved to other threads.
+//!
+//! # Spawning from other threads
+//!
+//! While [`current_thread::Runtime`][rt] does not implement `Send` and cannot
+//! safely be moved to other threads, it provides a `Handle` that can be sent
+//! to other threads and allows to spawn new tasks from there.
+//!
+//! For example:
+//!
+//! ```
+//! # extern crate tokio;
+//! # extern crate futures;
+//! use tokio::runtime::current_thread::Runtime;
+//! use tokio::prelude::*;
+//! use std::thread;
+//!
+//! # fn main() {
+//! let mut runtime = Runtime::new().unwrap();
+//! let handle = runtime.handle();
+//!
+//! thread::spawn(move || {
+//! handle.spawn(future::ok(()));
+//! }).join().unwrap();
+//!
+//! # /*
+//! runtime.run().unwrap();
+//! # */
+//! # }
+//! ```
+//!
+//! # Examples
+//!
+//! Creating a new `Runtime` and running a future `f` until its completion and
+//! returning its result.
+//!
+//! ```
+//! use tokio::runtime::current_thread::Runtime;
+//! use tokio::prelude::*;
+//!
+//! let mut runtime = Runtime::new().unwrap();
+//!
+//! // Use the runtime...
+//! // runtime.block_on(f); // where f is a future
+//! ```
+//!
+//! [rt]: struct.Runtime.html
+//! [concurrent-rt]: ../struct.Runtime.html
+//! [chan]: https://docs.rs/futures/0.1/futures/sync/mpsc/fn.channel.html
+//! [reactor]: ../../reactor/struct.Reactor.html
+//! [executor]: https://tokio.rs/docs/getting-started/runtime-model/#executors
+//! [timer]: ../../timer/index.html
+
+mod builder;
+mod runtime;
+
+pub use self::builder::Builder;
+pub use self::runtime::{Runtime, Handle};
+pub use tokio_current_thread::spawn;
+pub use tokio_current_thread::TaskExecutor;
+
+use futures::Future;
+
+/// Run the provided future to completion using a runtime running on the current thread.
+///
+/// This first creates a new [`Runtime`], and calls [`Runtime::block_on`] with the provided future,
+/// which blocks the current thread until the provided future completes. It then calls
+/// [`Runtime::run`] to wait for any other spawned futures to resolve.
+pub fn block_on_all<F>(future: F) -> Result<F::Item, F::Error>
+where
+ F: Future,
+{
+ let mut r = Runtime::new().expect("failed to start runtime on current thread");
+ let v = r.block_on(future)?;
+ r.run().expect("failed to resolve remaining futures");
+ Ok(v)
+}
diff --git a/third_party/rust/tokio-0.1.11/src/runtime/current_thread/runtime.rs b/third_party/rust/tokio-0.1.11/src/runtime/current_thread/runtime.rs
new file mode 100644
index 0000000000..262cb1e72d
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/runtime/current_thread/runtime.rs
@@ -0,0 +1,234 @@
+use tokio_current_thread::{self as current_thread, CurrentThread};
+use tokio_current_thread::Handle as ExecutorHandle;
+use runtime::current_thread::Builder;
+
+use tokio_reactor::{self, Reactor};
+use tokio_timer::clock::{self, Clock};
+use tokio_timer::timer::{self, Timer};
+use tokio_executor;
+
+use futures::{future, Future};
+
+use std::fmt;
+use std::error::Error;
+use std::io;
+
+/// Single-threaded runtime provides a way to start reactor
+/// and executor on the current thread.
+///
+/// See [module level][mod] documentation for more details.
+///
+/// [mod]: index.html
+#[derive(Debug)]
+pub struct Runtime {
+ reactor_handle: tokio_reactor::Handle,
+ timer_handle: timer::Handle,
+ clock: Clock,
+ executor: CurrentThread<Timer<Reactor>>,
+}
+
+/// Handle to spawn a future on the corresponding `CurrentThread` runtime instance
+#[derive(Debug, Clone)]
+pub struct Handle(ExecutorHandle);
+
+impl Handle {
+ /// Spawn a future onto the `CurrentThread` runtime instance corresponding to this handle
+ ///
+ /// # Panics
+ ///
+ /// This function panics if the spawn fails. Failure occurs if the `CurrentThread`
+ /// instance of the `Handle` does not exist anymore.
+ pub fn spawn<F>(&self, future: F) -> Result<(), tokio_executor::SpawnError>
+ where F: Future<Item = (), Error = ()> + Send + 'static {
+ self.0.spawn(future)
+ }
+
+ /// Provides a best effort **hint** to whether or not `spawn` will succeed.
+ ///
+ /// This function may return both false positives **and** false negatives.
+ /// If `status` returns `Ok`, then a call to `spawn` will *probably*
+ /// succeed, but may fail. If `status` returns `Err`, a call to `spawn` will
+ /// *probably* fail, but may succeed.
+ ///
+ /// This allows a caller to avoid creating the task if the call to `spawn`
+ /// has a high likelihood of failing.
+ pub fn status(&self) -> Result<(), tokio_executor::SpawnError> {
+ self.0.status()
+ }
+}
+
+impl<T> future::Executor<T> for Handle
+where T: Future<Item = (), Error = ()> + Send + 'static,
+{
+ fn execute(&self, future: T) -> Result<(), future::ExecuteError<T>> {
+ if let Err(e) = self.status() {
+ let kind = if e.is_at_capacity() {
+ future::ExecuteErrorKind::NoCapacity
+ } else {
+ future::ExecuteErrorKind::Shutdown
+ };
+
+ return Err(future::ExecuteError::new(kind, future));
+ }
+
+ let _ = self.spawn(future);
+ Ok(())
+ }
+}
+
+/// Error returned by the `run` function.
+#[derive(Debug)]
+pub struct RunError {
+ inner: current_thread::RunError,
+}
+
+impl fmt::Display for RunError {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(fmt, "{}", self.inner)
+ }
+}
+
+impl Error for RunError {
+ fn description(&self) -> &str {
+ self.inner.description()
+ }
+ fn cause(&self) -> Option<&Error> {
+ self.inner.cause()
+ }
+}
+
+impl Runtime {
+ /// Returns a new runtime initialized with default configuration values.
+ pub fn new() -> io::Result<Runtime> {
+ Builder::new().build()
+ }
+
+ pub(super) fn new2(
+ reactor_handle: tokio_reactor::Handle,
+ timer_handle: timer::Handle,
+ clock: Clock,
+ executor: CurrentThread<Timer<Reactor>>) -> Runtime
+ {
+ Runtime {
+ reactor_handle,
+ timer_handle,
+ clock,
+ executor,
+ }
+ }
+
+ /// Get a new handle to spawn futures on the single-threaded Tokio runtime
+ ///
+ /// Different to the runtime itself, the handle can be sent to different
+ /// threads.
+ pub fn handle(&self) -> Handle {
+ Handle(self.executor.handle().clone())
+ }
+
+ /// Spawn a future onto the single-threaded Tokio runtime.
+ ///
+ /// See [module level][mod] documentation for more details.
+ ///
+ /// [mod]: index.html
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// # use futures::{future, Future, Stream};
+ /// use tokio::runtime::current_thread::Runtime;
+ ///
+ /// # fn dox() {
+ /// // Create the runtime
+ /// let mut rt = Runtime::new().unwrap();
+ ///
+ /// // Spawn a future onto the runtime
+ /// rt.spawn(future::lazy(|| {
+ /// println!("running on the runtime");
+ /// Ok(())
+ /// }));
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// This function panics if the spawn fails. Failure occurs if the executor
+ /// is currently at capacity and is unable to spawn a new future.
+ pub fn spawn<F>(&mut self, future: F) -> &mut Self
+ where F: Future<Item = (), Error = ()> + 'static,
+ {
+ self.executor.spawn(future);
+ self
+ }
+
+ /// Runs the provided future, blocking the current thread until the future
+ /// completes.
+ ///
+ /// This function can be used to synchronously block the current thread
+ /// until the provided `future` has resolved either successfully or with an
+ /// error. The result of the future is then returned from this function
+ /// call.
+ ///
+ /// Note that this function will **also** execute any spawned futures on the
+ /// current thread, but will **not** block until these other spawned futures
+ /// have completed. Once the function returns, any uncompleted futures
+ /// remain pending in the `Runtime` instance. These futures will not run
+ /// until `block_on` or `run` is called again.
+ ///
+ /// The caller is responsible for ensuring that other spawned futures
+ /// complete execution by calling `block_on` or `run`.
+ pub fn block_on<F>(&mut self, f: F) -> Result<F::Item, F::Error>
+ where F: Future
+ {
+ self.enter(|executor| {
+ // Run the provided future
+ let ret = executor.block_on(f);
+ ret.map_err(|e| e.into_inner().expect("unexpected execution error"))
+ })
+ }
+
+ /// Run the executor to completion, blocking the thread until **all**
+ /// spawned futures have completed.
+ pub fn run(&mut self) -> Result<(), RunError> {
+ self.enter(|executor| executor.run())
+ .map_err(|e| RunError {
+ inner: e,
+ })
+ }
+
+ fn enter<F, R>(&mut self, f: F) -> R
+ where F: FnOnce(&mut current_thread::Entered<Timer<Reactor>>) -> R
+ {
+ let Runtime {
+ ref reactor_handle,
+ ref timer_handle,
+ ref clock,
+ ref mut executor,
+ ..
+ } = *self;
+
+ // Binds an executor to this thread
+ let mut enter = tokio_executor::enter().expect("Multiple executors at once");
+
+ // This will set the default handle and timer to use inside the closure
+ // and run the future.
+ tokio_reactor::with_default(&reactor_handle, &mut enter, |enter| {
+ clock::with_default(clock, enter, |enter| {
+ timer::with_default(&timer_handle, enter, |enter| {
+ // The TaskExecutor is a fake executor that looks into the
+ // current single-threaded executor when used. This is a trick,
+ // because we need two mutable references to the executor (one
+ // to run the provided future, another to install as the default
+ // one). We use the fake one here as the default one.
+ let mut default_executor = current_thread::TaskExecutor::current();
+ tokio_executor::with_default(&mut default_executor, enter, |enter| {
+ let mut executor = executor.enter(enter);
+ f(&mut executor)
+ })
+ })
+ })
+ })
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/runtime/mod.rs b/third_party/rust/tokio-0.1.11/src/runtime/mod.rs
new file mode 100644
index 0000000000..9ff0cc4c2f
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/runtime/mod.rs
@@ -0,0 +1,496 @@
+//! A batteries included runtime for applications using Tokio.
+//!
+//! Applications using Tokio require some runtime support in order to work:
+//!
+//! * A [reactor] to drive I/O resources.
+//! * An [executor] to execute tasks that use these I/O resources.
+//! * A [timer] for scheduling work to run after a set period of time.
+//!
+//! While it is possible to setup each component manually, this involves a bunch
+//! of boilerplate.
+//!
+//! [`Runtime`] bundles all of these various runtime components into a single
+//! handle that can be started and shutdown together, eliminating the necessary
+//! boilerplate to run a Tokio application.
