/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "2D.h" #include "PathAnalysis.h" #include "PathHelpers.h" namespace mozilla { namespace gfx { static double CubicRoot(double aValue) { if (aValue < 0.0) { return -CubicRoot(-aValue); } else { return pow(aValue, 1.0 / 3.0); } } struct PointD : public BasePoint { typedef BasePoint Super; PointD() : Super() {} PointD(double aX, double aY) : Super(aX, aY) {} MOZ_IMPLICIT PointD(const Point& aPoint) : Super(aPoint.x, aPoint.y) {} Point ToPoint() const { return Point(static_cast(x), static_cast(y)); } }; struct BezierControlPoints { BezierControlPoints() = default; BezierControlPoints(const PointD& aCP1, const PointD& aCP2, const PointD& aCP3, const PointD& aCP4) : mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4) {} PointD mCP1, mCP2, mCP3, mCP4; }; void FlattenBezier(const BezierControlPoints& aPoints, PathSink* aSink, double aTolerance); Path::Path() = default; Path::~Path() = default; Float Path::ComputeLength() { EnsureFlattenedPath(); return mFlattenedPath->ComputeLength(); } Point Path::ComputePointAtLength(Float aLength, Point* aTangent) { EnsureFlattenedPath(); return mFlattenedPath->ComputePointAtLength(aLength, aTangent); } void Path::EnsureFlattenedPath() { if (!mFlattenedPath) { mFlattenedPath = new FlattenedPath(); StreamToSink(mFlattenedPath); } } // This is the maximum deviation we allow (with an additional ~20% margin of // error) of the approximation from the actual Bezier curve. const Float kFlatteningTolerance = 0.0001f; void FlattenedPath::MoveTo(const Point& aPoint) { MOZ_ASSERT(!mCalculatedLength); FlatPathOp op; op.mType = FlatPathOp::OP_MOVETO; op.mPoint = aPoint; mPathOps.push_back(op); mBeginPoint = aPoint; } void FlattenedPath::LineTo(const Point& aPoint) { MOZ_ASSERT(!mCalculatedLength); FlatPathOp op; op.mType = FlatPathOp::OP_LINETO; op.mPoint = aPoint; mPathOps.push_back(op); } void FlattenedPath::BezierTo(const Point& aCP1, const Point& aCP2, const Point& aCP3) { MOZ_ASSERT(!mCalculatedLength); FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this, kFlatteningTolerance); } void FlattenedPath::QuadraticBezierTo(const Point& aCP1, const Point& aCP2) { MOZ_ASSERT(!mCalculatedLength); // We need to elevate the degree of this quadratic B�zier to cubic, so we're // going to add an intermediate control point, and recompute control point 1. // The first and last control points remain the same. // This formula can be found on http://fontforge.sourceforge.net/bezier.html Point CP0 = CurrentPoint(); Point CP1 = (CP0 + aCP1 * 2.0) / 3.0; Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0; Point CP3 = aCP2; BezierTo(CP1, CP2, CP3); } void FlattenedPath::Close() { MOZ_ASSERT(!mCalculatedLength); LineTo(mBeginPoint); } void FlattenedPath::Arc(const Point& aOrigin, float aRadius, float aStartAngle, float aEndAngle, bool aAntiClockwise) { ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, aAntiClockwise); } Float FlattenedPath::ComputeLength() { if (!mCalculatedLength) { Point currentPoint; for (uint32_t i = 0; i < mPathOps.size(); i++) { if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) { currentPoint = mPathOps[i].mPoint; } else { mCachedLength += Distance(currentPoint, mPathOps[i].mPoint); currentPoint = mPathOps[i].mPoint; } } mCalculatedLength = true; } return mCachedLength; } Point FlattenedPath::ComputePointAtLength(Float aLength, Point* aTangent) { // We track the last point that -wasn't- in the same place as the current // point so if we pass the edge of the path with a bunch of zero length // paths we still get the correct tangent vector. Point lastPointSinceMove; Point currentPoint; for (uint32_t i = 0; i < mPathOps.size(); i++) { if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) { if (Distance(currentPoint, mPathOps[i].mPoint)) { lastPointSinceMove = currentPoint; } currentPoint = mPathOps[i].mPoint; } else { Float segmentLength = Distance(currentPoint, mPathOps[i].mPoint); if (segmentLength) { lastPointSinceMove = currentPoint; if (segmentLength > aLength) { Point currentVector = mPathOps[i].mPoint - currentPoint; Point tangent = currentVector / segmentLength; if (aTangent) { *aTangent = tangent; } return currentPoint + tangent * aLength; } } aLength -= segmentLength; currentPoint = mPathOps[i].mPoint; } } Point currentVector = currentPoint - lastPointSinceMove; if (aTangent) { if (hypotf(currentVector.x, currentVector.y)) { *aTangent = currentVector / hypotf(currentVector.x, currentVector.y); } else { *aTangent = Point(); } } return currentPoint; } // This function explicitly permits aControlPoints to refer to the same object // as either of the other arguments. static void SplitBezier(const BezierControlPoints& aControlPoints, BezierControlPoints* aFirstSegmentControlPoints, BezierControlPoints* aSecondSegmentControlPoints, double t) { MOZ_ASSERT(aSecondSegmentControlPoints); *aSecondSegmentControlPoints = aControlPoints; PointD cp1a = aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t; PointD cp2a = aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t; PointD cp1aa = cp1a + (cp2a - cp1a) * t; PointD cp3a = aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t; PointD cp2aa = cp2a + (cp3a - cp2a) * t; PointD cp1aaa = cp1aa + (cp2aa - cp1aa) * t; aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4; if (aFirstSegmentControlPoints) { aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1; aFirstSegmentControlPoints->mCP2 = cp1a; aFirstSegmentControlPoints->mCP3 = cp1aa; aFirstSegmentControlPoints->mCP4 = cp1aaa; } aSecondSegmentControlPoints->mCP1 = cp1aaa; aSecondSegmentControlPoints->mCP2 = cp2aa; aSecondSegmentControlPoints->mCP3 = cp3a; } static void FlattenBezierCurveSegment(const BezierControlPoints& aControlPoints, PathSink* aSink, double aTolerance) { /* The algorithm implemented here is based on: * http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf * * The basic premise is that for a small t the third order term in the * equation of a cubic bezier curve is insignificantly small. This can * then be approximated by a quadratic equation for which the maximum * difference from a linear approximation can be much more easily determined. */ BezierControlPoints currentCP = aControlPoints; double t = 0; double currentTolerance = aTolerance; while (t < 1.0) { PointD cp21 = currentCP.mCP2 - currentCP.mCP1; PointD cp31 = currentCP.mCP3 - currentCP.mCP1; /* To remove divisions and check for divide-by-zero, this is optimized from: * Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y); * t = 2 * Float(sqrt(aTolerance / (3. * std::abs(s3)))); */ double cp21x31 = cp31.x * cp21.y - cp31.y * cp21.x; double h = hypot(cp21.x, cp21.y); if (cp21x31 * h == 0) { break; } double s3inv = h / cp21x31; t = 2 * sqrt(currentTolerance * std::abs(s3inv) / 3.); currentTolerance *= 1 + aTolerance; // Increase tolerance every iteration to prevent this loop from executing // too many times. This approximates the length of large curves more // roughly. In practice, aTolerance is the constant kFlatteningTolerance // which has value 0.0001. With this value, it takes 6,932 splits to double // currentTolerance (to 0.0002) and 23,028 splits to increase // currentTolerance by an order of magnitude (to 0.001). if (t >= 1.0) { break; } SplitBezier(currentCP, nullptr, ¤tCP, t); aSink->LineTo(currentCP.mCP1.ToPoint()); } aSink->LineTo(currentCP.mCP4.ToPoint()); } static inline void FindInflectionApproximationRange( BezierControlPoints aControlPoints, double* aMin, double* aMax, double aT, double aTolerance) { SplitBezier(aControlPoints, nullptr, &aControlPoints, aT); PointD cp21 = aControlPoints.mCP2 - aControlPoints.mCP1; PointD cp41 = aControlPoints.mCP4 - aControlPoints.mCP1; if (cp21.x == 0. && cp21.y == 0.) { cp21 = aControlPoints.mCP3 - aControlPoints.mCP1; } if (cp21.x == 0. && cp21.y == 0.) { // In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n = // cp41.x - cp41.y. double s3 = cp41.x - cp41.y; // Use the absolute value so that Min and Max will correspond with the // minimum and maximum of the range. if (s3 == 0) { *aMin = -1.0; *aMax = 2.0; } else { double r = CubicRoot(std::abs(aTolerance / s3)); *aMin = aT - r; *aMax = aT + r; } return; } double s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypot(cp21.x, cp21.y); if (s3 == 0) { // This means within the precision we have it can be approximated // infinitely by a linear segment. Deal with this by specifying the // approximation range as extending beyond the entire curve. *aMin = -1.0; *aMax = 2.0; return; } double tf = CubicRoot(std::abs(aTolerance / s3)); *aMin = aT - tf * (1 - aT); *aMax = aT + tf * (1 - aT); } /* Find the inflection points of a bezier curve. Will return false if the * curve is degenerate in such a way that it is best approximated by a straight * line. * * The below algorithm was written by Jeff Muizelaar , * explanation follows: * * The lower inflection point is returned in aT1, the higher one in aT2. In the * case of a single inflection point this will be in aT1. * * The method is inspired by the algorithm in "analysis of in?ection points for * planar cubic bezier curve" * * Here are some differences between this algorithm and versions discussed * elsewhere in the literature: * * zhang et. al compute a0, d0 and e0 incrementally using the follow formula: * * Point a0 = CP2 - CP1 * Point a1 = CP3 - CP2 * Point a2 = CP4 - CP1 * * Point d0 = a1 - a0 * Point d1 = a2 - a1 * Point e0 = d1 - d0 * * this avoids any multiplications and may or may not be faster than the * approach take below. * * "fast, precise flattening of cubic bezier path and ofset curves" by hain et. * al * Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4 * Point b = 3 * CP1 - 6 * CP2 + 3 * CP3 * Point c = -3 * CP1 + 3 * CP2 * Point d = CP1 * the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as: * c = 3 * a0 * b = 3 * d0 * a = e0 * * * a = 3a = a.y * b.x - a.x * b.y * b = 3b = a.y * c.x - a.x * c.y * c = 9c = b.y * c.x - b.x * c.y * * The additional multiples of 3 cancel each other out as show below: * * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a) * x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a) * x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a) * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a) * * I haven't looked into whether the formulation of the quadratic formula in * hain has any numerical advantages over the one used below. */ static inline void FindInflectionPoints( const BezierControlPoints& aControlPoints, double* aT1, double* aT2, uint32_t* aCount) { // Find inflection points. // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation // of this approach. PointD A = aControlPoints.mCP2 - aControlPoints.mCP1; PointD B = aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1; PointD C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) + (aControlPoints.mCP2 * 3) - aControlPoints.mCP1; double a = B.x * C.y - B.y * C.x; double b = A.x * C.y - A.y * C.x; double c = A.x * B.y - A.y * B.x; if (a == 0) { // Not a quadratic equation. if (b == 0) { // Instead of a linear acceleration change we have a constant // acceleration change. This means the equation has no solution // and there are no inflection points, unless the constant is 0. // In that case the curve is a straight line, essentially that means // the easiest way to deal with is is by saying there's an inflection // point at t == 0. The inflection point approximation range found will // automatically extend into infinity. if (c == 0) { *aCount = 1; *aT1 = 0; return; } *aCount = 0; return; } *aT1 = -c / b; *aCount = 1; return; } else { double discriminant = b * b - 4 * a * c; if (discriminant < 0) { // No inflection points. *aCount = 0; } else if (discriminant == 