From 2aa4a82499d4becd2284cdb482213d541b8804dd Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 28 Apr 2024 16:29:10 +0200 Subject: Adding upstream version 86.0.1. Signed-off-by: Daniel Baumann --- js/src/wasm/WasmValidate.cpp | 3382 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3382 insertions(+) create mode 100644 js/src/wasm/WasmValidate.cpp (limited to 'js/src/wasm/WasmValidate.cpp') diff --git a/js/src/wasm/WasmValidate.cpp b/js/src/wasm/WasmValidate.cpp new file mode 100644 index 0000000000..f9c61833f6 --- /dev/null +++ b/js/src/wasm/WasmValidate.cpp @@ -0,0 +1,3382 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * + * Copyright 2016 Mozilla Foundation + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "wasm/WasmValidate.h" + +#include "mozilla/CheckedInt.h" +#include "mozilla/Unused.h" +#include "mozilla/Utf8.h" + +#include "jit/JitOptions.h" +#include "js/Printf.h" +#include "js/String.h" // JS::MaxStringLength +#include "vm/JSContext.h" +#include "vm/Realm.h" +#include "wasm/TypedObject.h" +#include "wasm/WasmOpIter.h" + +using namespace js; +using namespace js::jit; +using namespace js::wasm; + +using mozilla::AsChars; +using mozilla::CheckedInt; +using mozilla::CheckedInt32; +using mozilla::IsUtf8; +using mozilla::Span; +using mozilla::Unused; + +// Decoder implementation. + +bool Decoder::failf(const char* msg, ...) { + va_list ap; + va_start(ap, msg); + UniqueChars str(JS_vsmprintf(msg, ap)); + va_end(ap); + if (!str) { + return false; + } + + return fail(str.get()); +} + +void Decoder::warnf(const char* msg, ...) { + if (!warnings_) { + return; + } + + va_list ap; + va_start(ap, msg); + UniqueChars str(JS_vsmprintf(msg, ap)); + va_end(ap); + if (!str) { + return; + } + + Unused << warnings_->append(std::move(str)); +} + +bool Decoder::fail(size_t errorOffset, const char* msg) { + MOZ_ASSERT(error_); + UniqueChars strWithOffset(JS_smprintf("at offset %zu: %s", errorOffset, msg)); + if (!strWithOffset) { + return false; + } + + *error_ = std::move(strWithOffset); + return false; +} + +bool Decoder::readSectionHeader(uint8_t* id, SectionRange* range) { + if (!readFixedU8(id)) { + return false; + } + + uint32_t size; + if (!readVarU32(&size)) { + return false; + } + + range->start = currentOffset(); + range->size = size; + return true; +} + +bool Decoder::startSection(SectionId id, ModuleEnvironment* env, + MaybeSectionRange* range, const char* sectionName) { + MOZ_ASSERT(!*range); + + // Record state at beginning of section to allow rewinding to this point + // if, after skipping through several custom sections, we don't find the + // section 'id'. + const uint8_t* const initialCur = cur_; + const size_t initialCustomSectionsLength = env->customSections.length(); + + // Maintain a pointer to the current section that gets updated as custom + // sections are skipped. + const uint8_t* currentSectionStart = cur_; + + // Only start a section with 'id', skipping any custom sections before it. + + uint8_t idValue; + if (!readFixedU8(&idValue)) { + goto rewind; + } + + while (idValue != uint8_t(id)) { + if (idValue != uint8_t(SectionId::Custom)) { + goto rewind; + } + + // Rewind to the beginning of the current section since this is what + // skipCustomSection() assumes. + cur_ = currentSectionStart; + if (!skipCustomSection(env)) { + return false; + } + + // Having successfully skipped a custom section, consider the next + // section. + currentSectionStart = cur_; + if (!readFixedU8(&idValue)) { + goto rewind; + } + } + + // Don't check the size since the range of bytes being decoded might not + // contain the section body. (This is currently the case when streaming: the + // code section header is decoded with the module environment bytes, the + // body of the code section is streamed in separately.) + + uint32_t size; + if (!readVarU32(&size)) { + goto fail; + } + + range->emplace(); + (*range)->start = currentOffset(); + (*range)->size = size; + return true; + +rewind: + cur_ = initialCur; + env->customSections.shrinkTo(initialCustomSectionsLength); + return true; + +fail: + return failf("failed to start %s section", sectionName); +} + +bool Decoder::finishSection(const SectionRange& range, + const char* sectionName) { + if (resilientMode_) { + return true; + } + if (range.size != currentOffset() - range.start) { + return failf("byte size mismatch in %s section", sectionName); + } + return true; +} + +bool Decoder::startCustomSection(const char* expected, size_t expectedLength, + ModuleEnvironment* env, + MaybeSectionRange* range) { + // Record state at beginning of section to allow rewinding to this point + // if, after skipping through several custom sections, we don't find the + // section 'id'. + const uint8_t* const initialCur = cur_; + const size_t initialCustomSectionsLength = env->customSections.length(); + + while (true) { + // Try to start a custom section. If we can't, rewind to the beginning + // since we may have skipped several custom sections already looking for + // 'expected'. + if (!startSection(SectionId::Custom, env, range, "custom")) { + return false; + } + if (!*range) { + goto rewind; + } + + if (bytesRemain() < (*range)->size) { + goto fail; + } + + CustomSectionEnv sec; + if (!readVarU32(&sec.nameLength) || sec.nameLength > bytesRemain()) { + goto fail; + } + + sec.nameOffset = currentOffset(); + sec.payloadOffset = sec.nameOffset + sec.nameLength; + + uint32_t payloadEnd = (*range)->start + (*range)->size; + if (sec.payloadOffset > payloadEnd) { + goto fail; + } + + sec.payloadLength = payloadEnd - sec.payloadOffset; + + // Now that we have a valid custom section, record its offsets in the + // metadata which can be queried by the user via Module.customSections. + // Note: after an entry is appended, it may be popped if this loop or + // the loop in startSection needs to rewind. + if (!env->customSections.append(sec)) { + return false; + } + + // If this is the expected custom section, we're done. + if (!expected || (expectedLength == sec.nameLength && + !memcmp(cur_, expected, sec.nameLength))) { + cur_ += sec.nameLength; + return true; + } + + // Otherwise, blindly skip the custom section and keep looking. + skipAndFinishCustomSection(**range); + range->reset(); + } + MOZ_CRASH("unreachable"); + +rewind: + cur_ = initialCur; + env->customSections.shrinkTo(initialCustomSectionsLength); + return true; + +fail: + return fail("failed to start custom section"); +} + +void Decoder::finishCustomSection(const char* name, const SectionRange& range) { + MOZ_ASSERT(cur_ >= beg_); + MOZ_ASSERT(cur_ <= end_); + + if (error_ && *error_) { + warnf("in the '%s' custom section: %s", name, error_->get()); + skipAndFinishCustomSection(range); + return; + } + + uint32_t actualSize = currentOffset() - range.start; + if (range.size != actualSize) { + if (actualSize < range.size) { + warnf("in the '%s' custom section: %" PRIu32 " unconsumed bytes", name, + uint32_t(range.size - actualSize)); + } else { + warnf("in the '%s' custom section: %" PRIu32 + " bytes consumed past the end", + name, uint32_t(actualSize - range.size)); + } + skipAndFinishCustomSection(range); + return; + } + + // Nothing to do! (c.f. skipAndFinishCustomSection()) +} + +void Decoder::skipAndFinishCustomSection(const SectionRange& range) { + MOZ_ASSERT(cur_ >= beg_); + MOZ_ASSERT(cur_ <= end_); + cur_ = (beg_ + (range.start - offsetInModule_)) + range.size; + MOZ_ASSERT(cur_ <= end_); + clearError(); +} + +bool Decoder::skipCustomSection(ModuleEnvironment* env) { + MaybeSectionRange range; + if (!startCustomSection(nullptr, 0, env, &range)) { + return false; + } + if (!range) { + return fail("expected custom section"); + } + + skipAndFinishCustomSection(*range); + return true; +} + +bool Decoder::startNameSubsection(NameType nameType, + Maybe* endOffset) { + MOZ_ASSERT(!*endOffset); + + const uint8_t* const initialPosition = cur_; + + uint8_t nameTypeValue; + if (!readFixedU8(&nameTypeValue)) { + goto rewind; + } + + if (nameTypeValue != uint8_t(nameType)) { + goto rewind; + } + + uint32_t payloadLength; + if (!readVarU32(&payloadLength) || payloadLength > bytesRemain()) { + return fail("bad name subsection payload length"); + } + + *endOffset = Some(currentOffset() + payloadLength); + return true; + +rewind: + cur_ = initialPosition; + return true; +} + +bool Decoder::finishNameSubsection(uint32_t expected) { + uint32_t actual = currentOffset(); + if (expected != actual) { + return failf("bad name subsection length (expected: %" PRIu32 + ", actual: %" PRIu32 ")", + expected, actual); + } + + return true; +} + +bool Decoder::skipNameSubsection() { + uint8_t nameTypeValue; + if (!readFixedU8(&nameTypeValue)) { + return fail("unable to read name subsection id"); + } + + switch (nameTypeValue) { + case uint8_t(NameType::Module): + case uint8_t(NameType::Function): + return fail("out of order name subsections"); + default: + break; + } + + uint32_t payloadLength; + if (!readVarU32(&payloadLength) || !readBytes(payloadLength)) { + return fail("bad name subsection payload length"); + } + + return true; +} + +// Misc helpers. + +bool wasm::EncodeLocalEntries(Encoder& e, const ValTypeVector& locals) { + if (locals.length() > MaxLocals) { + return false; + } + + uint32_t numLocalEntries = 0; + if (locals.length()) { + ValType prev = locals[0]; + numLocalEntries++; + for (ValType t : locals) { + if (t != prev) { + numLocalEntries++; + prev = t; + } + } + } + + if (!e.writeVarU32(numLocalEntries)) { + return false; + } + + if (numLocalEntries) { + ValType prev = locals[0]; + uint32_t count = 1; + for (uint32_t i = 1; i < locals.length(); i++, count++) { + if (prev != locals[i]) { + if (!e.writeVarU32(count)) { + return false; + } + if (!e.writeValType(prev)) { + return false; + } + prev = locals[i]; + count = 0; + } + } + if (!e.writeVarU32(count)) { + return false; + } + if (!e.writeValType(prev)) { + return false; + } + } + + return true; +} + +bool wasm::DecodeLocalEntries(Decoder& d, const TypeContext& types, + const FeatureArgs& features, + ValTypeVector* locals) { + uint32_t numLocalEntries; + if (!d.readVarU32(&numLocalEntries)) { + return d.fail("failed to read number of local entries"); + } + + for (uint32_t i = 0; i < numLocalEntries; i++) { + uint32_t count; + if (!d.readVarU32(&count)) { + return d.fail("failed to read local entry count"); + } + + if (MaxLocals - locals->length() < count) { + return d.fail("too many locals"); + } + + ValType type; + if (!d.readValType(types, features, &type)) { + return false; + } + + if (!type.isDefaultable()) { + return d.fail("cannot have a non-defaultable local"); + } + + if (!locals->appendN(type, count)) { + return false; + } + } + + return true; +} + +bool wasm::DecodeValidatedLocalEntries(Decoder& d, ValTypeVector* locals) { + uint32_t numLocalEntries; + MOZ_ALWAYS_TRUE(d.readVarU32(&numLocalEntries)); + + for (uint32_t i = 0; i < numLocalEntries; i++) { + uint32_t count = d.uncheckedReadVarU32(); + MOZ_ASSERT(MaxLocals - locals->length() >= count); + if (!locals->appendN(d.uncheckedReadValType(), count)) { + return false; + } + } + + return true; +} + +// Function body validation. + +class NothingVector { + Nothing unused_; + + public: + bool resize(size_t length) { return true; } + Nothing& operator[](size_t) { return unused_; } + Nothing& back() { return unused_; } +}; + +struct ValidatingPolicy { + using Value = Nothing; + using ValueVector = NothingVector; + using ControlItem = Nothing; +}; + +using ValidatingOpIter = OpIter; + +static bool DecodeFunctionBodyExprs(const ModuleEnvironment& env, + uint32_t funcIndex, + const ValTypeVector& locals, + const uint8_t* bodyEnd, Decoder* d) { + ValidatingOpIter iter(env, *d); + + if (!iter.readFunctionStart(funcIndex)) { + return false; + } + +#define CHECK(c) \ + if (!