+//!
+//! Most applications wont need to use [`Runtime`] directly. Instead, they will
+//! use the [`run`] function, which uses [`Runtime`] under the hood.
+//!
+//! Creating a [`Runtime`] does the following:
+//!
+//! * Spawn a background thread running a [`Reactor`] instance.
+//! * Start a [`ThreadPool`] for executing futures.
+//! * Run an instance of [`Timer`] **per** thread pool worker thread.
+//!
+//! The thread pool uses a work-stealing strategy and is configured to start a
+//! worker thread for each CPU core available on the system. This tends to be
+//! the ideal setup for Tokio applications.
+//!
+//! A timer per thread pool worker thread is used to minimize the amount of
+//! synchronization that is required for working with the timer.
+//!
+//! # Usage
+//!
+//! Most applications will use the [`run`] function. This takes a future to
+//! "seed" the application, blocking the thread until the runtime becomes
+//! [idle].
+//!
+//! ```rust
+//! # extern crate tokio;
+//! # extern crate futures;
+//! # use futures::{Future, Stream};
+//! use tokio::net::TcpListener;
+//!
+//! # fn process<T>(_: T) -> Box<Future<Item = (), Error = ()> + Send> {
+//! # unimplemented!();
+//! # }
+//! # fn dox() {
+//! # let addr = "127.0.0.1:8080".parse().unwrap();
+//! let listener = TcpListener::bind(&addr).unwrap();
+//!
+//! let server = listener.incoming()
+//! .map_err(|e| println!("error = {:?}", e))
+//! .for_each(|socket| {
+//! tokio::spawn(process(socket))
+//! });
+//!
+//! tokio::run(server);
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! In this function, the `run` function blocks until the runtime becomes idle.
+//! See [`shutdown_on_idle`][idle] for more shutdown details.
+//!
+//! From within the context of the runtime, additional tasks are spawned using
+//! the [`tokio::spawn`] function. Futures spawned using this function will be
+//! executed on the same thread pool used by the [`Runtime`].
+//!
+//! A [`Runtime`] instance can also be used directly.
+//!
+//! ```rust
+//! # extern crate tokio;
+//! # extern crate futures;
+//! # use futures::{Future, Stream};
+//! use tokio::runtime::Runtime;
+//! use tokio::net::TcpListener;
+//!
+//! # fn process<T>(_: T) -> Box<Future<Item = (), Error = ()> + Send> {
+//! # unimplemented!();
+//! # }
+//! # fn dox() {
+//! # let addr = "127.0.0.1:8080".parse().unwrap();
+//! let listener = TcpListener::bind(&addr).unwrap();
+//!
+//! let server = listener.incoming()
+//! .map_err(|e| println!("error = {:?}", e))
+//! .for_each(|socket| {
+//! tokio::spawn(process(socket))
+//! });
+//!
+//! // Create the runtime
+//! let mut rt = Runtime::new().unwrap();
+//!
+//! // Spawn the server task
+//! rt.spawn(server);
+//!
+//! // Wait until the runtime becomes idle and shut it down.
+//! rt.shutdown_on_idle()
+//! .wait().unwrap();
+//! # }
+//! # pub fn main() {}
+//! ```
+//!
+//! [reactor]: ../reactor/struct.Reactor.html
+//! [executor]: https://tokio.rs/docs/getting-started/runtime-model/#executors
+//! [timer]: ../timer/index.html
+//! [`Runtime`]: struct.Runtime.html
+//! [`Reactor`]: ../reactor/struct.Reactor.html
+//! [`ThreadPool`]: ../executor/thread_pool/struct.ThreadPool.html
+//! [`run`]: fn.run.html
+//! [idle]: struct.Runtime.html#method.shutdown_on_idle
+//! [`tokio::spawn`]: ../executor/fn.spawn.html
+//! [`Timer`]: https://docs.rs/tokio-timer/0.2/tokio_timer/timer/struct.Timer.html
+
+mod builder;
+pub mod current_thread;
+mod shutdown;
+mod task_executor;
+
+pub use self::builder::Builder;
+pub use self::shutdown::Shutdown;
+pub use self::task_executor::TaskExecutor;
+
+use reactor::{Background, Handle};
+
+use std::io;
+
+use tokio_executor::enter;
+use tokio_threadpool as threadpool;
+
+use futures;
+use futures::future::Future;
+
+/// Handle to the Tokio runtime.
+///
+/// The Tokio runtime includes a reactor as well as an executor for running
+/// tasks.
+///
+/// Instances of `Runtime` can be created using [`new`] or [`Builder`]. However,
+/// most users will use [`tokio::run`], which uses a `Runtime` internally.
+///
+/// See [module level][mod] documentation for more details.
+///
+/// [mod]: index.html
+/// [`new`]: #method.new
+/// [`Builder`]: struct.Builder.html
+/// [`tokio::run`]: fn.run.html
+#[derive(Debug)]
+pub struct Runtime {
+ inner: Option<Inner>,
+}
+
+#[derive(Debug)]
+struct Inner {
+ /// Reactor running on a background thread.
+ reactor: Background,
+
+ /// Task execution pool.
+ pool: threadpool::ThreadPool,
+}
+
+// ===== impl Runtime =====
+
+/// Start the Tokio runtime using the supplied future to bootstrap execution.
+///
+/// This function is used to bootstrap the execution of a Tokio application. It
+/// does the following:
+///
+/// * Start the Tokio runtime using a default configuration.
+/// * Spawn the given future onto the thread pool.
+/// * Block the current thread until the runtime shuts down.
+///
+/// Note that the function will not return immediately once `future` has
+/// completed. Instead it waits for the entire runtime to become idle.
+///
+/// See the [module level][mod] documentation for more details.
+///
+/// # Examples
+///
+/// ```rust
+/// # extern crate tokio;
+/// # extern crate futures;
+/// # use futures::{Future, Stream};
+/// use tokio::net::TcpListener;
+///
+/// # fn process<T>(_: T) -> Box<Future<Item = (), Error = ()> + Send> {
+/// # unimplemented!();
+/// # }
+/// # fn dox() {
+/// # let addr = "127.0.0.1:8080".parse().unwrap();
+/// let listener = TcpListener::bind(&addr).unwrap();
+///
+/// let server = listener.incoming()
+/// .map_err(|e| println!("error = {:?}", e))
+/// .for_each(|socket| {
+/// tokio::spawn(process(socket))
+/// });
+///
+/// tokio::run(server);
+/// # }
+/// # pub fn main() {}
+/// ```
+///
+/// # Panics
+///
+/// This function panics if called from the context of an executor.
+///
+/// [mod]: ../index.html
+pub fn run<F>(future: F)
+where F: Future<Item = (), Error = ()> + Send + 'static,
+{
+ let mut runtime = Runtime::new().unwrap();
+ runtime.spawn(future);
+ enter().expect("nested tokio::run")
+ .block_on(runtime.shutdown_on_idle())
+ .unwrap();
+}
+
+impl Runtime {
+ /// Create a new runtime instance with default configuration values.
+ ///
+ /// This results in a reactor, thread pool, and timer being initialized. The
+ /// thread pool will not spawn any worker threads until it needs to, i.e.
+ /// tasks are scheduled to run.
+ ///
+ /// Most users will not need to call this function directly, instead they
+ /// will use [`tokio::run`](fn.run.html).
+ ///
+ /// See [module level][mod] documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// Creating a new `Runtime` with default configuration values.
+ ///
+ /// ```
+ /// use tokio::runtime::Runtime;
+ /// use tokio::prelude::*;
+ ///
+ /// let rt = Runtime::new()
+ /// .unwrap();
+ ///
+ /// // Use the runtime...
+ ///
+ /// // Shutdown the runtime
+ /// rt.shutdown_now()
+ /// .wait().unwrap();
+ /// ```
+ ///
+ /// [mod]: index.html
+ pub fn new() -> io::Result<Self> {
+ Builder::new().build()
+ }
+
+ #[deprecated(since = "0.1.5", note = "use `reactor` instead")]
+ #[doc(hidden)]
+ pub fn handle(&self) -> &Handle {
+ self.reactor()
+ }
+
+ /// Return a reference to the reactor handle for this runtime instance.
+ ///
+ /// The returned handle reference can be cloned in order to get an owned
+ /// value of the handle. This handle can be used to initialize I/O resources
+ /// (like TCP or UDP sockets) that will not be used on the runtime.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Runtime;
+ ///
+ /// let rt = Runtime::new()
+ /// .unwrap();
+ ///
+ /// let reactor_handle = rt.reactor().clone();
+ ///
+ /// // use `reactor_handle`
+ /// ```
+ pub fn reactor(&self) -> &Handle {
+ self.inner().reactor.handle()
+ }
+
+ /// Return a handle to the runtime's executor.
+ ///
+ /// The returned handle can be used to spawn tasks that run on this runtime.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Runtime;
+ ///
+ /// let rt = Runtime::new()
+ /// .unwrap();
+ ///
+ /// let executor_handle = rt.executor();
+ ///
+ /// // use `executor_handle`
+ /// ```
+ pub fn executor(&self) -> TaskExecutor {
+ let inner = self.inner().pool.sender().clone();
+ TaskExecutor { inner }
+ }
+
+ /// Spawn a future onto the Tokio runtime.
+ ///
+ /// This spawns the given future onto the runtime's executor, usually a
+ /// thread pool. The thread pool is then responsible for polling the future
+ /// until it completes.
+ ///
+ /// See [module level][mod] documentation for more details.
+ ///
+ /// [mod]: index.html
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// # use futures::{future, Future, Stream};
+ /// use tokio::runtime::Runtime;
+ ///
+ /// # fn dox() {
+ /// // Create the runtime
+ /// let mut rt = Runtime::new().unwrap();
+ ///
+ /// // Spawn a future onto the runtime
+ /// rt.spawn(future::lazy(|| {
+ /// println!("now running on a worker thread");
+ /// Ok(())
+ /// }));
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// This function panics if the spawn fails. Failure occurs if the executor
+ /// is currently at capacity and is unable to spawn a new future.
+ pub fn spawn<F>(&mut self, future: F) -> &mut Self
+ where F: Future<Item = (), Error = ()> + Send + 'static,
+ {
+ self.inner_mut().pool.sender().spawn(future).unwrap();
+ self
+ }
+
+ /// Run a future to completion on the Tokio runtime.
+ ///
+ /// This runs the given future on the runtime, blocking until it is
+ /// complete, and yielding its resolved result. Any tasks or timers which
+ /// the future spawns internally will be executed on the runtime.
+ ///
+ /// This method should not be called from an asynchronous context.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if the executor is at capacity, if the provided
+ /// future panics, or if called within an asynchronous execution context.
+ pub fn block_on<F, R, E>(&mut self, future: F) -> Result<R, E>
+ where
+ F: Send + 'static + Future<Item = R, Error = E>,
+ R: Send + 'static,
+ E: Send + 'static,
+ {
+ let (tx, rx) = futures::sync::oneshot::channel();
+ self.spawn(future.then(move |r| tx.send(r).map_err(|_| unreachable!())));
+ rx.wait().unwrap()
+ }
+
+ /// Run a future to completion on the Tokio runtime, then wait for all
+ /// background futures to complete too.