0) { *aCount = 1; *aT1 = -b / (2 * a); } else { /* Use the following formula for computing the roots: * * q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac)) * t1 = q / a * t2 = c / q */ double q = sqrt(discriminant); if (b < 0) { q = b - q; } else { q = b + q; } q *= -1. / 2; *aT1 = q / a; *aT2 = c / q; if (*aT1 > *aT2) { std::swap(*aT1, *aT2); } *aCount = 2; } } } void FlattenBezier(const BezierControlPoints& aControlPoints, PathSink* aSink, double aTolerance) { double t1; double t2; uint32_t count; FindInflectionPoints(aControlPoints, &t1, &t2, &count); // Check that at least one of the inflection points is inside [0..1] if (count == 0 || ((t1 < 0.0 || t1 >= 1.0) && (count == 1 || (t2 < 0.0 || t2 >= 1.0)))) { FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance); return; } double t1min = t1, t1max = t1, t2min = t2, t2max = t2; BezierControlPoints remainingCP = aControlPoints; // For both inflection points, calulate the range where they can be linearly // approximated if they are positioned within [0,1] if (count > 0 && t1 >= 0 && t1 < 1.0) { FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1, aTolerance); } if (count > 1 && t2 >= 0 && t2 < 1.0) { FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2, aTolerance); } BezierControlPoints nextCPs = aControlPoints; BezierControlPoints prevCPs; // Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line // segments. if (count == 1 && t1min <= 0 && t1max >= 1.0) { // The whole range can be approximated by a line segment. aSink->LineTo(aControlPoints.mCP4.ToPoint()); return; } if (t1min > 0) { // Flatten the Bezier up until the first inflection point's approximation // point. SplitBezier(aControlPoints, &prevCPs, &remainingCP, t1min); FlattenBezierCurveSegment(prevCPs, aSink, aTolerance); } if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) { // The second inflection point's approximation range begins after the end // of the first, approximate the first inflection point by a line and // subsequently flatten up until the end or the next inflection point. SplitBezier(aControlPoints, nullptr, &nextCPs, t1max); aSink->LineTo(nextCPs.mCP1.ToPoint()); if (count == 1 || (count > 1 && t2min >= 1.0)) { // No more inflection points to deal with, flatten the rest of the curve. FlattenBezierCurveSegment(nextCPs, aSink, aTolerance); } } else if (count > 1 && t2min > 1.0) { // We've already concluded t2min <= t1max, so if this is true the // approximation range for the first inflection point runs past the // end of the curve, draw a line to the end and we're done. aSink->LineTo(aControlPoints.mCP4.ToPoint()); return; } if (count > 1 && t2min < 1.0 && t2max > 0) { if (t2min > 0 && t2min < t1max) { // In this case the t2 approximation range starts inside the t1 // approximation range. SplitBezier(aControlPoints, nullptr, &nextCPs, t1max); aSink->LineTo(nextCPs.mCP1.ToPoint()); } else if (t2min > 0 && t1max > 0) { SplitBezier(aControlPoints, nullptr, &nextCPs, t1max); // Find a control points describing the portion of the curve between t1max // and t2min. double t2mina = (t2min - t1max) / (1 - t1max); SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina); FlattenBezierCurveSegment(prevCPs, aSink, aTolerance); } else if (t2min > 0) { // We have nothing interesting before t2min, find that bit and flatten it. SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min); FlattenBezierCurveSegment(prevCPs, aSink, aTolerance); } if (t2max < 1.0) { // Flatten the portion of the curve after t2max SplitBezier(aControlPoints, nullptr, &nextCPs, t2max); // Draw a line to the start, this is the approximation between t2min and // t2max. aSink->LineTo(nextCPs.mCP1.ToPoint()); FlattenBezierCurveSegment(nextCPs, aSink, aTolerance); } else { // Our approximation range extends beyond the end of the curve. aSink->LineTo(aControlPoints.mCP4.ToPoint()); return; } } } } // namespace gfx } // namespace mozilla