(c)) return false; \ + break + +#ifdef ENABLE_WASM_SIMD_EXPERIMENTAL +# define CHECK_SIMD_EXPERIMENTAL() (void)(0) +#else +# define CHECK_SIMD_EXPERIMENTAL() return iter.unrecognizedOpcode(&op) +#endif + + while (true) { + OpBytes op; + if (!iter.readOp(&op)) { + return false; + } + + Nothing nothing; + NothingVector nothings; + ResultType unusedType; + + switch (op.b0) { + case uint16_t(Op::End): { + LabelKind unusedKind; + if (!iter.readEnd(&unusedKind, &unusedType, ¬hings, ¬hings)) { + return false; + } + iter.popEnd(); + if (iter.controlStackEmpty()) { + return iter.readFunctionEnd(bodyEnd); + } + break; + } + case uint16_t(Op::Nop): + CHECK(iter.readNop()); + case uint16_t(Op::Drop): + CHECK(iter.readDrop()); + case uint16_t(Op::Call): { + uint32_t unusedIndex; + NothingVector unusedArgs; + CHECK(iter.readCall(&unusedIndex, &unusedArgs)); + } + case uint16_t(Op::CallIndirect): { + uint32_t unusedIndex, unusedIndex2; + NothingVector unusedArgs; + CHECK(iter.readCallIndirect(&unusedIndex, &unusedIndex2, ¬hing, + &unusedArgs)); + } + case uint16_t(Op::I32Const): { + int32_t unused; + CHECK(iter.readI32Const(&unused)); + } + case uint16_t(Op::I64Const): { + int64_t unused; + CHECK(iter.readI64Const(&unused)); + } + case uint16_t(Op::F32Const): { + float unused; + CHECK(iter.readF32Const(&unused)); + } + case uint16_t(Op::F64Const): { + double unused; + CHECK(iter.readF64Const(&unused)); + } + case uint16_t(Op::GetLocal): { + uint32_t unused; + CHECK(iter.readGetLocal(locals, &unused)); + } + case uint16_t(Op::SetLocal): { + uint32_t unused; + CHECK(iter.readSetLocal(locals, &unused, ¬hing)); + } + case uint16_t(Op::TeeLocal): { + uint32_t unused; + CHECK(iter.readTeeLocal(locals, &unused, ¬hing)); + } + case uint16_t(Op::GetGlobal): { + uint32_t unused; + CHECK(iter.readGetGlobal(&unused)); + } + case uint16_t(Op::SetGlobal): { + uint32_t unused; + CHECK(iter.readSetGlobal(&unused, ¬hing)); + } +#ifdef ENABLE_WASM_REFTYPES + case uint16_t(Op::TableGet): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedTableIndex; + CHECK(iter.readTableGet(&unusedTableIndex, ¬hing)); + } + case uint16_t(Op::TableSet): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedTableIndex; + CHECK(iter.readTableSet(&unusedTableIndex, ¬hing, ¬hing)); + } +#endif + case uint16_t(Op::SelectNumeric): { + StackType unused; + CHECK(iter.readSelect(/*typed*/ false, &unused, ¬hing, ¬hing, + ¬hing)); + } + case uint16_t(Op::SelectTyped): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + StackType unused; + CHECK(iter.readSelect(/*typed*/ true, &unused, ¬hing, ¬hing, + ¬hing)); + } + case uint16_t(Op::Block): + CHECK(iter.readBlock(&unusedType)); + case uint16_t(Op::Loop): + CHECK(iter.readLoop(&unusedType)); + case uint16_t(Op::If): + CHECK(iter.readIf(&unusedType, ¬hing)); + case uint16_t(Op::Else): + CHECK(iter.readElse(&unusedType, &unusedType, ¬hings)); + case uint16_t(Op::I32Clz): + case uint16_t(Op::I32Ctz): + case uint16_t(Op::I32Popcnt): + CHECK(iter.readUnary(ValType::I32, ¬hing)); + case uint16_t(Op::I64Clz): + case uint16_t(Op::I64Ctz): + case uint16_t(Op::I64Popcnt): + CHECK(iter.readUnary(ValType::I64, ¬hing)); + case uint16_t(Op::F32Abs): + case uint16_t(Op::F32Neg): + case uint16_t(Op::F32Ceil): + case uint16_t(Op::F32Floor): + case uint16_t(Op::F32Sqrt): + case uint16_t(Op::F32Trunc): + case uint16_t(Op::F32Nearest): + CHECK(iter.readUnary(ValType::F32, ¬hing)); + case uint16_t(Op::F64Abs): + case uint16_t(Op::F64Neg): + case uint16_t(Op::F64Ceil): + case uint16_t(Op::F64Floor): + case uint16_t(Op::F64Sqrt): + case uint16_t(Op::F64Trunc): + case uint16_t(Op::F64Nearest): + CHECK(iter.readUnary(ValType::F64, ¬hing)); + case uint16_t(Op::I32Add): + case uint16_t(Op::I32Sub): + case uint16_t(Op::I32Mul): + case uint16_t(Op::I32DivS): + case uint16_t(Op::I32DivU): + case uint16_t(Op::I32RemS): + case uint16_t(Op::I32RemU): + case uint16_t(Op::I32And): + case uint16_t(Op::I32Or): + case uint16_t(Op::I32Xor): + case uint16_t(Op::I32Shl): + case uint16_t(Op::I32ShrS): + case uint16_t(Op::I32ShrU): + case uint16_t(Op::I32Rotl): + case uint16_t(Op::I32Rotr): + CHECK(iter.readBinary(ValType::I32, ¬hing, ¬hing)); + case uint16_t(Op::I64Add): + case uint16_t(Op::I64Sub): + case uint16_t(Op::I64Mul): + case uint16_t(Op::I64DivS): + case uint16_t(Op::I64DivU): + case uint16_t(Op::I64RemS): + case uint16_t(Op::I64RemU): + case uint16_t(Op::I64And): + case uint16_t(Op::I64Or): + case uint16_t(Op::I64Xor): + case uint16_t(Op::I64Shl): + case uint16_t(Op::I64ShrS): + case uint16_t(Op::I64ShrU): + case uint16_t(Op::I64Rotl): + case uint16_t(Op::I64Rotr): + CHECK(iter.readBinary(ValType::I64, ¬hing, ¬hing)); + case uint16_t(Op::F32Add): + case uint16_t(Op::F32Sub): + case uint16_t(Op::F32Mul): + case uint16_t(Op::F32Div): + case uint16_t(Op::F32Min): + case uint16_t(Op::F32Max): + case uint16_t(Op::F32CopySign): + CHECK(iter.readBinary(ValType::F32, ¬hing, ¬hing)); + case uint16_t(Op::F64Add): + case uint16_t(Op::F64Sub): + case uint16_t(Op::F64Mul): + case uint16_t(Op::F64Div): + case uint16_t(Op::F64Min): + case uint16_t(Op::F64Max): + case uint16_t(Op::F64CopySign): + CHECK(iter.readBinary(ValType::F64, ¬hing, ¬hing)); + case uint16_t(Op::I32Eq): + case uint16_t(Op::I32Ne): + case uint16_t(Op::I32LtS): + case uint16_t(Op::I32LtU): + case uint16_t(Op::I32LeS): + case uint16_t(Op::I32LeU): + case uint16_t(Op::I32GtS): + case uint16_t(Op::I32GtU): + case uint16_t(Op::I32GeS): + case uint16_t(Op::I32GeU): + CHECK(iter.readComparison(ValType::I32, ¬hing, ¬hing)); + case uint16_t(Op::I64Eq): + case uint16_t(Op::I64Ne): + case uint16_t(Op::I64LtS): + case uint16_t(Op::I64LtU): + case uint16_t(Op::I64LeS): + case uint16_t(Op::I64LeU): + case uint16_t(Op::I64GtS): + case uint16_t(Op::I64GtU): + case uint16_t(Op::I64GeS): + case uint16_t(Op::I64GeU): + CHECK(iter.readComparison(ValType::I64, ¬hing, ¬hing)); + case uint16_t(Op::F32Eq): + case uint16_t(Op::F32Ne): + case uint16_t(Op::F32Lt): + case uint16_t(Op::F32Le): + case uint16_t(Op::F32Gt): + case uint16_t(Op::F32Ge): + CHECK(iter.readComparison(ValType::F32, ¬hing, ¬hing)); + case uint16_t(Op::F64Eq): + case uint16_t(Op::F64Ne): + case uint16_t(Op::F64Lt): + case uint16_t(Op::F64Le): + case uint16_t(Op::F64Gt): + case uint16_t(Op::F64Ge): + CHECK(iter.readComparison(ValType::F64, ¬hing, ¬hing)); + case uint16_t(Op::I32Eqz): + CHECK(iter.readConversion(ValType::I32, ValType::I32, ¬hing)); + case uint16_t(Op::I64Eqz): + case uint16_t(Op::I32WrapI64): + CHECK(iter.readConversion(ValType::I64, ValType::I32, ¬hing)); + case uint16_t(Op::I32TruncSF32): + case uint16_t(Op::I32TruncUF32): + case uint16_t(Op::I32ReinterpretF32): + CHECK(iter.readConversion(ValType::F32, ValType::I32, ¬hing)); + case uint16_t(Op::I32TruncSF64): + case uint16_t(Op::I32TruncUF64): + CHECK(iter.readConversion(ValType::F64, ValType::I32, ¬hing)); + case uint16_t(Op::I64ExtendSI32): + case uint16_t(Op::I64ExtendUI32): + CHECK(iter.readConversion(ValType::I32, ValType::I64, ¬hing)); + case uint16_t(Op::I64TruncSF32): + case uint16_t(Op::I64TruncUF32): + CHECK(iter.readConversion(ValType::F32, ValType::I64, ¬hing)); + case uint16_t(Op::I64TruncSF64): + case uint16_t(Op::I64TruncUF64): + case uint16_t(Op::I64ReinterpretF64): + CHECK(iter.readConversion(ValType::F64, ValType::I64, ¬hing)); + case uint16_t(Op::F32ConvertSI32): + case uint16_t(Op::F32ConvertUI32): + case uint16_t(Op::F32ReinterpretI32): + CHECK(iter.readConversion(ValType::I32, ValType::F32, ¬hing)); + case uint16_t(Op::F32ConvertSI64): + case uint16_t(Op::F32ConvertUI64): + CHECK(iter.readConversion(ValType::I64, ValType::F32, ¬hing)); + case uint16_t(Op::F32DemoteF64): + CHECK(iter.readConversion(ValType::F64, ValType::F32, ¬hing)); + case uint16_t(Op::F64ConvertSI32): + case uint16_t(Op::F64ConvertUI32): + CHECK(iter.readConversion(ValType::I32, ValType::F64, ¬hing)); + case uint16_t(Op::F64ConvertSI64): + case uint16_t(Op::F64ConvertUI64): + case uint16_t(Op::F64ReinterpretI64): + CHECK(iter.readConversion(ValType::I64, ValType::F64, ¬hing)); + case uint16_t(Op::F64PromoteF32): + CHECK(iter.readConversion(ValType::F32, ValType::F64, ¬hing)); + case uint16_t(Op::I32Extend8S): + case uint16_t(Op::I32Extend16S): + CHECK(iter.readConversion(ValType::I32, ValType::I32, ¬hing)); + case uint16_t(Op::I64Extend8S): + case uint16_t(Op::I64Extend16S): + case uint16_t(Op::I64Extend32S): + CHECK(iter.readConversion(ValType::I64, ValType::I64, ¬hing)); + case uint16_t(Op::I32Load8S): + case uint16_t(Op::I32Load8U): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::I32, 1, &addr)); + } + case uint16_t(Op::I32Load16S): + case uint16_t(Op::I32Load16U): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::I32, 2, &addr)); + } + case uint16_t(Op::I32Load): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::I32, 4, &addr)); + } + case uint16_t(Op::I64Load8S): + case uint16_t(Op::I64Load8U): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::I64, 1, &addr)); + } + case uint16_t(Op::I64Load16S): + case uint16_t(Op::I64Load16U): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::I64, 2, &addr)); + } + case uint16_t(Op::I64Load32S): + case uint16_t(Op::I64Load32U): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::I64, 4, &addr)); + } + case uint16_t(Op::I64Load): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::I64, 8, &addr)); + } + case uint16_t(Op::F32Load): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::F32, 4, &addr)); + } + case uint16_t(Op::F64Load): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::F64, 8, &addr)); + } + case uint16_t(Op::I32Store8): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::I32, 1, &addr, ¬hing)); + } + case uint16_t(Op::I32Store16): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::I32, 2, &addr, ¬hing)); + } + case uint16_t(Op::I32Store): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::I32, 4, &addr, ¬hing)); + } + case uint16_t(Op::I64Store8): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::I64, 1, &addr, ¬hing)); + } + case uint16_t(Op::I64Store16): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::I64, 2, &addr, ¬hing)); + } + case uint16_t(Op::I64Store32): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::I64, 4, &addr, ¬hing)); + } + case uint16_t(Op::I64Store): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::I64, 8, &addr, ¬hing)); + } + case uint16_t(Op::F32Store): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::F32, 4, &addr, ¬hing)); + } + case uint16_t(Op::F64Store): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::F64, 