+ ///
+ /// This runs the given future on the runtime, blocking until it is
+ /// complete, waiting for background futures to complete, and yielding
+ /// its resolved result. Any tasks or timers which the future spawns
+ /// internally will be executed on the runtime and waited for completion.
+ ///
+ /// This method should not be called from an asynchronous context.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if the executor is at capacity, if the provided
+ /// future panics, or if called within an asynchronous execution context.
+ pub fn block_on_all<F, R, E>(mut self, future: F) -> Result<R, E>
+ where
+ F: Send + 'static + Future<Item = R, Error = E>,
+ R: Send + 'static,
+ E: Send + 'static,
+ {
+ let res = self.block_on(future);
+ self.shutdown_on_idle().wait().unwrap();
+ res
+ }
+
+ /// Signals the runtime to shutdown once it becomes idle.
+ ///
+ /// Returns a future that completes once the shutdown operation has
+ /// completed.
+ ///
+ /// This function can be used to perform a graceful shutdown of the runtime.
+ ///
+ /// The runtime enters an idle state once **all** of the following occur.
+ ///
+ /// * The thread pool has no tasks to execute, i.e., all tasks that were
+ /// spawned have completed.
+ /// * The reactor is not managing any I/O resources.
+ ///
+ /// See [module level][mod] documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Runtime;
+ /// use tokio::prelude::*;
+ ///
+ /// let rt = Runtime::new()
+ /// .unwrap();
+ ///
+ /// // Use the runtime...
+ ///
+ /// // Shutdown the runtime
+ /// rt.shutdown_on_idle()
+ /// .wait().unwrap();
+ /// ```
+ ///
+ /// [mod]: index.html
+ pub fn shutdown_on_idle(mut self) -> Shutdown {
+ let inner = self.inner.take().unwrap();
+
+ let inner = Box::new({
+ let pool = inner.pool;
+ let reactor = inner.reactor;
+
+ pool.shutdown_on_idle().and_then(|_| {
+ reactor.shutdown_on_idle()
+ })
+ });
+
+ Shutdown { inner }
+ }
+
+ /// Signals the runtime to shutdown immediately.
+ ///
+ /// Returns a future that completes once the shutdown operation has
+ /// completed.
+ ///
+ /// This function will forcibly shutdown the runtime, causing any
+ /// in-progress work to become canceled. The shutdown steps are:
+ ///
+ /// * Drain any scheduled work queues.
+ /// * Drop any futures that have not yet completed.
+ /// * Drop the reactor.
+ ///
+ /// Once the reactor has dropped, any outstanding I/O resources bound to
+ /// that reactor will no longer function. Calling any method on them will
+ /// result in an error.
+ ///
+ /// See [module level][mod] documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Runtime;
+ /// use tokio::prelude::*;
+ ///
+ /// let rt = Runtime::new()
+ /// .unwrap();
+ ///
+ /// // Use the runtime...
+ ///
+ /// // Shutdown the runtime
+ /// rt.shutdown_now()
+ /// .wait().unwrap();
+ /// ```
+ ///
+ /// [mod]: index.html
+ pub fn shutdown_now(mut self) -> Shutdown {
+ let inner = self.inner.take().unwrap();
+ Shutdown::shutdown_now(inner)
+ }
+
+ fn inner(&self) -> &Inner {
+ self.inner.as_ref().unwrap()
+ }
+
+ fn inner_mut(&mut self) -> &mut Inner {
+ self.inner.as_mut().unwrap()
+ }
+}
+
+impl Drop for Runtime {
+ fn drop(&mut self) {
+ if let Some(inner) = self.inner.take() {
+ let shutdown = Shutdown::shutdown_now(inner);
+ let _ = shutdown.wait();
+ }
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/runtime/shutdown.rs b/third_party/rust/tokio-0.1.11/src/runtime/shutdown.rs
new file mode 100644
index 0000000000..1aca557277
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/runtime/shutdown.rs
@@ -0,0 +1,46 @@
+use runtime::Inner;
+
+use std::fmt;
+
+use futures::{Future, Poll};
+
+/// A future that resolves when the Tokio `Runtime` is shut down.
+pub struct Shutdown {
+ pub(super) inner: Box<Future<Item = (), Error = ()> + Send>,
+}
+
+impl Shutdown {
+ pub(super) fn shutdown_now(inner: Inner) -> Self {
+ let inner = Box::new({
+ let pool = inner.pool;
+ let reactor = inner.reactor;
+
+ pool.shutdown_now().and_then(|_| {
+ reactor.shutdown_now()
+ .then(|_| {
+ Ok(())
+ })
+ })
+ });
+
+ Shutdown { inner }
+ }
+}
+
+impl Future for Shutdown {
+ type Item = ();
+ type Error = ();
+
+ fn poll(&mut self) -> Poll<(), ()> {
+ try_ready!(self.inner.poll());
+ Ok(().into())
+ }
+}
+
+impl fmt::Debug for Shutdown {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt.debug_struct("Shutdown")
+ .field("inner", &"Box<Future<Item = (), Error = ()>>")
+ .finish()
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/runtime/task_executor.rs b/third_party/rust/tokio-0.1.11/src/runtime/task_executor.rs
new file mode 100644
index 0000000000..e213201ab0
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/runtime/task_executor.rs
@@ -0,0 +1,75 @@
+
+use tokio_threadpool::Sender;
+
+use futures::future::{self, Future};
+
+/// Executes futures on the runtime
+///
+/// All futures spawned using this executor will be submitted to the associated
+/// Runtime's executor. This executor is usually a thread pool.
+///
+/// For more details, see the [module level](index.html) documentation.
+#[derive(Debug, Clone)]
+pub struct TaskExecutor {
+ pub(super) inner: Sender,
+}
+
+impl TaskExecutor {
+ /// Spawn a future onto the Tokio runtime.
+ ///
+ /// This spawns the given future onto the runtime's executor, usually a
+ /// thread pool. The thread pool is then responsible for polling the future
+ /// until it completes.
+ ///
+ /// See [module level][mod] documentation for more details.
+ ///
+ /// [mod]: index.html
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// # use futures::{future, Future, Stream};
+ /// use tokio::runtime::Runtime;
+ ///
+ /// # fn dox() {
+ /// // Create the runtime
+ /// let mut rt = Runtime::new().unwrap();
+ /// let executor = rt.executor();
+ ///
+ /// // Spawn a future onto the runtime
+ /// executor.spawn(future::lazy(|| {
+ /// println!("now running on a worker thread");
+ /// Ok(())
+ /// }));
+ /// # }
+ /// # pub fn main() {}
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// This function panics if the spawn fails. Failure occurs if the executor
+ /// is currently at capacity and is unable to spawn a new future.
+ pub fn spawn<F>(&self, future: F)
+ where F: Future<Item = (), Error = ()> + Send + 'static,
+ {
+ self.inner.spawn(future).unwrap();
+ }
+}
+
+impl<T> future::Executor<T> for TaskExecutor
+where T: Future<Item = (), Error = ()> + Send + 'static,
+{
+ fn execute(&self, future: T) -> Result<(), future::ExecuteError<T>> {
+ self.inner.execute(future)
+ }
+}
+
+impl ::executor::Executor for TaskExecutor {
+ fn spawn(&mut self, future: Box<Future<Item = (), Error = ()> + Send>)
+ -> Result<(), ::executor::SpawnError>
+ {
+ self.inner.spawn(future)
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/timer.rs b/third_party/rust/tokio-0.1.11/src/timer.rs
new file mode 100644
index 0000000000..fc85a2a724
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/timer.rs
@@ -0,0 +1,102 @@
+//! Utilities for tracking time.
+//!
+//! This module provides a number of types for executing code after a set period
+//! of time.
+//!
+//! * [`Delay`][Delay] is a future that does no work and completes at a specific `Instant`
+//! in time.
+//!
+//! * [`Interval`][Interval] is a stream yielding a value at a fixed period. It
+//! is initialized with a `Duration` and repeatedly yields each time the
+//! duration elapses.
+//!
+//! * [`Timeout`][Timeout]: Wraps a future or stream, setting an upper bound to the
+//! amount of time it is allowed to execute. If the future or stream does not
+//! complete in time, then it is canceled and an error is returned.
+//!
+//! * [`DelayQueue`]: A queue where items are returned once the requested delay
+//! has expired.
+//!
+//! These types are sufficient for handling a large number of scenarios
+//! involving time.
+//!
+//! These types must be used from within the context of the
+//! [`Runtime`][runtime] or a timer context must be setup explicitly. See the
+//! [`tokio-timer`][tokio-timer] crate for more details on how to setup a timer
+//! context.
+//!
+//! # Examples
+//!
+//! Wait 100ms and print "Hello World!"
+//!
+//! ```
+//! use tokio::prelude::*;
+//! use tokio::timer::Delay;
+//!
+//! use std::time::{Duration, Instant};
+//!
+//! let when = Instant::now() + Duration::from_millis(100);
+//!
+//! tokio::run({
+//! Delay::new(when)
+//! .map_err(|e| panic!("timer failed; err={:?}", e))
+//! .and_then(|_| {
+//! println!("Hello world!");
+//! Ok(())
+//! })
+//! })
+//! ```
+//!
+//! Require that an operation takes no more than 300ms. Note that this uses the
+//! [`timeout`][ext] function on the [`FutureExt`][ext] trait. This trait is
+//! included in the prelude.
+//!
+//! ```
+//! # extern crate futures;
+//! # extern crate tokio;
+//! use tokio::prelude::*;
+//!
+//! use std::time::{Duration, Instant};
+//!
+//! fn long_op() -> Box<Future<Item = (), Error = ()> + Send> {
+//! // ...
+//! # Box::new(futures::future::ok(()))
+//! }
+//!
+//! # fn main() {
+//! tokio::run({
+//! long_op()
+//! .timeout(Duration::from_millis(300))
+//! .map_err(|e| {
+//! println!("operation timed out");
+//! })
+//! })
+//! # }
+//! ```
+//!
+//! [runtime]: ../runtime/struct.Runtime.html
+//! [tokio-timer]: https://docs.rs/tokio-timer
+//! [ext]: ../util/trait.FutureExt.html#method.timeout
+//! [Timeout]: struct.Timeout.html
+//! [Delay]: struct.Delay.html
+//! [Interval]: struct.Interval.html
+//! [`DelayQueue`]: struct.DelayQueue.html
+
+pub use tokio_timer::{
+ delay_queue,
+ DelayQueue,
+ Error,
+ Interval,
+ Delay,
+ Timeout,
+ timeout,
+};
+
+#[deprecated(since = "0.1.8", note = "use Timeout instead")]
+#[allow(deprecated)]
+#[doc(hidden)]
+pub type Deadline<T> = ::tokio_timer::Deadline<T>;
+#[deprecated(since = "0.1.8", note = "use Timeout instead")]
+#[allow(deprecated)]
+#[doc(hidden)]
+pub type DeadlineError<T> = ::tokio_timer::DeadlineError<T>;
diff --git a/third_party/rust/tokio-0.1.11/src/util/future.rs b/third_party/rust/tokio-0.1.11/src/util/future.rs
new file mode 100644
index 0000000000..92097ad9ea
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/util/future.rs
@@ -0,0 +1,87 @@
+#[allow(deprecated)]
+use tokio_timer::Deadline;
+use tokio_timer::Timeout;
+
+use futures::Future;
+
+use std::time::{Instant, Duration};
+
+
+/// An extension trait for `Future` that provides a variety of convenient
+/// combinator functions.
