// // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Check whether variables fit within packing limits according to the packing rules from the GLSL ES // 1.00.17 spec, Appendix A, section 7. #include #include "angle_gl.h" #include "common/utilities.h" #include "compiler/translator/VariablePacker.h" namespace sh { namespace { // Expand the variable so that struct variables are split into their individual fields. // Will not set the mappedName or staticUse fields on the expanded variables. void ExpandVariable(const ShaderVariable &variable, const std::string &name, std::vector *expanded); void ExpandStructVariable(const ShaderVariable &variable, const std::string &name, std::vector *expanded) { ASSERT(variable.isStruct()); const std::vector &fields = variable.fields; for (size_t fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++) { const ShaderVariable &field = fields[fieldIndex]; ExpandVariable(field, name + "." + field.name, expanded); } } void ExpandStructArrayVariable(const ShaderVariable &variable, unsigned int arrayNestingIndex, const std::string &name, std::vector *expanded) { // Nested arrays are processed starting from outermost (arrayNestingIndex 0u) and ending at the // innermost. const unsigned int currentArraySize = variable.getNestedArraySize(arrayNestingIndex); for (unsigned int arrayElement = 0u; arrayElement < currentArraySize; ++arrayElement) { const std::string elementName = name + ArrayString(arrayElement); if (arrayNestingIndex + 1u < variable.arraySizes.size()) { ExpandStructArrayVariable(variable, arrayNestingIndex + 1u, elementName, expanded); } else { ExpandStructVariable(variable, elementName, expanded); } } } void ExpandVariable(const ShaderVariable &variable, const std::string &name, std::vector *expanded) { if (variable.isStruct()) { if (variable.isArray()) { ExpandStructArrayVariable(variable, 0u, name, expanded); } else { ExpandStructVariable(variable, name, expanded); } } else { ShaderVariable expandedVar = variable; expandedVar.name = name; expanded->push_back(expandedVar); } } int GetVariablePackingRows(const ShaderVariable &variable) { return GetTypePackingRows(variable.type) * variable.getArraySizeProduct(); } class VariablePacker { public: bool checkExpandedVariablesWithinPackingLimits(unsigned int maxVectors, std::vector *variables); private: static const int kNumColumns = 4; static const unsigned kColumnMask = (1 << kNumColumns) - 1; unsigned makeColumnFlags(int column, int numComponentsPerRow); void fillColumns(int topRow, int numRows, int column, int numComponentsPerRow); bool searchColumn(int column, int numRows, int *destRow, int *destSize); int topNonFullRow_; int bottomNonFullRow_; int maxRows_; std::vector rows_; }; struct TVariableInfoComparer { bool operator()(const sh::ShaderVariable &lhs, const sh::ShaderVariable &rhs) const { int lhsSortOrder = gl::VariableSortOrder(lhs.type); int rhsSortOrder = gl::VariableSortOrder(rhs.type); if (lhsSortOrder != rhsSortOrder) { return lhsSortOrder < rhsSortOrder; } // Sort by largest first. return lhs.getArraySizeProduct() > rhs.getArraySizeProduct(); } }; unsigned VariablePacker::makeColumnFlags(int column, int numComponentsPerRow) { return ((kColumnMask << (kNumColumns - numComponentsPerRow)) & kColumnMask) >> column; } void VariablePacker::fillColumns(int topRow, int numRows, int column, int numComponentsPerRow) { unsigned columnFlags = makeColumnFlags(column, numComponentsPerRow); for (int r = 0; r < numRows; ++r) { int row = topRow + r; ASSERT((rows_[row] & columnFlags) == 0); rows_[row] |= columnFlags; } } bool VariablePacker::searchColumn(int column, int numRows, int *destRow, int *destSize) { ASSERT(destRow); for (; topNonFullRow_ < maxRows_ && rows_[topNonFullRow_] == kColumnMask; ++topNonFullRow_) { } for (; bottomNonFullRow_ >= 0 && rows_[bottomNonFullRow_] == kColumnMask; --bottomNonFullRow_) { } if (bottomNonFullRow_ - topNonFullRow_ + 1 < numRows) { return false; } unsigned