8, &addr, ¬hing)); + } + case uint16_t(Op::MemoryGrow): + CHECK(iter.readMemoryGrow(¬hing)); + case uint16_t(Op::MemorySize): + CHECK(iter.readMemorySize()); + case uint16_t(Op::Br): { + uint32_t unusedDepth; + CHECK(iter.readBr(&unusedDepth, &unusedType, ¬hings)); + } + case uint16_t(Op::BrIf): { + uint32_t unusedDepth; + CHECK(iter.readBrIf(&unusedDepth, &unusedType, ¬hings, ¬hing)); + } + case uint16_t(Op::BrTable): { + Uint32Vector unusedDepths; + uint32_t unusedDefault; + CHECK(iter.readBrTable(&unusedDepths, &unusedDefault, &unusedType, + ¬hings, ¬hing)); + } + case uint16_t(Op::Return): + CHECK(iter.readReturn(¬hings)); + case uint16_t(Op::Unreachable): + CHECK(iter.readUnreachable()); +#ifdef ENABLE_WASM_GC + case uint16_t(Op::GcPrefix): { + switch (op.b1) { + case uint32_t(GcOp::StructNew): { + if (!env.gcTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedUint; + NothingVector unusedArgs; + CHECK(iter.readStructNew(&unusedUint, &unusedArgs)); + } + case uint32_t(GcOp::StructGet): { + if (!env.gcTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedUint1, unusedUint2; + CHECK(iter.readStructGet(&unusedUint1, &unusedUint2, ¬hing)); + } + case uint32_t(GcOp::StructSet): { + if (!env.gcTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedUint1, unusedUint2; + CHECK(iter.readStructSet(&unusedUint1, &unusedUint2, ¬hing, + ¬hing)); + } + case uint32_t(GcOp::StructNarrow): { + if (!env.gcTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + ValType unusedTy, unusedTy2; + CHECK(iter.readStructNarrow(&unusedTy, &unusedTy2, ¬hing)); + } + default: + return iter.unrecognizedOpcode(&op); + } + break; + } +#endif + +#ifdef ENABLE_WASM_SIMD + case uint16_t(Op::SimdPrefix): { + if (!env.v128Enabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t noIndex; + switch (op.b1) { + case uint32_t(SimdOp::I8x16ExtractLaneS): + case uint32_t(SimdOp::I8x16ExtractLaneU): + CHECK(iter.readExtractLane(ValType::I32, 16, &noIndex, ¬hing)); + case uint32_t(SimdOp::I16x8ExtractLaneS): + case uint32_t(SimdOp::I16x8ExtractLaneU): + CHECK(iter.readExtractLane(ValType::I32, 8, &noIndex, ¬hing)); + case uint32_t(SimdOp::I32x4ExtractLane): + CHECK(iter.readExtractLane(ValType::I32, 4, &noIndex, ¬hing)); + case uint32_t(SimdOp::I64x2ExtractLane): + CHECK(iter.readExtractLane(ValType::I64, 2, &noIndex, ¬hing)); + case uint32_t(SimdOp::F32x4ExtractLane): + CHECK(iter.readExtractLane(ValType::F32, 4, &noIndex, ¬hing)); + case uint32_t(SimdOp::F64x2ExtractLane): + CHECK(iter.readExtractLane(ValType::F64, 2, &noIndex, ¬hing)); + + case uint32_t(SimdOp::I8x16Splat): + case uint32_t(SimdOp::I16x8Splat): + case uint32_t(SimdOp::I32x4Splat): + CHECK(iter.readConversion(ValType::I32, ValType::V128, ¬hing)); + case uint32_t(SimdOp::I64x2Splat): + CHECK(iter.readConversion(ValType::I64, ValType::V128, ¬hing)); + case uint32_t(SimdOp::F32x4Splat): + CHECK(iter.readConversion(ValType::F32, ValType::V128, ¬hing)); + case uint32_t(SimdOp::F64x2Splat): + CHECK(iter.readConversion(ValType::F64, ValType::V128, ¬hing)); + + case uint32_t(SimdOp::I8x16AnyTrue): + case uint32_t(SimdOp::I8x16AllTrue): + case uint32_t(SimdOp::I16x8AnyTrue): + case uint32_t(SimdOp::I16x8AllTrue): + case uint32_t(SimdOp::I32x4AnyTrue): + case uint32_t(SimdOp::I32x4AllTrue): + case uint32_t(SimdOp::I8x16Bitmask): + case uint32_t(SimdOp::I16x8Bitmask): + case uint32_t(SimdOp::I32x4Bitmask): + CHECK(iter.readConversion(ValType::V128, ValType::I32, ¬hing)); + + case uint32_t(SimdOp::I8x16ReplaceLane): + CHECK(iter.readReplaceLane(ValType::I32, 16, &noIndex, ¬hing, + ¬hing)); + case uint32_t(SimdOp::I16x8ReplaceLane): + CHECK(iter.readReplaceLane(ValType::I32, 8, &noIndex, ¬hing, + ¬hing)); + case uint32_t(SimdOp::I32x4ReplaceLane): + CHECK(iter.readReplaceLane(ValType::I32, 4, &noIndex, ¬hing, + ¬hing)); + case uint32_t(SimdOp::I64x2ReplaceLane): + CHECK(iter.readReplaceLane(ValType::I64, 2, &noIndex, ¬hing, + ¬hing)); + case uint32_t(SimdOp::F32x4ReplaceLane): + CHECK(iter.readReplaceLane(ValType::F32, 4, &noIndex, ¬hing, + ¬hing)); + case uint32_t(SimdOp::F64x2ReplaceLane): + CHECK(iter.readReplaceLane(ValType::F64, 2, &noIndex, ¬hing, + ¬hing)); + + case uint32_t(SimdOp::I8x16Eq): + case uint32_t(SimdOp::I8x16Ne): + case uint32_t(SimdOp::I8x16LtS): + case uint32_t(SimdOp::I8x16LtU): + case uint32_t(SimdOp::I8x16GtS): + case uint32_t(SimdOp::I8x16GtU): + case uint32_t(SimdOp::I8x16LeS): + case uint32_t(SimdOp::I8x16LeU): + case uint32_t(SimdOp::I8x16GeS): + case uint32_t(SimdOp::I8x16GeU): + case uint32_t(SimdOp::I16x8Eq): + case uint32_t(SimdOp::I16x8Ne): + case uint32_t(SimdOp::I16x8LtS): + case uint32_t(SimdOp::I16x8LtU): + case uint32_t(SimdOp::I16x8GtS): + case uint32_t(SimdOp::I16x8GtU): + case uint32_t(SimdOp::I16x8LeS): + case uint32_t(SimdOp::I16x8LeU): + case uint32_t(SimdOp::I16x8GeS): + case uint32_t(SimdOp::I16x8GeU): + case uint32_t(SimdOp::I32x4Eq): + case uint32_t(SimdOp::I32x4Ne): + case uint32_t(SimdOp::I32x4LtS): + case uint32_t(SimdOp::I32x4LtU): + case uint32_t(SimdOp::I32x4GtS): + case uint32_t(SimdOp::I32x4GtU): + case uint32_t(SimdOp::I32x4LeS): + case uint32_t(SimdOp::I32x4LeU): + case uint32_t(SimdOp::I32x4GeS): + case uint32_t(SimdOp::I32x4GeU): + case uint32_t(SimdOp::F32x4Eq): + case uint32_t(SimdOp::F32x4Ne): + case uint32_t(SimdOp::F32x4Lt): + case uint32_t(SimdOp::F32x4Gt): + case uint32_t(SimdOp::F32x4Le): + case uint32_t(SimdOp::F32x4Ge): + case uint32_t(SimdOp::F64x2Eq): + case uint32_t(SimdOp::F64x2Ne): + case uint32_t(SimdOp::F64x2Lt): + case uint32_t(SimdOp::F64x2Gt): + case uint32_t(SimdOp::F64x2Le): + case uint32_t(SimdOp::F64x2Ge): + case uint32_t(SimdOp::V128And): + case uint32_t(SimdOp::V128Or): + case uint32_t(SimdOp::V128Xor): + case uint32_t(SimdOp::V128AndNot): + case uint32_t(SimdOp::I8x16AvgrU): + case uint32_t(SimdOp::I16x8AvgrU): + case uint32_t(SimdOp::I8x16Add): + case uint32_t(SimdOp::I8x16AddSaturateS): + case uint32_t(SimdOp::I8x16AddSaturateU): + case uint32_t(SimdOp::I8x16Sub): + case uint32_t(SimdOp::I8x16SubSaturateS): + case uint32_t(SimdOp::I8x16SubSaturateU): + case uint32_t(SimdOp::I8x16MinS): + case uint32_t(SimdOp::I8x16MinU): + case uint32_t(SimdOp::I8x16MaxS): + case uint32_t(SimdOp::I8x16MaxU): + case uint32_t(SimdOp::I16x8Add): + case uint32_t(SimdOp::I16x8AddSaturateS): + case uint32_t(SimdOp::I16x8AddSaturateU): + case uint32_t(SimdOp::I16x8Sub): + case uint32_t(SimdOp::I16x8SubSaturateS): + case uint32_t(SimdOp::I16x8SubSaturateU): + case uint32_t(SimdOp::I16x8Mul): + case uint32_t(SimdOp::I16x8MinS): + case uint32_t(SimdOp::I16x8MinU): + case uint32_t(SimdOp::I16x8MaxS): + case uint32_t(SimdOp::I16x8MaxU): + case uint32_t(SimdOp::I32x4Add): + case uint32_t(SimdOp::I32x4Sub): + case uint32_t(SimdOp::I32x4Mul): + case uint32_t(SimdOp::I32x4MinS): + case uint32_t(SimdOp::I32x4MinU): + case uint32_t(SimdOp::I32x4MaxS): + case uint32_t(SimdOp::I32x4MaxU): + case uint32_t(SimdOp::I64x2Add): + case uint32_t(SimdOp::I64x2Sub): + case uint32_t(SimdOp::I64x2Mul): + case uint32_t(SimdOp::F32x4Add): + case uint32_t(SimdOp::F32x4Sub): + case uint32_t(SimdOp::F32x4Mul): + case uint32_t(SimdOp::F32x4Div): + case uint32_t(SimdOp::F32x4Min): + case uint32_t(SimdOp::F32x4Max): + case uint32_t(SimdOp::F64x2Add): + case uint32_t(SimdOp::F64x2Sub): + case uint32_t(SimdOp::F64x2Mul): + case uint32_t(SimdOp::F64x2Div): + case uint32_t(SimdOp::F64x2Min): + case uint32_t(SimdOp::F64x2Max): + case uint32_t(SimdOp::I8x16NarrowSI16x8): + case uint32_t(SimdOp::I8x16NarrowUI16x8): + case uint32_t(SimdOp::I16x8NarrowSI32x4): + case uint32_t(SimdOp::I16x8NarrowUI32x4): + case uint32_t(SimdOp::V8x16Swizzle): + case uint32_t(SimdOp::F32x4PMax): + case uint32_t(SimdOp::F32x4PMin): + case uint32_t(SimdOp::F64x2PMax): + case uint32_t(SimdOp::F64x2PMin): + case uint32_t(SimdOp::I32x4DotSI16x8): + CHECK(iter.readBinary(ValType::V128, ¬hing, ¬hing)); + + case uint32_t(SimdOp::I8x16Neg): + case uint32_t(SimdOp::I16x8Neg): + case uint32_t(SimdOp::I16x8WidenLowSI8x16): + case uint32_t(SimdOp::I16x8WidenHighSI8x16): + case uint32_t(SimdOp::I16x8WidenLowUI8x16): + case uint32_t(SimdOp::I16x8WidenHighUI8x16): + case uint32_t(SimdOp::I32x4Neg): + case uint32_t(SimdOp::I32x4WidenLowSI16x8): + case uint32_t(SimdOp::I32x4WidenHighSI16x8): + case uint32_t(SimdOp::I32x4WidenLowUI16x8): + case uint32_t(SimdOp::I32x4WidenHighUI16x8): + case uint32_t(SimdOp::I32x4TruncSSatF32x4): + case uint32_t(SimdOp::I32x4TruncUSatF32x4): + case uint32_t(SimdOp::I64x2Neg): + case uint32_t(SimdOp::F32x4Abs): + case uint32_t(SimdOp::F32x4Neg): + case uint32_t(SimdOp::F32x4Sqrt): + case uint32_t(SimdOp::F32x4ConvertSI32x4): + case uint32_t(SimdOp::F32x4ConvertUI32x4): + case uint32_t(SimdOp::F64x2Abs): + case uint32_t(SimdOp::F64x2Neg): + case uint32_t(SimdOp::F64x2Sqrt): + case uint32_t(SimdOp::V128Not): + case uint32_t(SimdOp::I8x16Abs): + case uint32_t(SimdOp::I16x8Abs): + case uint32_t(SimdOp::I32x4Abs): + case uint32_t(SimdOp::F32x4Ceil): + case uint32_t(SimdOp::F32x4Floor): + case uint32_t(SimdOp::F32x4Trunc): + case uint32_t(SimdOp::F32x4Nearest): + case uint32_t(SimdOp::F64x2Ceil): + case uint32_t(SimdOp::F64x2Floor): + case uint32_t(SimdOp::F64x2Trunc): + case uint32_t(SimdOp::F64x2Nearest): + CHECK(iter.readUnary(ValType::V128, ¬hing)); + + case uint32_t(SimdOp::I8x16Shl): + case uint32_t(SimdOp::I8x16ShrS): + case uint32_t(SimdOp::I8x16ShrU): + case uint32_t(SimdOp::I16x8Shl): + case uint32_t(SimdOp::I16x8ShrS): + case uint32_t(SimdOp::I16x8ShrU): + case uint32_t(SimdOp::I32x4Shl): + case uint32_t(SimdOp::I32x4ShrS): + case uint32_t(SimdOp::I32x4ShrU): + case uint32_t(SimdOp::I64x2Shl): + case uint32_t(SimdOp::I64x2ShrS): + case uint32_t(SimdOp::I64x2ShrU): + CHECK(iter.readVectorShift(¬hing, ¬hing)); + + case uint32_t(SimdOp::V128Bitselect): + CHECK(iter.readVectorSelect(¬hing, ¬hing, ¬hing)); + + case uint32_t(SimdOp::V8x16Shuffle): { + V128 mask; + CHECK(iter.readVectorShuffle(¬hing, ¬hing, &mask)); + } + + case uint32_t(SimdOp::V128Const): { + V128 noVector; + CHECK(iter.readV128Const(&noVector)); + } + + case uint32_t(SimdOp::V128Load): { + LinearMemoryAddress addr; + CHECK(iter.readLoad(ValType::V128, 16, &addr)); + } + + case uint32_t(SimdOp::V8x16LoadSplat): { + LinearMemoryAddress addr; + CHECK(iter.readLoadSplat(1, &addr)); + } + + case uint32_t(SimdOp::V16x8LoadSplat): { + LinearMemoryAddress addr; + CHECK(iter.readLoadSplat(2, &addr)); + } + + case uint32_t(SimdOp::V32x4LoadSplat): { + LinearMemoryAddress addr; + CHECK(iter.readLoadSplat(4, &addr)); + } + + case uint32_t(SimdOp::V64x2LoadSplat): { + LinearMemoryAddress addr; + CHECK(iter.readLoadSplat(8, &addr)); + } + + case uint32_t(SimdOp::I16x8LoadS8x8): + case uint32_t(SimdOp::I16x8LoadU8x8): { + LinearMemoryAddress addr; + CHECK(iter.readLoadExtend(&addr)); + } + + case uint32_t(SimdOp::I32x4LoadS16x4): + case uint32_t(SimdOp::I32x4LoadU16x4): { + LinearMemoryAddress addr; + CHECK(iter.readLoadExtend(&addr)); + } + + case uint32_t(SimdOp::I64x2LoadS32x2): + case uint32_t(SimdOp::I64x2LoadU32x2): { + LinearMemoryAddress addr; + CHECK(iter.readLoadExtend(&addr)); + } + + case uint32_t(SimdOp::V128Store): { + LinearMemoryAddress addr; + CHECK(iter.readStore(ValType::V128, 