+///
+/// Currently, there only is a [`timeout`] function, but this will increase
+/// over time.
+///
+/// Users are not expected to implement this trait. All types that implement
+/// `Future` already implement `FutureExt`.
+///
+/// This trait can be imported directly or via the Tokio prelude: `use
+/// tokio::prelude::*`.
+///
+/// [`timeout`]: #method.timeout
+pub trait FutureExt: Future {
+
+ /// Creates a new future which allows `self` until `timeout`.
+ ///
+ /// This combinator creates a new future which wraps the receiving future
+ /// with a timeout. The returned future is allowed to execute until it
+ /// completes or `timeout` has elapsed, whichever happens first.
+ ///
+ /// If the future completes before `timeout` then the future will resolve
+ /// with that item. Otherwise the future will resolve to an error.
+ ///
+ /// The future is guaranteed to be polled at least once, even if `timeout`
+ /// is set to zero.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// use tokio::prelude::*;
+ /// use std::time::Duration;
+ /// # use futures::future::{self, FutureResult};
+ ///
+ /// # fn long_future() -> FutureResult<(), ()> {
+ /// # future::ok(())
+ /// # }
+ /// #
+ /// # fn main() {
+ /// let future = long_future()
+ /// .timeout(Duration::from_secs(1))
+ /// .map_err(|e| println!("error = {:?}", e));
+ ///
+ /// tokio::run(future);
+ /// # }
+ /// ```
+ fn timeout(self, timeout: Duration) -> Timeout<Self>
+ where Self: Sized,
+ {
+ Timeout::new(self, timeout)
+ }
+
+ #[deprecated(since = "0.1.8", note = "use `timeout` instead")]
+ #[allow(deprecated)]
+ #[doc(hidden)]
+ fn deadline(self, deadline: Instant) -> Deadline<Self>
+ where Self: Sized,
+ {
+ Deadline::new(self, deadline)
+ }
+}
+
+impl<T: ?Sized> FutureExt for T where T: Future {}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+ use prelude::future;
+
+ #[test]
+ fn timeout_polls_at_least_once() {
+ let base_future = future::result::<(), ()>(Ok(()));
+ let timeouted_future = base_future.timeout(Duration::new(0, 0));
+ assert!(timeouted_future.wait().is_ok());
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/src/util/mod.rs b/third_party/rust/tokio-0.1.11/src/util/mod.rs
new file mode 100644
index 0000000000..3ebd1fc708
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/util/mod.rs
@@ -0,0 +1,14 @@
+//! Utilities for working with Tokio.
+//!
+//! This module contains utilities that are useful for working with Tokio.
+//! Currently, this only includes [`FutureExt`] and [`StreamExt`], but this
+//! may grow over time.
+//!
+//! [`FutureExt`]: trait.FutureExt.html
+//! [`StreamExt`]: trait.StreamExt.html
+
+mod future;
+mod stream;
+
+pub use self::future::FutureExt;
+pub use self::stream::StreamExt;
diff --git a/third_party/rust/tokio-0.1.11/src/util/stream.rs b/third_party/rust/tokio-0.1.11/src/util/stream.rs
new file mode 100644
index 0000000000..ef268483c0
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/src/util/stream.rs
@@ -0,0 +1,62 @@
+use tokio_timer::Timeout;
+
+use futures::Stream;
+
+use std::time::Duration;
+
+
+/// An extension trait for `Stream` that provides a variety of convenient
+/// combinator functions.
+///
+/// Currently, there only is a [`timeout`] function, but this will increase
+/// over time.
+///
+/// Users are not expected to implement this trait. All types that implement
+/// `Stream` already implement `StreamExt`.
+///
+/// This trait can be imported directly or via the Tokio prelude: `use
+/// tokio::prelude::*`.
+///
+/// [`timeout`]: #method.timeout
+pub trait StreamExt: Stream {
+
+ /// Creates a new stream which allows `self` until `timeout`.
+ ///
+ /// This combinator creates a new stream which wraps the receiving stream
+ /// with a timeout. For each item, the returned stream is allowed to execute
+ /// until it completes or `timeout` has elapsed, whichever happens first.
+ ///
+ /// If an item completes before `timeout` then the stream will yield
+ /// with that item. Otherwise the stream will yield to an error.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # extern crate tokio;
+ /// # extern crate futures;
+ /// use tokio::prelude::*;
+ /// use std::time::Duration;
+ /// # use futures::future::{self, FutureResult};
+ ///
+ /// # fn long_future() -> FutureResult<(), ()> {
+ /// # future::ok(())
+ /// # }
+ /// #
+ /// # fn main() {
+ /// let stream = long_future()
+ /// .into_stream()
+ /// .timeout(Duration::from_secs(1))
+ /// .for_each(|i| future::ok(println!("item = {:?}", i)))
+ /// .map_err(|e| println!("error = {:?}", e));
+ ///
+ /// tokio::run(stream);
+ /// # }
+ /// ```
+ fn timeout(self, timeout: Duration) -> Timeout<Self>
+ where Self: Sized,
+ {
+ Timeout::new(self, timeout)
+ }
+}
+
+impl<T: ?Sized> StreamExt for T where T: Stream {}
diff --git a/third_party/rust/tokio-0.1.11/tests/buffered.rs b/third_party/rust/tokio-0.1.11/tests/buffered.rs
new file mode 100644
index 0000000000..3605eba38a
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/buffered.rs
@@ -0,0 +1,63 @@
+extern crate env_logger;
+extern crate futures;
+extern crate tokio;
+extern crate tokio_io;
+
+use std::net::TcpStream;
+use std::thread;
+use std::io::{Read, Write, BufReader, BufWriter};
+
+use futures::Future;
+use futures::stream::Stream;
+use tokio_io::io::copy;
+use tokio::net::TcpListener;
+
+macro_rules! t {
+ ($e:expr) => (match $e {
+ Ok(e) => e,
+ Err(e) => panic!("{} failed with {:?}", stringify!($e), e),
+ })
+}
+
+#[test]
+fn echo_server() {
+ const N: usize = 1024;
+ drop(env_logger::try_init());
+
+ let srv = t!(TcpListener::bind(&t!("127.0.0.1:0".parse())));
+ let addr = t!(srv.local_addr());
+
+ let msg = "foo bar baz";
+ let t = thread::spawn(move || {
+ let mut s = t!(TcpStream::connect(&addr));
+
+ let t2 = thread::spawn(move || {
+ let mut s = t!(TcpStream::connect(&addr));
+ let mut b = vec![0; msg.len() * N];
+ t!(s.read_exact(&mut b));
+ b
+ });
+
+ let mut expected = Vec::<u8>::new();
+ for _i in 0..N {
+ expected.extend(msg.as_bytes());
+ assert_eq!(t!(s.write(msg.as_bytes())), msg.len());
+ }
+ (expected, t2)
+ });
+
+ let clients = srv.incoming().take(2).collect();
+ let copied = clients.and_then(|clients| {
+ let mut clients = clients.into_iter();
+ let a = BufReader::new(clients.next().unwrap());
+ let b = BufWriter::new(clients.next().unwrap());
+ copy(a, b)
+ });
+
+ let (amt, _, _) = t!(copied.wait());
+ let (expected, t2) = t.join().unwrap();
+ let actual = t2.join().unwrap();
+
+ assert!(expected == actual);
+ assert_eq!(amt, msg.len() as u64 * 1024);
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/clock.rs b/third_party/rust/tokio-0.1.11/tests/clock.rs
new file mode 100644
index 0000000000..6e9d9121fc
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/clock.rs
@@ -0,0 +1,69 @@
+extern crate futures;
+extern crate tokio;
+extern crate tokio_timer;
+extern crate env_logger;
+
+use tokio::prelude::*;
+use tokio::runtime::{self, current_thread};
+use tokio::timer::*;
+use tokio_timer::clock::Clock;
+
+use std::sync::mpsc;
+use std::time::{Duration, Instant};
+
+struct MockNow(Instant);
+
+impl tokio_timer::clock::Now for MockNow {
+ fn now(&self) -> Instant {
+ self.0
+ }
+}
+
+#[test]
+fn clock_and_timer_concurrent() {
+ let _ = env_logger::try_init();
+
+ let when = Instant::now() + Duration::from_millis(5_000);
+ let clock = Clock::new_with_now(MockNow(when));
+
+ let mut rt = runtime::Builder::new()
+ .clock(clock)
+ .build()
+ .unwrap();
+
+ let (tx, rx) = mpsc::channel();
+
+ rt.spawn({
+ Delay::new(when)
+ .map_err(|e| panic!("unexpected error; err={:?}", e))
+ .and_then(move |_| {
+ assert!(Instant::now() < when);
+ tx.send(()).unwrap();
+ Ok(())
+ })
+ });
+
+ rx.recv().unwrap();
+}
+
+#[test]
+fn clock_and_timer_single_threaded() {
+ let _ = env_logger::try_init();
+
+ let when = Instant::now() + Duration::from_millis(5_000);
+ let clock = Clock::new_with_now(MockNow(when));
+
+ let mut rt = current_thread::Builder::new()
+ .clock(clock)
+ .build()
+ .unwrap();
+
+ rt.block_on({
+ Delay::new(when)
+ .map_err(|e| panic!("unexpected error; err={:?}", e))
+ .and_then(move |_| {
+ assert!(Instant::now() < when);
+ Ok(())
+ })
+ }).unwrap();
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/drop-core.rs b/third_party/rust/tokio-0.1.11/tests/drop-core.rs
new file mode 100644
index 0000000000..75ac9b7eb1
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/drop-core.rs
@@ -0,0 +1,42 @@
+extern crate tokio;
+extern crate futures;
+
+use std::thread;
+use std::net;
+
+use futures::future;
+use futures::prelude::*;
+use futures::sync::oneshot;
+use tokio::net::TcpListener;
+use tokio::reactor::Reactor;
+
+#[test]
+fn tcp_doesnt_block() {
+ let core = Reactor::new().unwrap();
+ let handle = core.handle();
+ let listener = net::TcpListener::bind("127.0.0.1:0").unwrap();
+ let listener = TcpListener::from_std(listener, &handle).unwrap();
+ drop(core);
+ assert!(listener.incoming().wait().next().unwrap().is_err());
+}
+
+#[test]
+fn drop_wakes() {
+ let core = Reactor::new().unwrap();
+ let handle = core.handle();
+ let listener = net::TcpListener::bind("127.0.0.1:0").unwrap();