16, &addr, ¬hing)); + } + + case uint32_t(SimdOp::V128Load32Zero): { + LinearMemoryAddress addr; + CHECK(iter.readLoadSplat(4, &addr)); + } + + case uint32_t(SimdOp::V128Load64Zero): { + LinearMemoryAddress addr; + CHECK(iter.readLoadSplat(8, &addr)); + } + + default: + return iter.unrecognizedOpcode(&op); + } + break; + } +#endif // ENABLE_WASM_SIMD + + case uint16_t(Op::MiscPrefix): { + switch (op.b1) { + case uint32_t(MiscOp::I32TruncSSatF32): + case uint32_t(MiscOp::I32TruncUSatF32): + CHECK(iter.readConversion(ValType::F32, ValType::I32, ¬hing)); + case uint32_t(MiscOp::I32TruncSSatF64): + case uint32_t(MiscOp::I32TruncUSatF64): + CHECK(iter.readConversion(ValType::F64, ValType::I32, ¬hing)); + case uint32_t(MiscOp::I64TruncSSatF32): + case uint32_t(MiscOp::I64TruncUSatF32): + CHECK(iter.readConversion(ValType::F32, ValType::I64, ¬hing)); + case uint32_t(MiscOp::I64TruncSSatF64): + case uint32_t(MiscOp::I64TruncUSatF64): + CHECK(iter.readConversion(ValType::F64, ValType::I64, ¬hing)); + case uint32_t(MiscOp::MemCopy): { + uint32_t unusedDestMemIndex; + uint32_t unusedSrcMemIndex; + CHECK(iter.readMemOrTableCopy(/*isMem=*/true, &unusedDestMemIndex, + ¬hing, &unusedSrcMemIndex, + ¬hing, ¬hing)); + } + case uint32_t(MiscOp::DataDrop): { + uint32_t unusedSegIndex; + CHECK(iter.readDataOrElemDrop(/*isData=*/true, &unusedSegIndex)); + } + case uint32_t(MiscOp::MemFill): + CHECK(iter.readMemFill(¬hing, ¬hing, ¬hing)); + case uint32_t(MiscOp::MemInit): { + uint32_t unusedSegIndex; + uint32_t unusedTableIndex; + CHECK(iter.readMemOrTableInit(/*isMem=*/true, &unusedSegIndex, + &unusedTableIndex, ¬hing, ¬hing, + ¬hing)); + } + case uint32_t(MiscOp::TableCopy): { + uint32_t unusedDestTableIndex; + uint32_t unusedSrcTableIndex; + CHECK(iter.readMemOrTableCopy( + /*isMem=*/false, &unusedDestTableIndex, ¬hing, + &unusedSrcTableIndex, ¬hing, ¬hing)); + } + case uint32_t(MiscOp::ElemDrop): { + uint32_t unusedSegIndex; + CHECK(iter.readDataOrElemDrop(/*isData=*/false, &unusedSegIndex)); + } + case uint32_t(MiscOp::TableInit): { + uint32_t unusedSegIndex; + uint32_t unusedTableIndex; + CHECK(iter.readMemOrTableInit(/*isMem=*/false, &unusedSegIndex, + &unusedTableIndex, ¬hing, ¬hing, + ¬hing)); + } +#ifdef ENABLE_WASM_REFTYPES + case uint32_t(MiscOp::TableFill): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedTableIndex; + CHECK(iter.readTableFill(&unusedTableIndex, ¬hing, ¬hing, + ¬hing)); + } + case uint32_t(MiscOp::TableGrow): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedTableIndex; + CHECK(iter.readTableGrow(&unusedTableIndex, ¬hing, ¬hing)); + } + case uint32_t(MiscOp::TableSize): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedTableIndex; + CHECK(iter.readTableSize(&unusedTableIndex)); + } +#endif + default: + return iter.unrecognizedOpcode(&op); + } + break; + } +#ifdef ENABLE_WASM_FUNCTION_REFERENCES + case uint16_t(Op::RefAsNonNull): { + if (!env.functionReferencesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + CHECK(iter.readRefAsNonNull(¬hing)); + } + case uint16_t(Op::BrOnNull): { + if (!env.functionReferencesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedDepth; + CHECK( + iter.readBrOnNull(&unusedDepth, &unusedType, ¬hings, ¬hing)); + } +#endif +#ifdef ENABLE_WASM_GC + case uint16_t(Op::RefEq): { + if (!env.gcTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + CHECK(iter.readComparison(RefType::eq(), ¬hing, ¬hing)); + } +#endif +#ifdef ENABLE_WASM_REFTYPES + case uint16_t(Op::RefFunc): { + uint32_t unusedIndex; + CHECK(iter.readRefFunc(&unusedIndex)); + } + case uint16_t(Op::RefNull): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + CHECK(iter.readRefNull()); + } + case uint16_t(Op::RefIsNull): { + if (!env.refTypesEnabled()) { + return iter.unrecognizedOpcode(&op); + } + Nothing nothing; + CHECK(iter.readRefIsNull(¬hing)); + } +#endif +#ifdef ENABLE_WASM_EXCEPTIONS + case uint16_t(Op::Try): + if (!env.exceptionsEnabled()) { + return iter.unrecognizedOpcode(&op); + } + CHECK(iter.readTry(&unusedType)); + case uint16_t(Op::Catch): { + if (!env.exceptionsEnabled()) { + return iter.unrecognizedOpcode(&op); + } + LabelKind unusedKind; + uint32_t unusedIndex; + CHECK(iter.readCatch(&unusedKind, &unusedIndex, &unusedType, + &unusedType, ¬hings)); + } + case uint16_t(Op::Throw): { + if (!env.exceptionsEnabled()) { + return iter.unrecognizedOpcode(&op); + } + uint32_t unusedIndex; + CHECK(iter.readThrow(&unusedIndex, ¬hings)); + } +#endif + case uint16_t(Op::ThreadPrefix): { + if (env.sharedMemoryEnabled() == Shareable::False) { + return iter.unrecognizedOpcode(&op); + } + switch (op.b1) { + case uint32_t(ThreadOp::Wake): { + LinearMemoryAddress addr; + CHECK(iter.readWake(&addr, ¬hing)); + } + case uint32_t(ThreadOp::I32Wait): { + LinearMemoryAddress addr; + CHECK(iter.readWait(&addr, ValType::I32, 4, ¬hing, ¬hing)); + } + case uint32_t(ThreadOp::I64Wait): { + LinearMemoryAddress addr; + CHECK(iter.readWait(&addr, ValType::I64, 8, ¬hing, ¬hing)); + } + case uint32_t(ThreadOp::Fence): { + CHECK(iter.readFence()); + } + case uint32_t(ThreadOp::I32AtomicLoad): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicLoad(&addr, ValType::I32, 4)); + } + case uint32_t(ThreadOp::I64AtomicLoad): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicLoad(&addr, ValType::I64, 8)); + } + case uint32_t(ThreadOp::I32AtomicLoad8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicLoad(&addr, ValType::I32, 1)); + } + case uint32_t(ThreadOp::I32AtomicLoad16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicLoad(&addr, ValType::I32, 2)); + } + case uint32_t(ThreadOp::I64AtomicLoad8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicLoad(&addr, ValType::I64, 1)); + } + case uint32_t(ThreadOp::I64AtomicLoad16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicLoad(&addr, ValType::I64, 2)); + } + case uint32_t(ThreadOp::I64AtomicLoad32U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicLoad(&addr, ValType::I64, 4)); + } + case uint32_t(ThreadOp::I32AtomicStore): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicStore(&addr, ValType::I32, 4, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicStore): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicStore(&addr, ValType::I64, 8, ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicStore8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicStore(&addr, ValType::I32, 1, ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicStore16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicStore(&addr, ValType::I32, 2, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicStore8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicStore(&addr, ValType::I64, 1, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicStore16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicStore(&addr, ValType::I64, 2, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicStore32U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicStore(&addr, ValType::I64, 4, ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicAdd): + case uint32_t(ThreadOp::I32AtomicSub): + case uint32_t(ThreadOp::I32AtomicAnd): + case uint32_t(ThreadOp::I32AtomicOr): + case uint32_t(ThreadOp::I32AtomicXor): + case uint32_t(ThreadOp::I32AtomicXchg): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicRMW(&addr, ValType::I32, 4, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicAdd): + case uint32_t(ThreadOp::I64AtomicSub): + case uint32_t(ThreadOp::I64AtomicAnd): + case uint32_t(ThreadOp::I64AtomicOr): + case uint32_t(ThreadOp::I64AtomicXor): + case uint32_t(ThreadOp::I64AtomicXchg): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicRMW(&addr, ValType::I64, 8, ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicAdd8U): + case uint32_t(ThreadOp::I32AtomicSub8U): + case uint32_t(ThreadOp::I32AtomicAnd8U): + case uint32_t(ThreadOp::I32AtomicOr8U): + case uint32_t(ThreadOp::I32AtomicXor8U): + case uint32_t(ThreadOp::I32AtomicXchg8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicRMW(&addr, ValType::I32, 1, ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicAdd16U): + case uint32_t(ThreadOp::I32AtomicSub16U): + case uint32_t(ThreadOp::I32AtomicAnd16U): + case uint32_t(ThreadOp::I32AtomicOr16U): + case uint32_t(ThreadOp::I32AtomicXor16U): + case uint32_t(ThreadOp::I32AtomicXchg16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicRMW(&addr, ValType::I32, 2, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicAdd8U): + case uint32_t(ThreadOp::I64AtomicSub8U): + case uint32_t(ThreadOp::I64AtomicAnd8U): + case uint32_t(ThreadOp::I64AtomicOr8U): + case uint32_t(ThreadOp::I64AtomicXor8U): + case uint32_t(ThreadOp::I64AtomicXchg8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicRMW(&addr, ValType::I64, 1, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicAdd16U): + case uint32_t(ThreadOp::I64AtomicSub16U): + case uint32_t(ThreadOp::I64AtomicAnd16U): + case uint32_t(ThreadOp::I64AtomicOr16U): + case uint32_t(ThreadOp::I64AtomicXor16U): + case uint32_t(ThreadOp::I64AtomicXchg16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicRMW(&addr, ValType::I64, 2, ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicAdd32U): + case uint32_t(ThreadOp::I64AtomicSub32U): + case uint32_t(ThreadOp::I64AtomicAnd32U): + case uint32_t(ThreadOp::I64AtomicOr32U): + case uint32_t(ThreadOp::I64AtomicXor32U): + case uint32_t(ThreadOp::I64AtomicXchg32U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicRMW(&addr, ValType::I64, 4, ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicCmpXchg): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicCmpXchg(&addr, ValType::I32, 4, ¬hing, + ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicCmpXchg): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicCmpXchg(&addr, ValType::I64, 8, ¬hing, + ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicCmpXchg8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicCmpXchg(&addr, ValType::I32, 1, ¬hing, + ¬hing)); + } + case uint32_t(ThreadOp::I32AtomicCmpXchg16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicCmpXchg(&addr, ValType::I32, 2, ¬hing, + ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicCmpXchg8U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicCmpXchg(&addr, ValType::I64, 1, ¬hing, + ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicCmpXchg16U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicCmpXchg(&addr, ValType::I64, 2, ¬hing, + ¬hing)); + } + case uint32_t(ThreadOp::I64AtomicCmpXchg32U): { + LinearMemoryAddress addr; + CHECK(iter.readAtomicCmpXchg(&addr, ValType::I64, 4, ¬hing, + ¬hing)); + } + default: + return iter.unrecognizedOpcode(&op); + } + break; + } + case uint16_t(Op::MozPrefix): + return iter.unrecognizedOpcode(&op); + default: + return iter.unrecognizedOpcode(&op); + } + } + + MOZ_CRASH("unreachable"); + +#undef CHECK +#undef CHECK_SIMD_EXPERIMENTAL +} + +bool wasm::ValidateFunctionBody(const ModuleEnvironment& env, + uint32_t funcIndex, uint32_t bodySize, + Decoder& d) { + ValTypeVector locals; + if (!locals.appendAll(env.funcs[funcIndex].type->args())) { + return false; + } + + const uint8_t* bodyBegin = d.currentPosition(); + + if (!DecodeLocalEntries(d, env.types, env.features, &locals)) { + return false; + } + + if (!DecodeFunctionBodyExprs(env, funcIndex, locals, bodyBegin + bodySize, + &d)) { + return false; + } + + return true; +} + +// Section macros. + +static bool DecodePreamble(Decoder& d) { + if (d.bytesRemain() > MaxModuleBytes) { + return d.fail("module too big"); + } + + uint32_t u32; + if (!d.readFixedU32(&u32) || u32 != MagicNumber) { + return d.fail("failed to match magic number"); + } + + if (!d.readFixedU32(&u32) || u32 != EncodingVersion) { + return d.failf("binary version 0x%" PRIx32 + " does not match expected version 0x%" PRIx32, + u32, EncodingVersion); + } + + return true; +} + +enum class TypeState { None, Struct, ForwardStruct, Func }; + +typedef Vector TypeStateVector; + +static bool ValidateTypeState(Decoder& d, TypeStateVector* typeState, + ValType type) { + if (!type.isTypeIndex()) { + return true; + } + + uint32_t refTypeIndex = type.refType().typeIndex(); + switch ((*typeState)[refTypeIndex]) { + case TypeState::None: + (*typeState)[refTypeIndex] = TypeState::ForwardStruct; + break; + case TypeState::Struct: + case TypeState::ForwardStruct: + break; + case TypeState::Func: + return d.fail("ref does not reference a struct type"); + } + return true; +} + +#ifdef WASM_PRIVATE_REFTYPES +static bool FuncTypeIsJSCompatible(Decoder& d, const FuncType& ft) { + if (ft.exposesTypeIndex()) { + return d.fail("cannot expose indexed reference type"); + } + return true; +} +#endif + +static bool DecodeTypeVector(Decoder& d, ModuleEnvironment* env, + TypeStateVector* typeState, uint32_t count, + ValTypeVector* types) { + if (!types->resize(count)) { + return false; + } + + for (uint32_t i = 0; i < count; i++) { + if (!d.readValType(env->types.length(), env->features, &(*types)[i])) { + return false; + } + if (!ValidateTypeState(d, typeState, (*types)[i])) { + return false; + } + } + return true; +} + +static bool DecodeFuncType(Decoder& d, ModuleEnvironment* env, + TypeStateVector* typeState, uint32_t typeIndex) { + uint32_t numArgs; + if (!d.readVarU32(&numArgs)) { + return d.fail("bad number of function args"); + } + if (numArgs > MaxParams) { + return d.fail("too many arguments in signature"); + } + ValTypeVector args; + if (!DecodeTypeVector(d, env, typeState, numArgs, &args)) { + return false; + } + + uint32_t numResults; + if (!d.readVarU32(&numResults)) { + return d.fail("bad number of function returns"); + } + if (numResults > env->funcMaxResults()) { + return d.fail("too many returns in signature"); + } + ValTypeVector results; + if (!DecodeTypeVector(d, env, typeState, numResults, &results)) { + return false; + } + + if ((*typeState)[typeIndex] != TypeState::None) { + return d.fail("function type entry referenced as struct"); + } + + env->types[typeIndex] = + TypeDef(FuncType(std::move(args), std::move(results))); + (*typeState)[typeIndex] = TypeState::Func; + + return true; +} + +static bool DecodeStructType(Decoder& d, ModuleEnvironment* env, + TypeStateVector* typeState, uint32_t typeIndex) { + if (!env->gcTypesEnabled()) { + return d.fail("Structure types not enabled"); + } + + if ((*typeState)[typeIndex] != TypeState::None && + (*typeState)[typeIndex] != TypeState::ForwardStruct) { + return d.fail("struct type entry referenced as function"); + } + + uint32_t numFields; + if (!d.readVarU32(&numFields)) { + return d.fail("Bad number of fields"); + } + + if (numFields > MaxStructFields) { + return d.fail("too many fields in struct"); + } + + StructFieldVector fields; + if (!fields.resize(numFields)) { + return false; + } + + for (uint32_t i = 0; i < numFields; i++) { + if (!d.readValType(env->types.length(), env->features, &fields[i].type)) { + return false; + } + + uint8_t flags; + if (!d.readFixedU8(&flags)) { + return d.fail("expected flag"); + } + if ((flags & ~uint8_t(FieldFlags::AllowedMask)) != 0) { + return d.fail("garbage flag bits"); + } + fields[i].isMutable = flags & uint8_t(FieldFlags::Mutable); + + if (!ValidateTypeState(d, typeState, fields[i].type)) { + return false; + } + } + + StructType structType = StructType(std::move(fields)); + + if (!structType.computeLayout()) { + return d.fail("Struct type too large"); + } + + env->types[typeIndex] = TypeDef(std::move(structType)); + (*typeState)[typeIndex] = TypeState::Struct; + + return true; +} + +static bool DecodeTypeSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Type, env, &range, "type")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numTypes; + if (!d.readVarU32(&numTypes)) { + return d.fail("expected number of types"); + } + + if (numTypes > MaxTypes) { + return d.fail("too many types"); + } + + if (!env->types.resize(numTypes) || !env->typeIds.resize(numTypes)) { + return false; + } + + TypeStateVector typeState; + if (!typeState.appendN(TypeState::None, numTypes)) { + return false; + } + + for (uint32_t typeIndex = 0; typeIndex < numTypes; typeIndex++) { + uint8_t form; + if (!d.readFixedU8(&form)) { + return d.fail("expected type form"); + } + + switch (form) { + case uint8_t(TypeCode::Func): + if (!DecodeFuncType(d, env, &typeState, typeIndex)) { + return false; + } + break; + case uint8_t(TypeCode::Struct): + if (!DecodeStructType(d, env, &typeState, typeIndex)) { + return false; + } + break; + default: + return d.fail("expected type form"); + } + } + + return d.finishSection(*range, "type"); +} + +static UniqueChars DecodeName(Decoder& d) { + uint32_t numBytes; + if (!d.readVarU32(&numBytes)) { + return nullptr; + } + + if (numBytes > MaxStringBytes) { + return nullptr; + } + + const uint8_t* bytes; + if (!d.readBytes(numBytes, &bytes)) { + return nullptr; + } + + if (!IsUtf8(AsChars(Span(bytes, numBytes)))) { + return nullptr; + } + + UniqueChars name(js_pod_malloc(numBytes + 1)); + if (!name) { + return nullptr; + } + + memcpy(name.get(), bytes, numBytes); + name[numBytes] = '\0'; + + return name; +} + +static bool DecodeFuncTypeIndex(Decoder& d, const TypeContext& types, + uint32_t* funcTypeIndex) { + if (!d.readVarU32(funcTypeIndex)) { + return d.fail("expected signature index"); + } + + if (*funcTypeIndex >= types.length()) { + return d.fail("signature index out of range"); + } + + const TypeDef& def = types[*funcTypeIndex]; + + if (!def.isFuncType()) { + return d.fail("signature index references non-signature"); + } + + return true; +} + +static bool DecodeLimits(Decoder& d, Limits* limits, + Shareable allowShared = Shareable::False) { + uint8_t flags; + if (!d.readFixedU8(&flags)) { + return d.fail("expected flags"); + } + + uint8_t mask = allowShared == Shareable::True + ? uint8_t(MemoryMasks::AllowShared) + : uint8_t(MemoryMasks::AllowUnshared); + + if (flags & ~uint8_t(mask)) { + return d.failf("unexpected bits set in flags: %" PRIu32, + uint32_t(flags & ~uint8_t(mask))); + } + + uint32_t initial; + if (!d.readVarU32(&initial)) { + return d.fail("expected initial length"); + } + limits->initial = initial; + + if (flags & uint8_t(MemoryTableFlags::HasMaximum)) { + uint32_t maximum; + if (!d.readVarU32(&maximum)) { + return d.fail("expected maximum length"); + } + + if (limits->initial > maximum) { + return d.failf( + "memory size minimum must not be greater than maximum; " + "maximum length %" PRIu32 " is less than initial length %" PRIu64, + maximum, limits->initial); + } + + limits->maximum.emplace(uint64_t(maximum)); + } + + limits->shared = Shareable::False; + + if (allowShared == Shareable::True) { + if ((flags & uint8_t(MemoryTableFlags::IsShared)) && + !(flags & uint8_t(MemoryTableFlags::HasMaximum))) { + return d.fail("maximum length required for shared memory"); + } + + limits->shared = (flags & uint8_t(MemoryTableFlags::IsShared)) + ? Shareable::True + : Shareable::False; + } + + return true; +} + +static bool DecodeTableTypeAndLimits(Decoder& d, const FeatureArgs& features, + const TypeContext& types, + TableDescVector* tables) { + RefType tableElemType; + if (!d.readRefType(types, features.withRefTypes(true), &tableElemType)) { + return false; + } + if (!features.refTypes && !tableElemType.isFunc()) { + return d.fail("expected 'funcref' element type"); + } + if (!tableElemType.isNullable()) { + return d.fail("non-nullable references not supported in tables"); + } + + Limits limits; + if (!DecodeLimits(d, &limits)) { + return false; + } + + // If there's a maximum, check it is in range. The check to exclude + // initial > maximum is carried out by the DecodeLimits call above, so + // we don't repeat it here. + if (limits.initial > MaxTableLimitField || + ((limits.maximum.isSome() && + limits.maximum.value() > MaxTableLimitField))) { + return d.fail("too many table elements"); + } + + if (tables->length() >= MaxTables) { + return d.fail("too many tables"); + } + + // The rest of the runtime expects table limits to be within a 32-bit range. + static_assert(MaxTableLimitField <= UINT32_MAX, "invariant"); + uint32_t initialLength = uint32_t(limits.initial); + Maybe maximumLength; + if (limits.maximum) { + maximumLength = Some(uint32_t(*limits.maximum)); + } + + return tables->emplaceBack(tableElemType, initialLength, maximumLength, + /* isAsmJS */ false); +} + +static bool GlobalIsJSCompatible(Decoder& d, ValType type) { + switch (type.kind()) { + case ValType::I32: + case ValType::F32: + case ValType::F64: + case ValType::I64: + case ValType::V128: + break; + case ValType::Ref: + switch (type.refTypeKind()) { + case RefType::Func: + case RefType::Extern: + case RefType::Eq: + break; + case RefType::TypeIndex: +#ifdef WASM_PRIVATE_REFTYPES + return d.fail("cannot expose indexed reference type"); +#else + break; +#endif + default: + return d.fail("unexpected variable type in global import/export"); + } + break; + default: + return d.fail("unexpected variable type in global import/export"); + } + + return true; +} + +static bool DecodeGlobalType(Decoder& d, const TypeContext& types, + const FeatureArgs& features, ValType* type, + bool* isMutable) { + if (!d.readValType(types, features, type)) { + return d.fail("expected global type"); + } + + if (type->isReference() && !type->isNullable()) { + return d.fail("non-nullable references not supported in globals"); + } + + uint8_t flags; + if (!d.readFixedU8(&flags)) { + return d.fail("expected global flags"); + } + + if (flags & ~uint8_t(GlobalTypeImmediate::AllowedMask)) { + return d.fail("unexpected bits set in global flags"); + } + + *isMutable = flags & uint8_t(GlobalTypeImmediate::IsMutable); + return true; +} + +void wasm::ConvertMemoryPagesToBytes(Limits* memory) { + memory->initial *= PageSize; + + if (!memory->maximum) { + return; + } + *memory->maximum *= PageSize; +} + +static bool DecodeMemoryLimits(Decoder& d, ModuleEnvironment* env) { + if (env->usesMemory()) { + return d.fail("already have default memory"); + } + + Limits memory; + if (!DecodeLimits(d, &memory, Shareable::True)) { + return false; + } + + if (memory.initial > MaxMemory32LimitField) { + return d.fail("initial memory size too big"); + } + + if (memory.maximum && *memory.maximum > MaxMemory32LimitField) { + return d.fail("maximum memory size too big"); + } + + ConvertMemoryPagesToBytes(&memory); + + if (memory.shared == Shareable::True && + env->sharedMemoryEnabled() == Shareable::False) { + return d.fail("shared memory is disabled"); + } + + env->memoryUsage = memory.shared == Shareable::True ? MemoryUsage::Shared + : MemoryUsage::Unshared; + env->minMemoryLength = memory.initial; + env->maxMemoryLength = memory.maximum; + return true; +} + +#ifdef ENABLE_WASM_EXCEPTIONS +static bool EventIsJSCompatible(Decoder& d, const ValTypeVector& type) { + for (uint32_t i = 0; i < type.length(); i++) { + if (type[i].isTypeIndex()) { + return d.fail("cannot expose indexed reference type"); + } + } + + return true; +} + +static bool DecodeEvent(Decoder& d, ModuleEnvironment* env, + EventKind* eventKind, uint32_t* funcTypeIndex) { + uint32_t eventCode; + if (!d.readVarU32(&eventCode)) { + return d.fail("expected event kind"); + } + + if (EventKind(eventCode) != EventKind::Exception) { + return d.fail("illegal event kind"); + } + *eventKind = EventKind(eventCode); + + if (!d.readVarU32(funcTypeIndex)) { + return d.fail("expected function index in event"); + } + if (*funcTypeIndex >= env->numTypes()) { + return d.fail("function type index in event out of bounds"); + } + if (!env->types[*funcTypeIndex].isFuncType()) { + return d.fail("function type index must index a function type"); + } + if (env->types[*funcTypeIndex].funcType().results().length() != 0) { + return d.fail("exception function types must not return anything"); + } + return true; +} +#endif + +struct CStringPair { + const char* first; + const char* second; + + CStringPair(const char* first, const char* second) + : first(first), second(second) {} + + using Key = CStringPair; + using Lookup = CStringPair; + + static mozilla::HashNumber hash(const Lookup& l) { + return mozilla::AddToHash(mozilla::HashString(l.first), + mozilla::HashString(l.second)); + } + static bool match(const Key& k, const Lookup& l) { + return !strcmp(k.first, l.first) && !strcmp(k.second, l.second); + } +}; + +using CStringPairSet = HashSet; + +static bool DecodeImport(Decoder& d, ModuleEnvironment* env, + CStringPairSet* dupSet) { + UniqueChars moduleName = DecodeName(d); + if (!moduleName) { + return d.fail("expected valid import module name"); + } + + UniqueChars funcName = DecodeName(d); + if (!funcName) { + return d.fail("expected valid import func name"); + } + + // It is valid to store raw pointers in dupSet because moduleName and funcName + // become owned by env->imports on all non-error paths, outliving dupSet. + CStringPair pair(moduleName.get(), funcName.get()); + CStringPairSet::AddPtr p = dupSet->lookupForAdd(pair); + if (p) { + env->usesDuplicateImports = true; + } else if (!dupSet->add(p, pair)) { + return false; + } + + uint8_t rawImportKind; + if (!d.readFixedU8(&rawImportKind)) { + return d.fail("failed to read import kind"); + } + + DefinitionKind importKind = DefinitionKind(rawImportKind); + + switch (importKind) { + case DefinitionKind::Function: { + uint32_t funcTypeIndex; + if (!DecodeFuncTypeIndex(d, env->types, &funcTypeIndex)) { + return false; + } +#ifdef WASM_PRIVATE_REFTYPES + if (!FuncTypeIsJSCompatible(d, env->types.funcType(funcTypeIndex))) { + return false; + } +#endif + if (!env->funcs.append(FuncDesc(&env->types.funcType(funcTypeIndex), + &env->typeIds[funcTypeIndex], + funcTypeIndex))) { + return false; + } + if (env->funcs.length() > MaxFuncs) { + return d.fail("too many functions"); + } + break; + } + case DefinitionKind::Table: { + if (!DecodeTableTypeAndLimits(d, env->features, env->types, + &env->tables)) { + return false; + } + env->tables.back().importedOrExported = true; + break; + } + case DefinitionKind::Memory: { + if (!DecodeMemoryLimits(d, env)) { + return false; + } + break; + } + case DefinitionKind::Global: { + ValType type; + bool isMutable; + if (!DecodeGlobalType(d, env->types, env->features, &type, &isMutable)) { + return false; + } + if (!GlobalIsJSCompatible(d, type)) { + return false; + } + if (!env->globals.append( + GlobalDesc(type, isMutable, env->globals.length()))) { + return false; + } + if (env->globals.length() > MaxGlobals) { + return d.fail("too many globals"); + } + break; + } +#ifdef ENABLE_WASM_EXCEPTIONS + case DefinitionKind::Event: { + EventKind eventKind; + uint32_t funcTypeIndex; + if (!DecodeEvent(d, env, &eventKind, &funcTypeIndex)) { + return false; + } + const ValTypeVector& args = env->types[funcTypeIndex].funcType().args(); +# ifdef WASM_PRIVATE_REFTYPES + if (!EventIsJSCompatible(d, args)) { + return false; + } +# endif + ValTypeVector eventArgs; + if (!eventArgs.appendAll(args)) { + return false; + } + if (!env->events.emplaceBack(eventKind, std::move(eventArgs))) { + return false; + } + if (env->events.length() > MaxEvents) { + return d.fail("too many events"); + } + break; + } +#endif + default: + return d.fail("unsupported import kind"); + } + + return env->imports.emplaceBack(std::move(moduleName), std::move(funcName), + importKind); +} + +static bool DecodeImportSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Import, env, &range, "import")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numImports; + if (!d.readVarU32(&numImports)) { + return d.fail("failed to read number of imports"); + } + + if (numImports > MaxImports) { + return d.fail("too many imports"); + } + + CStringPairSet dupSet; + for (uint32_t i = 0; i < numImports; i++) { + if (!DecodeImport(d, env, &dupSet)) { + return false; + } + } + + if (!d.finishSection(*range, "import")) { + return false; + } + + // The global data offsets will be filled in by ModuleGenerator::init. + if (!env->funcImportGlobalDataOffsets.resize(env->funcs.length())) { + return false; + } + + return true; +} + +static bool DecodeFunctionSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Function, env, &range, "function")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numDefs; + if (!d.readVarU32(&numDefs)) { + return d.fail("expected number of function definitions"); + } + + CheckedInt numFuncs = env->funcs.length(); + numFuncs += numDefs; + if (!numFuncs.isValid() || numFuncs.value() > MaxFuncs) { + return d.fail("too many functions"); + } + + if (!env->funcs.reserve(numFuncs.value())) { + return false; + } + + for (uint32_t i = 0; i < numDefs; i++) { + uint32_t funcTypeIndex; + if (!DecodeFuncTypeIndex(d, env->types, &funcTypeIndex)) { + return false; + } + env->funcs.infallibleAppend(FuncDesc(&env->types.funcType(funcTypeIndex), + &env->typeIds[funcTypeIndex], + funcTypeIndex)); + } + + return d.finishSection(*range, "function"); +} + +static bool DecodeTableSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Table, env, &range, "table")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numTables; + if (!d.readVarU32(&numTables)) { + return d.fail("failed to read number of tables"); + } + + for (uint32_t i = 0; i < numTables; ++i) { + if (!DecodeTableTypeAndLimits(d, env->features, env->types, &env->tables)) { + return false; + } + } + + return d.finishSection(*range, "table"); +} + +static bool DecodeMemorySection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Memory, env, &range, "memory")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numMemories; + if (!d.readVarU32(&numMemories)) { + return d.fail("failed to read number of memories"); + } + + if (numMemories > 1) { + return d.fail("the number of memories must be at most one"); + } + + for (uint32_t i = 0; i < numMemories; ++i) { + if (!DecodeMemoryLimits(d, env)) { + return false; + } + } + + return d.finishSection(*range, "memory"); +} + +static bool DecodeInitializerExpression(Decoder& d, ModuleEnvironment* env, + ValType expected, InitExpr* init) { + OpBytes op; + if (!d.readOp(&op)) { + return d.fail("failed to read initializer type"); + } + + switch (op.b0) { + case uint16_t(Op::I32Const): { + int32_t i32; + if (!d.readVarS32(&i32)) { + return d.fail("failed to read initializer i32 expression"); + } + *init = InitExpr::fromConstant(LitVal(uint32_t(i32))); + break; + } + case uint16_t(Op::I64Const): { + int64_t i64; + if (!d.readVarS64(&i64)) { + return d.fail("failed to read initializer i64 expression"); + } + *init = InitExpr::fromConstant(LitVal(uint64_t(i64))); + break; + } + case uint16_t(Op::F32Const): { + float f32; + if (!d.readFixedF32(&f32)) { + return d.fail("failed to read initializer f32 expression"); + } + *init = InitExpr::fromConstant(LitVal(f32)); + break; + } + case uint16_t(Op::F64Const): { + double f64; + if (!d.readFixedF64(&f64)) { + return d.fail("failed to read initializer f64 expression"); + } + *init = InitExpr::fromConstant(LitVal(f64)); + break; + } +#ifdef ENABLE_WASM_SIMD + case uint16_t(Op::SimdPrefix): { + if (!env->v128Enabled()) { + return d.fail("v128 not enabled"); + } + if (op.b1 != uint32_t(SimdOp::V128Const)) { + return d.fail("unexpected initializer expression"); + } + V128 v128; + if (!d.readFixedV128(&v128)) { + return d.fail("failed to read initializer v128 expression"); + } + *init = InitExpr::fromConstant(LitVal(v128)); + break; + } +#endif +#ifdef ENABLE_WASM_REFTYPES + case uint16_t(Op::RefNull): { + MOZ_ASSERT_IF( + expected.isReference() && env->types.isStructType(expected.refType()), + env->gcTypesEnabled()); + RefType initType; + if (!d.readHeapType(env->types, env->features, true, &initType)) { + return false; + } + if (!expected.isReference() || + !env->types.isRefSubtypeOf(initType, expected.refType())) { + return d.fail( + "type mismatch: initializer type and expected type don't match"); + } + *init = InitExpr::fromConstant(LitVal(expected, AnyRef::null())); + break; + } + case uint16_t(Op::RefFunc): { + if (!expected.isReference() || expected.refType() != RefType::func()) { + return d.fail( + "type mismatch: initializer type and expected type don't match"); + } + uint32_t i; + if (!d.readVarU32(&i)) { + return d.fail( + "failed to read ref.func index in initializer expression"); + } + if (i >= env->numFuncs()) { + return d.fail("function index out of range in initializer expression"); + } + env->validForRefFunc.setBit(i); + *init = InitExpr::fromRefFunc(i); + break; + } +#endif + case uint16_t(Op::GetGlobal): { + uint32_t i; + const GlobalDescVector& globals = env->globals; + if (!d.readVarU32(&i)) { + return d.fail( + "failed to read global.get index in initializer expression"); + } + if (i >= globals.length()) { + return d.fail("global index out of range in initializer expression"); + } + if (!globals[i].isImport() || globals[i].isMutable()) { + return d.fail( + "initializer expression must reference a global immutable import"); + } + if (expected.isReference()) { + bool fail = false; + if (!globals[i].type().isReference()) { + fail = true; + } else if ((env->types.isStructType(expected.refType()) || + env->types.isStructType(globals[i].type().refType())) && + !env->gcTypesEnabled()) { + fail = true; + } else if (!env->types.isRefSubtypeOf(globals[i].type().refType(), + expected.refType())) { + fail = true; + } + if (fail) { + return d.fail( + "type mismatch: initializer type and expected type don't match"); + } + *init = InitExpr::fromGetGlobal(i, expected); + } else { + *init = InitExpr::fromGetGlobal(i, globals[i].type()); + } + break; + } + default: { + return d.fail("unexpected initializer expression"); + } + } + + if (expected != init->type()) { + return