+ let listener = TcpListener::from_std(listener, &handle).unwrap();
+ let (tx, rx) = oneshot::channel::<()>();
+ let t = thread::spawn(move || {
+ let incoming = listener.incoming();
+ let new_socket = incoming.into_future().map_err(|_| ());
+ let drop_tx = future::lazy(|| {
+ drop(tx);
+ future::ok(())
+ });
+ assert!(new_socket.join(drop_tx).wait().is_err());
+ });
+ drop(rx.wait());
+ drop(core);
+ t.join().unwrap();
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/global.rs b/third_party/rust/tokio-0.1.11/tests/global.rs
new file mode 100644
index 0000000000..d3bc09315a
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/global.rs
@@ -0,0 +1,136 @@
+extern crate futures;
+extern crate tokio;
+extern crate tokio_io;
+extern crate env_logger;
+
+use std::{io, thread};
+use std::sync::Arc;
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering::Relaxed;
+
+use futures::prelude::*;
+use tokio::net::{TcpStream, TcpListener};
+use tokio::runtime::Runtime;
+
+macro_rules! t {
+ ($e:expr) => (match $e {
+ Ok(e) => e,
+ Err(e) => panic!("{} failed with {:?}", stringify!($e), e),
+ })
+}
+
+#[test]
+fn hammer_old() {
+ let _ = env_logger::try_init();
+
+ let threads = (0..10).map(|_| {
+ thread::spawn(|| {
+ let srv = t!(TcpListener::bind(&"127.0.0.1:0".parse().unwrap()));
+ let addr = t!(srv.local_addr());
+ let mine = TcpStream::connect(&addr);
+ let theirs = srv.incoming().into_future()
+ .map(|(s, _)| s.unwrap())
+ .map_err(|(s, _)| s);
+ let (mine, theirs) = t!(mine.join(theirs).wait());
+
+ assert_eq!(t!(mine.local_addr()), t!(theirs.peer_addr()));
+ assert_eq!(t!(theirs.local_addr()), t!(mine.peer_addr()));
+ })
+ }).collect::<Vec<_>>();
+ for thread in threads {
+ thread.join().unwrap();
+ }
+}
+
+struct Rd(Arc<TcpStream>);
+struct Wr(Arc<TcpStream>);
+
+impl io::Read for Rd {
+ fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
+ <&TcpStream>::read(&mut &*self.0, dst)
+ }
+}
+
+impl tokio_io::AsyncRead for Rd {
+}
+
+impl io::Write for Wr {
+ fn write(&mut self, src: &[u8]) -> io::Result<usize> {
+ <&TcpStream>::write(&mut &*self.0, src)
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ Ok(())
+ }
+}
+
+impl tokio_io::AsyncWrite for Wr {
+ fn shutdown(&mut self) -> Poll<(), io::Error> {
+ Ok(().into())
+ }
+}
+
+#[test]
+fn hammer_split() {
+ use tokio_io::io;
+
+ const N: usize = 100;
+ const ITER: usize = 10;
+
+ let _ = env_logger::try_init();
+
+ for _ in 0..ITER {
+ let srv = t!(TcpListener::bind(&"127.0.0.1:0".parse().unwrap()));
+ let addr = t!(srv.local_addr());
+
+ let cnt = Arc::new(AtomicUsize::new(0));
+
+ let mut rt = Runtime::new().unwrap();
+
+ fn split(socket: TcpStream, cnt: Arc<AtomicUsize>) {
+ let socket = Arc::new(socket);
+ let rd = Rd(socket.clone());
+ let wr = Wr(socket);
+
+ let cnt2 = cnt.clone();
+
+ let rd = io::read(rd, vec![0; 1])
+ .map(move |_| {
+ cnt2.fetch_add(1, Relaxed);
+ })
+ .map_err(|e| panic!("read error = {:?}", e));
+
+ let wr = io::write_all(wr, b"1")
+ .map(move |_| {
+ cnt.fetch_add(1, Relaxed);
+ })
+ .map_err(move |e| panic!("write error = {:?}", e));
+
+ tokio::spawn(rd);
+ tokio::spawn(wr);
+ }
+
+ rt.spawn({
+ let cnt = cnt.clone();
+ srv.incoming()
+ .map_err(|e| panic!("accept error = {:?}", e))
+ .take(N as u64)
+ .for_each(move |socket| {
+ split(socket, cnt.clone());
+ Ok(())
+ })
+ });
+
+ for _ in 0..N {
+ rt.spawn({
+ let cnt = cnt.clone();
+ TcpStream::connect(&addr)
+ .map_err(move |e| panic!("connect error = {:?}", e))
+ .map(move |socket| split(socket, cnt))
+ });
+ }
+
+ rt.shutdown_on_idle().wait().unwrap();
+ assert_eq!(N * 4, cnt.load(Relaxed));
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/length_delimited.rs b/third_party/rust/tokio-0.1.11/tests/length_delimited.rs
new file mode 100644
index 0000000000..318f35ef33
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/length_delimited.rs
@@ -0,0 +1,564 @@
+extern crate tokio;
+extern crate futures;
+extern crate bytes;
+
+use tokio::io::{AsyncRead, AsyncWrite};
+use tokio::codec::*;
+
+use bytes::Bytes;
+use futures::{Stream, Sink, Poll};
+use futures::Async::*;
+
+use std::io;
+use std::collections::VecDeque;
+
+macro_rules! mock {
+ ($($x:expr,)*) => {{
+ let mut v = VecDeque::new();
+ v.extend(vec![$($x),*]);
+ Mock { calls: v }
+ }};
+}
+
+
+#[test]
+fn read_empty_io_yields_nothing() {
+ let mut io = FramedRead::new(mock!(), LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_frame_one_packet() {
+ let mut io = FramedRead::new(mock! {
+ Ok(b"\x00\x00\x00\x09abcdefghi"[..].into()),
+ }, LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_frame_one_packet_little_endian() {
+ let mut io = length_delimited::Builder::new()
+ .little_endian()
+ .new_read(mock! {
+ Ok(b"\x09\x00\x00\x00abcdefghi"[..].into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_frame_one_packet_native_endian() {
+ let data = if cfg!(target_endian = "big") {
+ b"\x00\x00\x00\x09abcdefghi"
+ } else {
+ b"\x09\x00\x00\x00abcdefghi"
+ };
+ let mut io = length_delimited::Builder::new()
+ .native_endian()
+ .new_read(mock! {
+ Ok(data[..].into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_multi_frame_one_packet() {
+ let mut data: Vec<u8> = vec![];
+ data.extend_from_slice(b"\x00\x00\x00\x09abcdefghi");
+ data.extend_from_slice(b"\x00\x00\x00\x03123");
+ data.extend_from_slice(b"\x00\x00\x00\x0bhello world");
+
+ let mut io = FramedRead::new(mock! {
+ Ok(data.into()),
+ }, LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"123"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"hello world"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_frame_multi_packet() {
+ let mut io = FramedRead::new(mock! {
+ Ok(b"\x00\x00"[..].into()),
+ Ok(b"\x00\x09abc"[..].into()),
+ Ok(b"defghi"[..].into()),
+ }, LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_multi_frame_multi_packet() {
+ let mut io = FramedRead::new(mock! {
+ Ok(b"\x00\x00"[..].into()),
+ Ok(b"\x00\x09abc"[..].into()),
+ Ok(b"defghi"[..].into()),
+ Ok(b"\x00\x00\x00\x0312"[..].into()),
+ Ok(b"3\x00\x00\x00\x0bhello world"[..].into()),
+ }, LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"123"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"hello world"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_frame_multi_packet_wait() {
+ let mut io = FramedRead::new(mock! {
+ Ok(b"\x00\x00"[..].into()),
+ Err(would_block()),
+ Ok(b"\x00\x09abc"[..].into()),
+ Err(would_block()),
+ Ok(b"defghi"[..].into()),
+ Err(would_block()),
+ }, LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_multi_frame_multi_packet_wait() {
+ let mut io = FramedRead::new(mock! {
+ Ok(b"\x00\x00"[..].into()),
+ Err(would_block()),
+ Ok(b"\x00\x09abc"[..].into()),
+ Err(would_block()),
+ Ok(b"defghi"[..].into()),
+ Err(would_block()),
+ Ok(b"\x00\x00\x00\x0312"[..].into()),
+ Err(would_block()),
+ Ok(b"3\x00\x00\x00\x0bhello world"[..].into()),
+ Err(would_block()),
+ }, LengthDelimitedCodec::new());
+
+
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"123"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"hello world"[..].into())));
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_incomplete_head() {
+ let mut io = FramedRead::new(mock! {
+ Ok(b"\x00\x00"[..].into()),
+ }, LengthDelimitedCodec::new());
+
+ assert!(io.poll().is_err());
+}
+
+#[test]
+fn read_incomplete_head_multi() {
+ let mut io = FramedRead::new(mock! {
+ Err(would_block()),
+ Ok(b"\x00"[..].into()),
+ Err(would_block()),
+ }, LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert!(io.poll().is_err());
+}
+
+#[test]
+fn read_incomplete_payload() {
+ let mut io = FramedRead::new(mock! {
+ Ok(b"\x00\x00\x00\x09ab"[..].into()),
+ Err(would_block()),
+ Ok(b"cd"[..].into()),
+ Err(would_block()),
+ }, LengthDelimitedCodec::new());
+
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert_eq!(io.poll().unwrap(), NotReady);
+ assert!(io.poll().is_err());
+}
+
+#[test]
+fn read_max_frame_len() {
+ let mut io = length_delimited::Builder::new()
+ .max_frame_length(5)
+ .new_read(mock! {
+ Ok(b"\x00\x00\x00\x09abcdefghi"[..].into()),
+ });
+
+ assert_eq!(io.poll().unwrap_err().kind(), io::ErrorKind::InvalidData);
+}
+
+#[test]
+fn read_update_max_frame_len_at_rest() {
+ let mut io = length_delimited::Builder::new()
+ .new_read(mock! {
+ Ok(b"\x00\x00\x00\x09abcdefghi"[..].into()),
+ Ok(b"\x00\x00\x00\x09abcdefghi"[..].into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ io.decoder_mut().set_max_frame_length(5);
+ assert_eq!(io.poll().unwrap_err().kind(), io::ErrorKind::InvalidData);
+}
+
+#[test]
+fn read_update_max_frame_len_in_flight() {
+ let mut io = length_delimited::Builder::new()
+ .new_read(mock! {
+ Ok(b"\x00\x00\x00\x09abcd"[..].into()),
+ Err(would_block()),
+ Ok(b"efghi"[..].into()),
+ Ok(b"\x00\x00\x00\x09abcdefghi"[..].into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), NotReady);
+ io.decoder_mut().set_max_frame_length(5);
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap_err().kind(), io::ErrorKind::InvalidData);
+}
+
+#[test]
+fn read_one_byte_length_field() {
+ let mut io = length_delimited::Builder::new()
+ .length_field_length(1)
+ .new_read(mock! {
+ Ok(b"\x09abcdefghi"[..].into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_header_offset() {
+ let mut io = length_delimited::Builder::new()
+ .length_field_length(2)
+ .length_field_offset(4)
+ .new_read(mock! {
+ Ok(b"zzzz\x00\x09abcdefghi"[..].into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_multi_frame_one_packet_skip_none_adjusted() {
+ let mut data: Vec<u8> = vec![];
+ data.extend_from_slice(b"xx\x00\x09abcdefghi");
+ data.extend_from_slice(b"yy\x00\x03123");
+ data.extend_from_slice(b"zz\x00\x0bhello world");
+
+ let mut io = length_delimited::Builder::new()
+ .length_field_length(2)
+ .length_field_offset(2)
+ .num_skip(0)
+ .length_adjustment(4)
+ .new_read(mock! {
+ Ok(data.into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"xx\x00\x09abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"yy\x00\x03123"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"zz\x00\x0bhello world"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn read_single_multi_frame_one_packet_length_includes_head() {
+ let mut data: Vec<u8> = vec![];
+ data.extend_from_slice(b"\x00\x0babcdefghi");
+ data.extend_from_slice(b"\x00\x05123");
+ data.extend_from_slice(b"\x00\x0dhello world");
+
+ let mut io = length_delimited::Builder::new()
+ .length_field_length(2)
+ .length_adjustment(-2)
+ .new_read(mock! {
+ Ok(data.into()),
+ });
+
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"abcdefghi"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"123"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(Some(b"hello world"[..].into())));
+ assert_eq!(io.poll().unwrap(), Ready(None));
+}
+
+#[test]
+fn write_single_frame_length_adjusted() {
+ let mut io = length_delimited::Builder::new()
+ .length_adjustment(-2)
+ .new_write(mock! {
+ Ok(b"\x00\x00\x00\x0b"[..].into()),
+ Ok(b"abcdefghi"[..].into()),
+ Ok(Flush),
+ });
+ assert!(io.start_send(Bytes::from("abcdefghi")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_nothing_yields_nothing() {
+ let mut io = FramedWrite::new(
+ mock!(),
+ LengthDelimitedCodec::new()
+ );
+ assert!(io.poll_complete().unwrap().is_ready());
+}
+
+#[test]
+fn write_single_frame_one_packet() {
+ let mut io = FramedWrite::new(mock! {
+ Ok(b"\x00\x00\x00\x09"[..].into()),
+ Ok(b"abcdefghi"[..].into()),
+ Ok(Flush),
+ }, LengthDelimitedCodec::new());
+
+ assert!(io.start_send(Bytes::from("abcdefghi")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_single_multi_frame_one_packet() {
+ let mut io = FramedWrite::new(mock! {
+ Ok(b"\x00\x00\x00\x09"[..].into()),
+ Ok(b"abcdefghi"[..].into()),
+ Ok(b"\x00\x00\x00\x03"[..].into()),
+ Ok(b"123"[..].into()),
+ Ok(b"\x00\x00\x00\x0b"[..].into()),
+ Ok(b"hello world"[..].into()),
+ Ok(Flush),
+ }, LengthDelimitedCodec::new());
+
+ assert!(io.start_send(Bytes::from("abcdefghi")).unwrap().is_ready());
+ assert!(io.start_send(Bytes::from("123")).unwrap().is_ready());
+ assert!(io.start_send(Bytes::from("hello world")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_single_multi_frame_multi_packet() {
+ let mut io = FramedWrite::new(mock! {
+ Ok(b"\x00\x00\x00\x09"[..].into()),
+ Ok(b"abcdefghi"[..].into()),
+ Ok(Flush),
+ Ok(b"\x00\x00\x00\x03"[..].into()),
+ Ok(b"123"[..].into()),
+ Ok(Flush),
+ Ok(b"\x00\x00\x00\x0b"[..].into()),
+ Ok(b"hello world"[..].into()),
+ Ok(Flush),
+ }, LengthDelimitedCodec::new());
+
+ assert!(io.start_send(Bytes::from("abcdefghi")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.start_send(Bytes::from("123")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.start_send(Bytes::from("hello world")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_single_frame_would_block() {
+ let mut io = FramedWrite::new(mock! {
+ Err(would_block()),
+ Ok(b"\x00\x00"[..].into()),
+ Err(would_block()),
+ Ok(b"\x00\x09"[..].into()),
+ Ok(b"abcdefghi"[..].into()),
+ Ok(Flush),
+ }, LengthDelimitedCodec::new());
+
+ assert!(io.start_send(Bytes::from("abcdefghi")).unwrap().is_ready());
+ assert!(!io.poll_complete().unwrap().is_ready());
+ assert!(!io.poll_complete().unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_single_frame_little_endian() {
+ let mut io = length_delimited::Builder::new()
+ .little_endian()
+ .new_write(mock! {
+ Ok(b"\x09\x00\x00\x00"[..].into()),
+ Ok(b"abcdefghi"[..].into()),
+ Ok(Flush),
+ });
+
+ assert!(io.start_send(Bytes::from("abcdefghi")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.get_ref().calls.is_empty());
+}
+
+
+#[test]
+fn write_single_frame_with_short_length_field() {
+ let mut io = length_delimited::Builder::new()
+ .length_field_length(1)
+ .new_write(mock! {
+ Ok(b"\x09"[..].into()),
+ Ok(b"abcdefghi"[..].into()),
+ Ok(Flush),
+ });
+
+ assert!(io.start_send(Bytes::from("abcdefghi")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_max_frame_len() {
+ let mut io = length_delimited::Builder::new()
+ .max_frame_length(5)
+ .new_write(mock! { });
+
+ assert_eq!(io.start_send(Bytes::from("abcdef")).unwrap_err().kind(), io::ErrorKind::InvalidInput);
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_update_max_frame_len_at_rest() {
+ let mut io = length_delimited::Builder::new()
+ .new_write(mock! {
+ Ok(b"\x00\x00\x00\x06"[..].into()),
+ Ok(b"abcdef"[..].into()),
+ Ok(Flush),
+ });
+
+ assert!(io.start_send(Bytes::from("abcdef")).unwrap().is_ready());
+ assert!(io.poll_complete().unwrap().is_ready());
+ io.encoder_mut().set_max_frame_length(5);
+ assert_eq!(io.start_send(Bytes::from("abcdef")).unwrap_err().kind(), io::ErrorKind::InvalidInput);
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_update_max_frame_len_in_flight() {
+ let mut io = length_delimited::Builder::new()
+ .new_write(mock! {
+ Ok(b"\x00\x00\x00\x06"[..].into()),
+ Ok(b"ab"[..].into()),
+ Err(would_block()),
+ Ok(b"cdef"[..].into()),
+ Ok(Flush),
+ });
+
+ assert!(io.start_send(Bytes::from("abcdef")).unwrap().is_ready());
+ assert!(!io.poll_complete().unwrap().is_ready());
+ io.encoder_mut().set_max_frame_length(5);
+ assert!(io.poll_complete().unwrap().is_ready());
+ assert_eq!(io.start_send(Bytes::from("abcdef")).unwrap_err().kind(), io::ErrorKind::InvalidInput);
+ assert!(io.get_ref().calls.is_empty());
+}
+
+#[test]
+fn write_zero() {
+ let mut io = length_delimited::Builder::new()
+ .new_write(mock! { });
+
+ assert!(io.start_send(Bytes::from("abcdef")).unwrap().is_ready());
+ assert_eq!(io.poll_complete().unwrap_err().kind(), io::ErrorKind::WriteZero);
+ assert!(io.get_ref().calls.is_empty());
+}
+
+// ===== Test utils =====
+
+fn would_block() -> io::Error {
+ io::Error::new(io::ErrorKind::WouldBlock, "would block")
+}
+
+struct Mock {
+ calls: VecDeque<io::Result<Op>>,
+}
+
+enum Op {
+ Data(Vec<u8>),
+ Flush,
+}
+
+use self::Op::*;
+
+impl io::Read for Mock {
+ fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
+ match self.calls.pop_front() {
+ Some(Ok(Op::Data(data))) => {
+ debug_assert!(dst.len() >= data.len());
+ dst[..data.len()].copy_from_slice(&data[..]);
+ Ok(data.len())
+ }
+ Some(Ok(_)) => panic!(),
+ Some(Err(e)) => Err(e),
+ None => Ok(0),
+ }
+ }
+}
+
+impl AsyncRead for Mock {
+}
+
+impl io::Write for Mock {
+ fn write(&mut self, src: &[u8]) -> io::Result<usize> {
+ match self.calls.pop_front() {
+ Some(Ok(Op::Data(data))) => {
+ let len = data.len();
+ assert!(src.len() >= len, "expect={:?}; actual={:?}", data, src);
+ assert_eq!(&data[..], &src[..len]);
+ Ok(len)
+ }
+ Some(Ok(_)) => panic!(),
+ Some(Err(e)) => Err(e),
+ None => Ok(0),
+ }
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ match self.calls.pop_front() {
+ Some(Ok(Op::Flush)) => {
+ Ok(())
+ }
+ Some(Ok(_)) => panic!(),
+ Some(Err(e)) => Err(e),
+ None => Ok(()),
+ }
+ }
+}
+
+impl AsyncWrite for Mock {
+ fn shutdown(&mut self) -> Poll<(), io::Error> {
+ Ok(Ready(()))
+ }
+}
+
+impl<'a> From<&'a [u8]> for Op {
+ fn from(src: &'a [u8]) -> Op {
+ Op::Data(src.into())
+ }
+}
+
+impl From<Vec<u8>> for Op {
+ fn from(src: Vec<u8>) -> Op {
+ Op::Data(src)
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/line-frames.rs b/third_party/rust/tokio-0.1.11/tests/line-frames.rs
new file mode 100644
index 0000000000..e36d5a73ee
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/line-frames.rs
@@ -0,0 +1,88 @@
+extern crate env_logger;
+extern crate futures;
+extern crate tokio;
+extern crate tokio_codec;
+extern crate tokio_io;
+extern crate tokio_threadpool;
+extern crate bytes;
+
+use std::io;
+use std::net::Shutdown;
+
+use bytes::{BytesMut, BufMut};
+use futures::{Future, Stream, Sink};
+use tokio::net::{TcpListener, TcpStream};
+use tokio_codec::{Encoder, Decoder};
+use tokio_io::io::{write_all, read};
+use tokio_threadpool::Builder;
+
+pub struct LineCodec;
+
+impl Decoder for LineCodec {
+ type Item = BytesMut;
+ type Error = io::Error;
+
+ fn decode(&mut self, buf: &mut BytesMut) -> Result<Option<BytesMut>, io::Error> {
+ match buf.iter().position(|&b| b == b'\n') {
+ Some(i) => Ok(Some(buf.split_to(i + 1).into())),
+ None => Ok(None),
+ }
+ }
+
+ fn decode_eof(&mut self, buf: &mut BytesMut) -> io::Result<Option<BytesMut>> {
+ if buf.len() == 0 {
+ Ok(None)
+ } else {
+ let amt = buf.len();
+ Ok(Some(buf.split_to(amt)))
+ }
+ }
+}
+
+impl Encoder for LineCodec {