d.fail( + "type mismatch: initializer type and expected type don't match"); + } + + OpBytes end; + if (!d.readOp(&end) || end.b0 != uint16_t(Op::End)) { + return d.fail("failed to read end of initializer expression"); + } + + return true; +} + +static bool DecodeGlobalSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Global, env, &range, "global")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numDefs; + if (!d.readVarU32(&numDefs)) { + return d.fail("expected number of globals"); + } + + CheckedInt numGlobals = env->globals.length(); + numGlobals += numDefs; + if (!numGlobals.isValid() || numGlobals.value() > MaxGlobals) { + return d.fail("too many globals"); + } + + if (!env->globals.reserve(numGlobals.value())) { + return false; + } + + for (uint32_t i = 0; i < numDefs; i++) { + ValType type; + bool isMutable; + if (!DecodeGlobalType(d, env->types, env->features, &type, &isMutable)) { + return false; + } + + InitExpr initializer; + if (!DecodeInitializerExpression(d, env, type, &initializer)) { + return false; + } + + env->globals.infallibleAppend(GlobalDesc(initializer, isMutable)); + } + + return d.finishSection(*range, "global"); +} + +#ifdef ENABLE_WASM_EXCEPTIONS +static bool DecodeEventSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Event, env, &range, "event")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numDefs; + if (!d.readVarU32(&numDefs)) { + return d.fail("expected number of events"); + } + + CheckedInt numEvents = env->events.length(); + numEvents += numDefs; + if (!numEvents.isValid() || numEvents.value() > MaxEvents) { + return d.fail("too many events"); + } + + if (!env->events.reserve(numEvents.value())) { + return false; + } + + for (uint32_t i = 0; i < numDefs; i++) { + EventKind eventKind; + uint32_t funcTypeIndex; + if (!DecodeEvent(d, env, &eventKind, &funcTypeIndex)) { + return false; + } + const ValTypeVector& args = env->types[funcTypeIndex].funcType().args(); + ValTypeVector eventArgs; + if (!eventArgs.appendAll(args)) { + return false; + } + env->events.infallibleEmplaceBack(eventKind, std::move(eventArgs)); + } + + return d.finishSection(*range, "event"); +} +#endif + +typedef HashSet + CStringSet; + +static UniqueChars DecodeExportName(Decoder& d, CStringSet* dupSet) { + UniqueChars exportName = DecodeName(d); + if (!exportName) { + d.fail("expected valid export name"); + return nullptr; + } + + CStringSet::AddPtr p = dupSet->lookupForAdd(exportName.get()); + if (p) { + d.fail("duplicate export"); + return nullptr; + } + + if (!dupSet->add(p, exportName.get())) { + return nullptr; + } + + return exportName; +} + +static bool DecodeExport(Decoder& d, ModuleEnvironment* env, + CStringSet* dupSet) { + UniqueChars fieldName = DecodeExportName(d, dupSet); + if (!fieldName) { + return false; + } + + uint8_t exportKind; + if (!d.readFixedU8(&exportKind)) { + return d.fail("failed to read export kind"); + } + + switch (DefinitionKind(exportKind)) { + case DefinitionKind::Function: { + uint32_t funcIndex; + if (!d.readVarU32(&funcIndex)) { + return d.fail("expected function index"); + } + + if (funcIndex >= env->numFuncs()) { + return d.fail("exported function index out of bounds"); + } +#ifdef WASM_PRIVATE_REFTYPES + if (!FuncTypeIsJSCompatible(d, *env->funcs[funcIndex].type)) { + return false; + } +#endif + + env->validForRefFunc.setBit(funcIndex); + return env->exports.emplaceBack(std::move(fieldName), funcIndex, + DefinitionKind::Function); + } + case DefinitionKind::Table: { + uint32_t tableIndex; + if (!d.readVarU32(&tableIndex)) { + return d.fail("expected table index"); + } + + if (tableIndex >= env->tables.length()) { + return d.fail("exported table index out of bounds"); + } + env->tables[tableIndex].importedOrExported = true; + return env->exports.emplaceBack(std::move(fieldName), tableIndex, + DefinitionKind::Table); + } + case DefinitionKind::Memory: { + uint32_t memoryIndex; + if (!d.readVarU32(&memoryIndex)) { + return d.fail("expected memory index"); + } + + if (memoryIndex > 0 || !env->usesMemory()) { + return d.fail("exported memory index out of bounds"); + } + + return env->exports.emplaceBack(std::move(fieldName), + DefinitionKind::Memory); + } + case DefinitionKind::Global: { + uint32_t globalIndex; + if (!d.readVarU32(&globalIndex)) { + return d.fail("expected global index"); + } + + if (globalIndex >= env->globals.length()) { + return d.fail("exported global index out of bounds"); + } + + GlobalDesc* global = &env->globals[globalIndex]; + global->setIsExport(); + if (!GlobalIsJSCompatible(d, global->type())) { + return false; + } + + return env->exports.emplaceBack(std::move(fieldName), globalIndex, + DefinitionKind::Global); + } +#ifdef ENABLE_WASM_EXCEPTIONS + case DefinitionKind::Event: { + uint32_t eventIndex; + if (!d.readVarU32(&eventIndex)) { + return d.fail("expected event index"); + } + if (eventIndex >= env->events.length()) { + return d.fail("exported event index out of bounds"); + } + +# ifdef WASM_PRIVATE_REFTYPES + if (!EventIsJSCompatible(d, env->events[eventIndex].type)) { + return false; + } +# endif + + env->events[eventIndex].isExport = true; + return env->exports.emplaceBack(std::move(fieldName), eventIndex, + DefinitionKind::Event); + } +#endif + default: + return d.fail("unexpected export kind"); + } + + MOZ_CRASH("unreachable"); +} + +static bool DecodeExportSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Export, env, &range, "export")) { + return false; + } + if (!range) { + return true; + } + + CStringSet dupSet; + + uint32_t numExports; + if (!d.readVarU32(&numExports)) { + return d.fail("failed to read number of exports"); + } + + if (numExports > MaxExports) { + return d.fail("too many exports"); + } + + for (uint32_t i = 0; i < numExports; i++) { + if (!DecodeExport(d, env, &dupSet)) { + return false; + } + } + + return d.finishSection(*range, "export"); +} + +static bool DecodeStartSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Start, env, &range, "start")) { + return false; + } + if (!range) { + return true; + } + + uint32_t funcIndex; + if (!d.readVarU32(&funcIndex)) { + return d.fail("failed to read start func index"); + } + + if (funcIndex >= env->numFuncs()) { + return d.fail("unknown start function"); + } + + const FuncType& funcType = *env->funcs[funcIndex].type; + if (funcType.results().length() > 0) { + return d.fail("start function must not return anything"); + } + + if (funcType.args().length()) { + return d.fail("start function must be nullary"); + } + + env->startFuncIndex = Some(funcIndex); + + return d.finishSection(*range, "start"); +} + +static inline ElemSegment::Kind NormalizeElemSegmentKind( + ElemSegmentKind decodedKind) { + switch (decodedKind) { + case ElemSegmentKind::Active: + case ElemSegmentKind::ActiveWithTableIndex: { + return ElemSegment::Kind::Active; + } + case ElemSegmentKind::Passive: { + return ElemSegment::Kind::Passive; + } + case ElemSegmentKind::Declared: { + return ElemSegment::Kind::Declared; + } + } + MOZ_CRASH("unexpected elem segment kind"); +} + +static bool DecodeElemSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Elem, env, &range, "elem")) { + return false; + } + if (!range) { + return true; + } + + uint32_t numSegments; + if (!d.readVarU32(&numSegments)) { + return d.fail("failed to read number of elem segments"); + } + + if (numSegments > MaxElemSegments) { + return d.fail("too many elem segments"); + } + + if (!env->elemSegments.reserve(numSegments)) { + return false; + } + + for (uint32_t i = 0; i < numSegments; i++) { + uint32_t segmentFlags; + if (!d.readVarU32(&segmentFlags)) { + return d.fail("expected elem segment flags field"); + } + + Maybe flags = ElemSegmentFlags::construct(segmentFlags); + if (!flags) { + return d.fail("invalid elem segment flags field"); + } + + MutableElemSegment seg = js_new(); + if (!seg) { + return false; + } + + ElemSegmentKind kind = flags->kind(); + seg->kind = NormalizeElemSegmentKind(kind); + + if (kind == ElemSegmentKind::Active || + kind == ElemSegmentKind::ActiveWithTableIndex) { + if (env->tables.length() == 0) { + return d.fail("active elem segment requires a table"); + } + + uint32_t tableIndex = 0; + if (kind == ElemSegmentKind::ActiveWithTableIndex && + !d.readVarU32(&tableIndex)) { + return d.fail("expected table index"); + } + if (tableIndex >= env->tables.length()) { + return d.fail("table index out of range for element segment"); + } + seg->tableIndex = tableIndex; + + InitExpr offset; + if (!DecodeInitializerExpression(d, env, ValType::I32, &offset)) { + return false; + } + seg->offsetIfActive.emplace(offset); + } else { + // Too many bugs result from keeping this value zero. For passive + // or declared segments, there really is no table index, and we should + // never touch the field. + MOZ_ASSERT(kind == ElemSegmentKind::Passive || + kind == ElemSegmentKind::Declared); + seg->tableIndex = (uint32_t)-1; + } + + ElemSegmentPayload payload = flags->payload(); + RefType elemType; + + // `ActiveWithTableIndex`, `Declared`, and `Passive` element segments encode + // the type or definition kind of the payload. `Active` element segments are + // restricted to MVP behavior, which assumes only function indices. + if (kind == ElemSegmentKind::Active) { + elemType = RefType::func(); + } else { + switch (payload) { + case ElemSegmentPayload::ElemExpression: { + if (!d.readRefType(env->types, env->features, &elemType)) { + return false; + } + break; + } + case ElemSegmentPayload::ExternIndex: { + uint8_t form; + if (!d.readFixedU8(&form)) { + return d.fail("expected type or extern kind"); + } + + if (form != uint8_t(DefinitionKind::Function)) { + return d.fail( + "segments with extern indices can only contain function " + "references"); + } + elemType = RefType::func(); + } + } + } + + // Check constraints on the element type. + switch (kind) { + case ElemSegmentKind::Active: + case ElemSegmentKind::ActiveWithTableIndex: { + RefType tblElemType = env->tables[seg->tableIndex].elemType; + if (!env->types.isRefSubtypeOf(elemType, tblElemType)) { + return d.fail( + "segment's element type must be subtype of table's element type"); + } + break; + } + case ElemSegmentKind::Declared: + case ElemSegmentKind::Passive: { + // Passive segment element types are checked when used with a + // `table.init` instruction. + break; + } + } + seg->elemType = elemType; + + uint32_t numElems; + if (!d.readVarU32(&numElems)) { + return d.fail("expected segment size"); + } + + if (numElems > MaxElemSegmentLength) { + return d.fail("too many table elements"); + } + + if (!seg->elemFuncIndices.reserve(numElems)) { + return false; + } + +#ifdef WASM_PRIVATE_REFTYPES + // We assume that passive or declared segments may be applied to external + // tables. We can do slightly better: if there are no external tables in + // the module then we don't need to worry about passive or declared + // segments either. But this is a temporary restriction. + bool exportedTable = kind == ElemSegmentKind::Passive || + kind == ElemSegmentKind::Declared || + env->tables[seg->tableIndex].importedOrExported; +#endif + + // For passive segments we should use DecodeInitializerExpression() but we + // don't really