+ type Item = BytesMut;
+ type Error = io::Error;
+
+ fn encode(&mut self, item: BytesMut, into: &mut BytesMut) -> io::Result<()> {
+ into.put(&item[..]);
+ Ok(())
+ }
+}
+
+#[test]
+fn echo() {
+ drop(env_logger::try_init());
+
+ let pool = Builder::new()
+ .pool_size(1)
+ .build();
+
+ let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
+ let addr = listener.local_addr().unwrap();
+ let sender = pool.sender().clone();
+ let srv = listener.incoming().for_each(move |socket| {
+ let (sink, stream) = LineCodec.framed(socket).split();
+ sender.spawn(sink.send_all(stream).map(|_| ()).map_err(|_| ())).unwrap();
+ Ok(())
+ });
+
+ pool.sender().spawn(srv.map_err(|e| panic!("srv error: {}", e))).unwrap();
+
+ let client = TcpStream::connect(&addr);
+ let client = client.wait().unwrap();
+ let (client, _) = write_all(client, b"a\n").wait().unwrap();
+ let (client, buf, amt) = read(client, vec![0; 1024]).wait().unwrap();
+ assert_eq!(amt, 2);
+ assert_eq!(&buf[..2], b"a\n");
+
+ let (client, _) = write_all(client, b"\n").wait().unwrap();
+ let (client, buf, amt) = read(client, buf).wait().unwrap();
+ assert_eq!(amt, 1);
+ assert_eq!(&buf[..1], b"\n");
+
+ let (client, _) = write_all(client, b"b").wait().unwrap();
+ client.shutdown(Shutdown::Write).unwrap();
+ let (_client, buf, amt) = read(client, buf).wait().unwrap();
+ assert_eq!(amt, 1);
+ assert_eq!(&buf[..1], b"b");
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/pipe-hup.rs b/third_party/rust/tokio-0.1.11/tests/pipe-hup.rs
new file mode 100644
index 0000000000..a23ae7f6ba
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/pipe-hup.rs
@@ -0,0 +1,88 @@
+#![cfg(unix)]
+
+extern crate env_logger;
+extern crate futures;
+extern crate libc;
+extern crate mio;
+extern crate tokio;
+extern crate tokio_io;
+
+use std::fs::File;
+use std::io::{self, Write};
+use std::os::unix::io::{AsRawFd, FromRawFd};
+use std::thread;
+use std::time::Duration;
+
+use mio::event::Evented;
+use mio::unix::{UnixReady, EventedFd};
+use mio::{PollOpt, Ready, Token};
+use tokio::reactor::{Handle, PollEvented2};
+use tokio_io::io::read_to_end;
+use futures::Future;
+
+macro_rules! t {
+ ($e:expr) => (match $e {
+ Ok(e) => e,
+ Err(e) => panic!("{} failed with {:?}", stringify!($e), e),
+ })
+}
+
+struct MyFile(File);
+
+impl MyFile {
+ fn new(file: File) -> MyFile {
+ unsafe {
+ let r = libc::fcntl(file.as_raw_fd(), libc::F_SETFL, libc::O_NONBLOCK);
+ assert!(r != -1, "fcntl error: {}", io::Error::last_os_error());
+ }
+ MyFile(file)
+ }
+}
+
+impl io::Read for MyFile {
+ fn read(&mut self, bytes: &mut [u8]) -> io::Result<usize> {
+ self.0.read(bytes)
+ }
+}
+
+impl Evented for MyFile {
+ fn register(&self, poll: &mio::Poll, token: Token, interest: Ready, opts: PollOpt)
+ -> io::Result<()> {
+ let hup: Ready = UnixReady::hup().into();
+ EventedFd(&self.0.as_raw_fd()).register(poll, token, interest | hup, opts)
+ }
+ fn reregister(&self, poll: &mio::Poll, token: Token, interest: Ready, opts: PollOpt)
+ -> io::Result<()> {
+ let hup: Ready = UnixReady::hup().into();
+ EventedFd(&self.0.as_raw_fd()).reregister(poll, token, interest | hup, opts)
+ }
+ fn deregister(&self, poll: &mio::Poll) -> io::Result<()> {
+ EventedFd(&self.0.as_raw_fd()).deregister(poll)
+ }
+}
+
+#[test]
+fn hup() {
+ drop(env_logger::try_init());
+
+ let handle = Handle::default();
+ unsafe {
+ let mut pipes = [0; 2];
+ assert!(libc::pipe(pipes.as_mut_ptr()) != -1,
+ "pipe error: {}", io::Error::last_os_error());
+ let read = File::from_raw_fd(pipes[0]);
+ let mut write = File::from_raw_fd(pipes[1]);
+ let t = thread::spawn(move || {
+ write.write_all(b"Hello!\n").unwrap();
+ write.write_all(b"Good bye!\n").unwrap();
+ thread::sleep(Duration::from_millis(100));
+ });
+
+ let source = PollEvented2::new_with_handle(MyFile::new(read), &handle).unwrap();
+
+ let reader = read_to_end(source, Vec::new());
+ let (_, content) = t!(reader.wait());
+ assert_eq!(&b"Hello!\nGood bye!\n"[..], &content[..]);
+ t.join().unwrap();
+ }
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/reactor.rs b/third_party/rust/tokio-0.1.11/tests/reactor.rs
new file mode 100644
index 0000000000..1bac13ad40
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/reactor.rs
@@ -0,0 +1,89 @@
+extern crate futures;
+extern crate tokio_executor;
+extern crate tokio_reactor;
+extern crate tokio_tcp;
+
+use tokio_reactor::Reactor;
+use tokio_tcp::TcpListener;
+
+use futures::{Future, Stream};
+use futures::executor::{spawn, Notify, Spawn};
+
+use std::mem;
+use std::net::TcpStream;
+use std::sync::{Arc, Mutex};
+
+#[test]
+fn test_drop_on_notify() {
+ // When the reactor receives a kernel notification, it notifies the
+ // task that holds the associated socket. If this notification results in
+ // the task being dropped, the socket will also be dropped.
+ //
+ // Previously, there was a deadlock scenario where the reactor, while
+ // notifying, held a lock and the task being dropped attempted to acquire
+ // that same lock in order to clean up state.
+ //
+ // To simulate this case, we create a fake executor that does nothing when
+ // the task is notified. This simulates an executor in the process of
+ // shutting down. Then, when the task handle is dropped, the task itself is
+ // dropped.
+
+ struct MyNotify;
+
+ type Task = Mutex<Spawn<Box<Future<Item = (), Error = ()>>>>;
+
+ impl Notify for MyNotify {
+ fn notify(&self, _: usize) {
+ // Do nothing
+ }
+
+ fn clone_id(&self, id: usize) -> usize {
+ let ptr = id as *const Task;
+ let task = unsafe { Arc::from_raw(ptr) };
+
+ mem::forget(task.clone());
+ mem::forget(task);
+
+ id
+ }
+
+ fn drop_id(&self, id: usize) {
+ let ptr = id as *const Task;
+ let _ = unsafe { Arc::from_raw(ptr) };
+ }
+ }
+
+ let addr = "127.0.0.1:0".parse().unwrap();
+ let mut reactor = Reactor::new().unwrap();
+
+ // Create a listener
+ let listener = TcpListener::bind(&addr).unwrap();
+ let addr = listener.local_addr().unwrap();
+
+ // Define a task that just drains the listener
+ let task = Box::new({
+ listener.incoming()
+ .for_each(|_| Ok(()))
+ .map_err(|_| panic!())
+ }) as Box<Future<Item = (), Error = ()>>;
+
+ let task = Arc::new(Mutex::new(spawn(task)));
+ let notify = Arc::new(MyNotify);
+
+ let mut enter = tokio_executor::enter().unwrap();
+
+ tokio_reactor::with_default(&reactor.handle(), &mut enter, |_| {
+ let id = &*task as *const Task as usize;
+
+ task.lock().unwrap()
+ .poll_future_notify(&notify, id)
+ .unwrap();
+ });
+
+ drop(task);
+
+ // Establish a connection to the acceptor
+ let _s = TcpStream::connect(&addr).unwrap();
+
+ reactor.turn(None).unwrap();
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/runtime.rs b/third_party/rust/tokio-0.1.11/tests/runtime.rs
new file mode 100644
index 0000000000..66d10b9510
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/runtime.rs
@@ -0,0 +1,404 @@
+extern crate tokio;
+extern crate env_logger;
+extern crate futures;
+
+use futures::sync::oneshot;
+use std::sync::{Arc, Mutex};
+use std::thread;
+use tokio::io;
+use tokio::net::{TcpStream, TcpListener};
+use tokio::prelude::future::lazy;
+use tokio::prelude::*;
+use tokio::runtime::Runtime;
+
+// this import is used in all child modules that have it in scope
+// from importing super::*, but the compiler doesn't realise that
+// and warns about it.
+pub use futures::future::Executor;
+
+macro_rules! t {
+ ($e:expr) => (match $e {
+ Ok(e) => e,
+ Err(e) => panic!("{} failed with {:?}", stringify!($e), e),
+ })
+}
+
+fn create_client_server_future() -> Box<Future<Item=(), Error=()> + Send> {
+ let server = t!(TcpListener::bind(&"127.0.0.1:0".parse().unwrap()));
+ let addr = t!(server.local_addr());
+ let client = TcpStream::connect(&addr);
+
+ let server = server.incoming().take(1)
+ .map_err(|e| panic!("accept err = {:?}", e))
+ .for_each(|socket| {
+ tokio::spawn({
+ io::write_all(socket, b"hello")
+ .map(|_| ())
+ .map_err(|e| panic!("write err = {:?}", e))
+ })
+ })
+ .map(|_| ());
+
+ let client = client
+ .map_err(|e| panic!("connect err = {:?}", e))
+ .and_then(|client| {
+ // Read all
+ io::read_to_end(client, vec![])
+ .map(|_| ())
+ .map_err(|e| panic!("read err = {:?}", e))
+ });
+
+ let future = server.join(client)
+ .map(|_| ());
+ Box::new(future)
+}
+
+#[test]
+fn runtime_tokio_run() {
+ let _ = env_logger::try_init();
+
+ tokio::run(create_client_server_future());
+}
+
+#[test]
+fn runtime_single_threaded() {
+ let _ = env_logger::try_init();
+
+ let mut runtime = tokio::runtime::current_thread::Runtime::new()
+ .unwrap();
+ runtime.block_on(create_client_server_future()).unwrap();
+ runtime.run().unwrap();
+}
+
+#[test]
+fn runtime_single_threaded_block_on() {
+ let _ = env_logger::try_init();
+
+ tokio::runtime::current_thread::block_on_all(create_client_server_future()).unwrap();
+}
+
+mod runtime_single_threaded_block_on_all {
+ use super::*;
+
+ fn test<F>(spawn: F)
+ where
+ F: Fn(Box<Future<Item=(), Error=()> + Send>),
+ {
+ let cnt = Arc::new(Mutex::new(0));
+ let c = cnt.clone();
+
+ let msg = tokio::runtime::current_thread::block_on_all(lazy(move || {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+
+ // Spawn!