want to generalize that function yet, so instead read the + // required Ref.Func and End here. + + for (uint32_t i = 0; i < numElems; i++) { + bool needIndex = true; + + if (payload == ElemSegmentPayload::ElemExpression) { + OpBytes op; + if (!d.readOp(&op)) { + return d.fail("failed to read initializer operation"); + } + + RefType initType = RefType::extern_(); + switch (op.b0) { + case uint16_t(Op::RefFunc): + initType = RefType::func(); + break; + case uint16_t(Op::RefNull): + if (!d.readHeapType(env->types, env->features, true, &initType)) { + return false; + } + needIndex = false; + break; + default: + return d.fail("failed to read initializer operation"); + } + if (!env->types.isRefSubtypeOf(initType, elemType)) { + return d.fail("initializer type must be subtype of element type"); + } + } + + uint32_t funcIndex = NullFuncIndex; + if (needIndex) { + if (!d.readVarU32(&funcIndex)) { + return d.fail("failed to read element function index"); + } + if (funcIndex >= env->numFuncs()) { + return d.fail("table element out of range"); + } +#ifdef WASM_PRIVATE_REFTYPES + if (exportedTable && + !FuncTypeIsJSCompatible(d, *env->funcs[funcIndex].type)) { + return false; + } +#endif + } + + if (payload == ElemSegmentPayload::ElemExpression) { + OpBytes end; + if (!d.readOp(&end) || end.b0 != uint16_t(Op::End)) { + return d.fail("failed to read end of initializer expression"); + } + } + + seg->elemFuncIndices.infallibleAppend(funcIndex); + if (funcIndex != NullFuncIndex) { + env->validForRefFunc.setBit(funcIndex); + } + } + + env->elemSegments.infallibleAppend(std::move(seg)); + } + + return d.finishSection(*range, "elem"); +} + +static bool DecodeDataCountSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::DataCount, env, &range, "datacount")) { + return false; + } + if (!range) { + return true; + } + + uint32_t dataCount; + if (!d.readVarU32(&dataCount)) { + return d.fail("expected data segment count"); + } + + env->dataCount.emplace(dataCount); + + return d.finishSection(*range, "datacount"); +} + +bool wasm::StartsCodeSection(const uint8_t* begin, const uint8_t* end, + SectionRange* codeSection) { + UniqueChars unused; + Decoder d(begin, end, 0, &unused); + + if (!DecodePreamble(d)) { + return false; + } + + while (!d.done()) { + uint8_t id; + SectionRange range; + if (!d.readSectionHeader(&id, &range)) { + return false; + } + + if (id == uint8_t(SectionId::Code)) { + *codeSection = range; + return true; + } + + if (!d.readBytes(range.size)) { + return false; + } + } + + return false; +} + +bool wasm::DecodeModuleEnvironment(Decoder& d, ModuleEnvironment* env) { + if (!DecodePreamble(d)) { + return false; + } + + if (!DecodeTypeSection(d, env)) { + return false; + } + + if (!DecodeImportSection(d, env)) { + return false; + } + + if (!DecodeFunctionSection(d, env)) { + return false; + } + + if (!DecodeTableSection(d, env)) { + return false; + } + + if (!DecodeMemorySection(d, env)) { + return false; + } + +#ifdef ENABLE_WASM_EXCEPTIONS + if (!DecodeEventSection(d, env)) { + return false; + } +#endif + + if (!DecodeGlobalSection(d, env)) { + return false; + } + + if (!DecodeExportSection(d, env)) { + return false; + } + + if (!DecodeStartSection(d, env)) { + return false; + } + + if (!DecodeElemSection(d, env)) { + return false; + } + + if (!DecodeDataCountSection(d, env)) { + return false; + } + + if (!d.startSection(SectionId::Code, env, &env->codeSection, "code")) { + return false; + } + + if (env->codeSection && env->codeSection->size > MaxCodeSectionBytes) { + return d.fail("code section too big"); + } + + return true; +} + +static bool DecodeFunctionBody(Decoder& d, const ModuleEnvironment& env, + uint32_t funcIndex) { + uint32_t bodySize; + if (!d.readVarU32(&bodySize)) { + return d.fail("expected number of function body bytes"); + } + + if (bodySize > MaxFunctionBytes) { + return d.fail("function body too big"); + } + + if (d.bytesRemain() < bodySize) { + return d.fail("function body length too big"); + } + + if (!ValidateFunctionBody(env, funcIndex, bodySize, d)) { + return false; + } + + return true; +} + +static bool DecodeCodeSection(Decoder& d, ModuleEnvironment* env) { + if (!env->codeSection) { + if (env->numFuncDefs() != 0) { + return d.fail("expected code section"); + } + return true; + } + + uint32_t numFuncDefs; + if (!d.readVarU32(&numFuncDefs)) { + return d.fail("expected function body count"); + } + + if (numFuncDefs != env->numFuncDefs()) { + return d.fail( + "function body count does not match function signature count"); + } + + for (uint32_t funcDefIndex = 0; funcDefIndex < numFuncDefs; funcDefIndex++) { + if (!DecodeFunctionBody(d, *env, env->numFuncImports() + funcDefIndex)) { + return false; + } + } + + return d.finishSection(*env->codeSection, "code"); +} + +static bool DecodeDataSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startSection(SectionId::Data, env, &range, "data")) { + return false; + } + if (!range) { + if (env->dataCount.isSome() && *env->dataCount > 0) { + return d.fail("number of data segments does not match declared count"); + } + return true; + } + + uint32_t numSegments; + if (!d.readVarU32(&numSegments)) { + return d.fail("failed to read number of data segments"); + } + + if (numSegments > MaxDataSegments) { + return d.fail("too many data segments"); + } + + if (env->dataCount.isSome() && numSegments != *env->dataCount) { + return d.fail("number of data segments does not match declared count"); + } + + for (uint32_t i = 0; i < numSegments; i++) { + uint32_t initializerKindVal; + if (!d.readVarU32(&initializerKindVal)) { + return d.fail("expected data initializer-kind field"); + } + + switch (initializerKindVal) { + case uint32_t(DataSegmentKind::Active): + case uint32_t(DataSegmentKind::Passive): + case uint32_t(DataSegmentKind::ActiveWithMemoryIndex): + break; + default: + return d.fail("invalid data initializer-kind field"); + } + + DataSegmentKind initializerKind = DataSegmentKind(initializerKindVal); + + if (initializerKind != DataSegmentKind::Passive && !env->usesMemory()) { + return d.fail("active data segment requires a memory section"); + } + + uint32_t memIndex = 0; + if (initializerKind == DataSegmentKind::ActiveWithMemoryIndex) { + if (!d.readVarU32(&memIndex)) { + return d.fail("expected memory index"); + } + if (memIndex > 0) { + return d.fail("memory index must be zero"); + } + } + + DataSegmentEnv seg; + if (initializerKind == DataSegmentKind::Active || + initializerKind == DataSegmentKind::ActiveWithMemoryIndex) { + InitExpr segOffset; + if (!DecodeInitializerExpression(d, env, ValType::I32, &segOffset)) { + return false; + } + seg.offsetIfActive.emplace(segOffset); + } + + if (!d.readVarU32(&seg.length)) { + return d.fail("expected segment size"); + } + + if (seg.length > MaxDataSegmentLengthPages * PageSize) { + return d.fail("segment size too big"); + } + + seg.bytecodeOffset = d.currentOffset(); + + if (!d.readBytes(seg.length)) { + return d.fail("data segment shorter than declared"); + } + + if (!env->dataSegments.append(seg)) { + return false; + } + } + + return d.finishSection(*range, "data"); +} + +static bool DecodeModuleNameSubsection(Decoder& d, + const CustomSectionEnv& nameSection, + ModuleEnvironment* env) { + Maybe endOffset; + if (!d.startNameSubsection(NameType::Module, &endOffset)) { + return false; + } + if (!endOffset) { + return true; + } + + Name moduleName; + if (!d.readVarU32(&moduleName.length)) { + return d.fail("failed to read module name length"); + } + + MOZ_ASSERT(d.currentOffset() >= nameSection.payloadOffset); + moduleName.offsetInNamePayload = + d.currentOffset() - nameSection.payloadOffset; + + const uint8_t* bytes; + if (!d.readBytes(moduleName.length, &bytes)) { + return d.fail("failed to read module name bytes"); + } + + if (!d.finishNameSubsection(*endOffset)) { + return false; + } + + // Only save the module name if the whole subsection validates. + env->moduleName.emplace(moduleName); + return true; +} + +static bool DecodeFunctionNameSubsection(Decoder& d, + const CustomSectionEnv& nameSection, + ModuleEnvironment* env) { + Maybe endOffset; + if (!d.startNameSubsection(NameType::Function, &endOffset)) { + return false; + } + if (!endOffset) { + return true; + } + + uint32_t nameCount = 0; + if (!d.readVarU32(&nameCount) || nameCount > MaxFuncs) { + return d.fail("bad function name count"); + } + + NameVector funcNames; + + for (uint32_t i = 0; i < nameCount; ++i) { + uint32_t funcIndex = 0; + if (!d.readVarU32(&funcIndex)) { + return d.fail("unable to read function index"); + } + + // Names must refer to real functions and be given in ascending order. + if (funcIndex >= env->numFuncs() || funcIndex < funcNames.length()) { + return d.fail("invalid function index"); + } + + Name funcName; + if (!d.readVarU32(&funcName.length) || + funcName.length > JS::MaxStringLength) { + return d.fail("unable to read function name length"); + } + + if (!funcName.length) { + continue; + } + + if (!funcNames.resize(funcIndex + 1)) { + return false; + } + + MOZ_ASSERT(d.currentOffset() >= nameSection.payloadOffset); + funcName.offsetInNamePayload = + d.currentOffset() - nameSection.payloadOffset; + + if (!d.readBytes(funcName.length)) { + return d.fail("unable to read function name bytes"); + } + + funcNames[funcIndex] = funcName; + } + + if (!d.finishNameSubsection(*endOffset)) { + return false; + } + + // To encourage fully valid function names subsections; only save names if + // the entire subsection decoded correctly. + env->funcNames = std::move(funcNames); + return true; +} + +static bool DecodeNameSection(Decoder& d, ModuleEnvironment* env) { + MaybeSectionRange range; + if (!d.startCustomSection(NameSectionName, env, &range)) { + return false; + } + if (!range) { + return true; + } + + env->nameCustomSectionIndex = Some(env->customSections.length() - 1); + const CustomSectionEnv& nameSection = env->customSections.back(); + + // Once started, custom sections do not report validation errors. + + if (!DecodeModuleNameSubsection(d, nameSection, env)) { + goto finish; + } + + if (!DecodeFunctionNameSubsection(d, nameSection, env)) { + goto finish; + } + + while (d.currentOffset() < range->end()) { + if (!d.skipNameSubsection()) { + goto finish; + } + } + +finish: + d.finishCustomSection(NameSectionName, *range); + return true; +} + +bool wasm::DecodeModuleTail(Decoder& d, ModuleEnvironment* env) { + if (!DecodeDataSection(d, env)) { + return false; + } + + if (!DecodeNameSection(d, env)) { + return false; + } + + while (!d.done()) { + if (!d.skipCustomSection(env)) { + if (d.resilientMode()) { + d.clearError(); + return true; + } + return false; + } + } + + return true; +} + +// Validate algorithm. + +bool wasm::Validate(JSContext* cx, const ShareableBytes& bytecode, + UniqueChars* error) { + Decoder d(bytecode.bytes, 0, error); + + FeatureArgs features = FeatureArgs::build(cx); + ModuleEnvironment env(features); + if (!DecodeModuleEnvironment(d, &env)) { + return false; + } + + if (!DecodeCodeSection(d, &env)) { + return false; + } + + if (!DecodeModuleTail(d, &env)) { + return false; + } + + MOZ_ASSERT(!*error, "unreported error in decoding"); + return true; +} -- cgit v1.2.3