+ spawn(Box::new(lazy(move || {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+ Ok::<(), ()>(())
+ })));
+
+ Ok::<_, ()>("hello")
+ })).unwrap();
+
+ assert_eq!(2, *cnt.lock().unwrap());
+ assert_eq!(msg, "hello");
+ }
+
+ #[test]
+ fn spawn() {
+ test(|f| { tokio::spawn(f); })
+ }
+
+ #[test]
+ fn execute() {
+ test(|f| {
+ tokio::executor::DefaultExecutor::current()
+ .execute(f)
+ .unwrap();
+ })
+ }
+}
+
+mod runtime_single_threaded_racy {
+ use super::*;
+ fn test<F>(spawn: F)
+ where
+ F: Fn(
+ tokio::runtime::current_thread::Handle,
+ Box<Future<Item=(), Error=()> + Send>,
+ ),
+ {
+ let (trigger, exit) = futures::sync::oneshot::channel();
+ let (handle_tx, handle_rx) = ::std::sync::mpsc::channel();
+ let jh = ::std::thread::spawn(move || {
+ let mut rt = tokio::runtime::current_thread::Runtime::new().unwrap();
+ handle_tx.send(rt.handle()).unwrap();
+
+ // don't exit until we are told to
+ rt.block_on(exit.map_err(|_| ())).unwrap();
+
+ // run until all spawned futures (incl. the "exit" signal future) have completed.
+ rt.run().unwrap();
+ });
+
+ let (tx, rx) = futures::sync::oneshot::channel();
+
+ let handle = handle_rx.recv().unwrap();
+ spawn(handle, Box::new(futures::future::lazy(move || {
+ tx.send(()).unwrap();
+ Ok(())
+ })));
+
+ // signal runtime thread to exit
+ trigger.send(()).unwrap();
+
+ // wait for runtime thread to exit
+ jh.join().unwrap();
+
+ assert_eq!(rx.wait().unwrap(), ());
+ }
+
+ #[test]
+ fn spawn() {
+ test(|handle, f| { handle.spawn(f).unwrap(); })
+ }
+
+ #[test]
+ fn execute() {
+ test(|handle, f| { handle.execute(f).unwrap(); })
+ }
+}
+
+mod runtime_multi_threaded {
+ use super::*;
+ fn test<F>(spawn: F)
+ where
+ F: Fn(&mut Runtime) + Send + 'static,
+ {
+ let _ = env_logger::try_init();
+
+ let mut runtime = tokio::runtime::Builder::new()
+ .build()
+ .unwrap();
+ spawn(&mut runtime);
+ runtime.shutdown_on_idle().wait().unwrap();
+ }
+
+ #[test]
+ fn spawn() {
+ test(|rt| { rt.spawn(create_client_server_future()); });
+ }
+
+ #[test]
+ fn execute() {
+ test(|rt| { rt.executor().execute(create_client_server_future()).unwrap(); });
+ }
+}
+
+
+#[test]
+fn block_on_timer() {
+ use std::time::{Duration, Instant};
+ use tokio::timer::{Delay, Error};
+
+ fn after_1s<T>(x: T) -> Box<Future<Item = T, Error = Error> + Send>
+ where
+ T: Send + 'static,
+ {
+ Box::new(Delay::new(Instant::now() + Duration::from_millis(100)).map(move |_| x))
+ }
+
+ let mut runtime = Runtime::new().unwrap();
+ assert_eq!(runtime.block_on(after_1s(42)).unwrap(), 42);
+ runtime.shutdown_on_idle().wait().unwrap();
+}
+
+mod from_block_on {
+ use super::*;
+
+ fn test<F>(spawn: F)
+ where
+ F: Fn(Box<Future<Item=(), Error=()> + Send>) + Send + 'static,
+ {
+ let cnt = Arc::new(Mutex::new(0));
+ let c = cnt.clone();
+
+ let mut runtime = Runtime::new().unwrap();
+ let msg = runtime
+ .block_on(lazy(move || {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+
+ // Spawn!
+ spawn(Box::new(lazy(move || {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+ Ok::<(), ()>(())
+ })));
+
+ Ok::<_, ()>("hello")
+ }))
+ .unwrap();
+
+ runtime.shutdown_on_idle().wait().unwrap();
+ assert_eq!(2, *cnt.lock().unwrap());
+ assert_eq!(msg, "hello");
+ }
+
+ #[test]
+ fn execute() {
+ test(|f| {
+ tokio::executor::DefaultExecutor::current()
+ .execute(f)
+ .unwrap();
+ })
+ }
+
+ #[test]
+ fn spawn() {
+ test(|f| {
+ tokio::spawn(f);
+ })
+ }
+}
+
+#[test]
+fn block_waits() {
+ let (tx, rx) = oneshot::channel();
+
+ thread::spawn(|| {
+ use std::time::Duration;
+ thread::sleep(Duration::from_millis(1000));
+ tx.send(()).unwrap();
+ });
+
+ let cnt = Arc::new(Mutex::new(0));
+ let c = cnt.clone();
+
+ let mut runtime = Runtime::new().unwrap();
+ runtime
+ .block_on(rx.then(move |_| {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+ Ok::<_, ()>(())
+ }))
+ .unwrap();
+
+ assert_eq!(1, *cnt.lock().unwrap());
+ runtime.shutdown_on_idle().wait().unwrap();
+}
+
+mod many {
+ use super::*;
+
+ const ITER: usize = 200;
+ fn test<F>(spawn: F)
+ where
+ F: Fn(&mut Runtime, Box<Future<Item=(), Error=()> + Send>),
+ {
+ let cnt = Arc::new(Mutex::new(0));
+ let mut runtime = Runtime::new().unwrap();
+
+ for _ in 0..ITER {
+ let c = cnt.clone();
+ spawn(&mut runtime, Box::new(lazy(move || {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+ Ok::<(), ()>(())
+ })));
+ }
+
+ runtime.shutdown_on_idle().wait().unwrap();
+ assert_eq!(ITER, *cnt.lock().unwrap());
+ }
+
+ #[test]
+ fn spawn() {
+ test(|rt, f| { rt.spawn(f); })
+ }
+
+ #[test]
+ fn execute() {
+ test(|rt, f| {
+ rt.executor()
+ .execute(f)
+ .unwrap();
+ })
+ }
+}
+
+
+mod from_block_on_all {
+ use super::*;
+
+ fn test<F>(spawn: F)
+ where
+ F: Fn(Box<Future<Item=(), Error=()> + Send>) + Send + 'static,
+ {
+ let cnt = Arc::new(Mutex::new(0));
+ let c = cnt.clone();
+
+ let runtime = Runtime::new().unwrap();
+ let msg = runtime
+ .block_on_all(lazy(move || {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+
+ // Spawn!
+ spawn(Box::new(lazy(move || {
+ {
+ let mut x = c.lock().unwrap();
+ *x = 1 + *x;
+ }
+ Ok::<(), ()>(())
+ })));
+
+ Ok::<_, ()>("hello")
+ }))
+ .unwrap();
+
+ assert_eq!(2, *cnt.lock().unwrap());
+ assert_eq!(msg, "hello");
+ }
+
+ #[test]
+ fn execute() {
+ test(|f| {
+ tokio::executor::DefaultExecutor::current()
+ .execute(f)
+ .unwrap();
+ })
+ }
+
+ #[test]
+ fn spawn() {
+ test(|f| { tokio::spawn(f); })
+ }
+}
+
+#[test]
+fn run_in_run() {
+ use std::panic;
+
+ tokio::run(lazy(|| {
+ panic::catch_unwind(|| {
+ tokio::run(lazy(|| { Ok::<(), ()>(()) }))
+ }).unwrap_err();
+ Ok::<(), ()>(())
+ }));
+}
diff --git a/third_party/rust/tokio-0.1.11/tests/timer.rs b/third_party/rust/tokio-0.1.11/tests/timer.rs
new file mode 100644
index 0000000000..72a5595d76
--- /dev/null
+++ b/third_party/rust/tokio-0.1.11/tests/timer.rs
@@ -0,0 +1,116 @@
+extern crate futures;
+extern crate tokio;
+extern crate tokio_io;
+extern crate env_logger;
+
+use tokio::prelude::*;
+use tokio::timer::*;
+
+use std::sync::mpsc;
+use std::time::{Duration, Instant};
+
+#[test]
+fn timer_with_runtime() {
+ let _ = env_logger::try_init();
+
+ let when = Instant::now() + Duration::from_millis(100);
+ let (tx, rx) = mpsc::channel();
+
+ tokio::run({
+ Delay::new(when)
+ .map_err(|e| panic!("unexpected error; err={:?}", e))
+ .and_then(move |_| {
+ assert!(Instant::now() >= when);
+ tx.send(()).unwrap();
+ Ok(())
+ })
+ });
+
+ rx.recv().unwrap();
+}
+
+#[test]
+fn starving() {
+ use futures::{task, Poll, Async};
+
+ let _ = env_logger::try_init();
+
+ struct Starve(Delay, u64);
+
+ impl Future for Starve {
+ type Item = u64;
+ type Error = ();
+
+ fn poll(&mut self) -> Poll<Self::Item, ()> {
+ if self.0.poll().unwrap().is_ready() {
+ return Ok(self.1.into());
+ }
+
+ self.1 += 1;
+
+ task::current().notify();
+
+ Ok(Async::NotReady)
+ }
+ }
+
+ let when = Instant::now() + Duration::from_millis(20);
+ let starve = Starve(Delay::new(when), 0);
+
+ let (tx, rx) = mpsc::channel();
+
+ tokio::run({
+ starve
+ .and_then(move |_ticks| {
+ assert!(Instant::now() >= when);
+ tx.send(()).unwrap();
+ Ok(())
+ })
+ });
+
+ rx.recv().unwrap();
+}
+
+#[test]
+fn deadline() {
+ use futures::future;
+
+ let _ = env_logger::try_init();
+
+ let when = Instant::now() + Duration::from_millis(20);
+ let (tx, rx) = mpsc::channel();
+
+ #[allow(deprecated)]
+ tokio::run({
+ future::empty::<(), ()>()
+ .deadline(when)
+ .then(move |res| {
+ assert!(res.is_err());
+ tx.send(()).unwrap();
+ Ok(())
+ })
+ });
+
+ rx.recv().unwrap();
+}
+
+#[test]
+fn timeout() {
+ use futures::future;
+
+ let _ = env_logger::try_init();
+
+ let (tx, rx) = mpsc::channel();
+
+ tokio::run({
+ future::empty::<(), ()>()
+ .timeout(Duration::from_millis(20))
+ .then(move |res| {
+ assert!(res.is_err());
+ tx.send(()).unwrap();
+ Ok(())
+ })
+ });
+
+ rx.recv().unwrap();
+}