columnFlags = makeColumnFlags(column, 1); int topGoodRow = 0; int smallestGoodTop = -1; int smallestGoodSize = maxRows_ + 1; int bottomRow = bottomNonFullRow_ + 1; bool found = false; for (int row = topNonFullRow_; row <= bottomRow; ++row) { bool rowEmpty = row < bottomRow ? ((rows_[row] & columnFlags) == 0) : false; if (rowEmpty) { if (!found) { topGoodRow = row; found = true; } } else { if (found) { int size = row - topGoodRow; if (size >= numRows && size < smallestGoodSize) { smallestGoodSize = size; smallestGoodTop = topGoodRow; } } found = false; } } if (smallestGoodTop < 0) { return false; } *destRow = smallestGoodTop; if (destSize) { *destSize = smallestGoodSize; } return true; } bool VariablePacker::checkExpandedVariablesWithinPackingLimits( unsigned int maxVectors, std::vector *variables) { ASSERT(maxVectors > 0); maxRows_ = maxVectors; topNonFullRow_ = 0; bottomNonFullRow_ = maxRows_ - 1; // Check whether each variable fits in the available vectors. for (const sh::ShaderVariable &variable : *variables) { // Structs should have been expanded before reaching here. ASSERT(!variable.isStruct()); if (variable.getArraySizeProduct() > maxVectors / GetTypePackingRows(variable.type)) { return false; } } // As per GLSL 1.017 Appendix A, Section 7 variables are packed in specific // order by type, then by size of array, largest first. std::sort(variables->begin(), variables->end(), TVariableInfoComparer()); rows_.clear(); rows_.resize(maxVectors, 0); // Packs the 4 column variables. size_t ii = 0; for (; ii < variables->size(); ++ii) { const sh::ShaderVariable &variable = (*variables)[ii]; if (GetTypePackingComponentsPerRow(variable.type) != 4) { break; } topNonFullRow_ += GetVariablePackingRows(variable); } if (topNonFullRow_ > maxRows_) { return false; } // Packs the 3 column variables. int num3ColumnRows = 0; for (; ii < variables->size(); ++ii) { const sh::ShaderVariable &variable = (*variables)[ii]; if (GetTypePackingComponentsPerRow(variable.type) != 3) { break; } num3ColumnRows += GetVariablePackingRows(variable); } if (topNonFullRow_ + num3ColumnRows > maxRows_) { return false; } fillColumns(topNonFullRow_, num3ColumnRows, 0, 3); // Packs the 2 column variables. int top2ColumnRow = topNonFullRow_ + num3ColumnRows; int twoColumnRowsAvailable = maxRows_ - top2ColumnRow; int rowsAvailableInColumns01 = twoColumnRowsAvailable; int rowsAvailableInColumns23 = twoColumnRowsAvailable; for (; ii < variables->size(); ++ii) { const sh::ShaderVariable &variable = (*variables)[ii]; if (GetTypePackingComponentsPerRow(variable.type) != 2) { break; } int numRows = GetVariablePackingRows(variable); if (numRows <= rowsAvailableInColumns01) { rowsAvailableInColumns01 -= numRows; } else if (numRows <= rowsAvailableInColumns23) { rowsAvailableInColumns23 -= numRows; } else { return false; } } int numRowsUsedInColumns01 = twoColumnRowsAvailable - rowsAvailableInColumns01; int numRowsUsedInColumns23 = twoColumnRowsAvailable - rowsAvailableInColumns23; fillColumns(top2ColumnRow, numRowsUsedInColumns01, 0, 2); fillColumns(maxRows_ - numRowsUsedInColumns23, numRowsUsedInColumns23, 2, 2); // Packs the 1 column variables. for (; ii < variables->size(); ++ii) { const sh::ShaderVariable &variable = (*variables)[ii]; ASSERT(1 == GetTypePackingComponentsPerRow(variable.type)); int numRows = GetVariablePackingRows(variable); int smallestColumn = -1; int smallestSize = maxRows_ + 1; int topRow = -1; for (int column = 0; column < kNumColumns; ++column) { int row = 0; int size = 0; if (searchColumn(column, numRows, &row, &size)) { if (size < smallestSize) { smallestSize = size; smallestColumn = column; topRow = row; } } } if (smallestColumn < 0) { return false; } fillColumns(topRow, numRows, smallestColumn, 1); } ASSERT(variables->size() == ii); return true; } } // anonymous namespace int GetTypePackingComponentsPerRow(sh::GLenum type) { switch (type) { case GL_FLOAT_MAT4: case GL_FLOAT_MAT2: case GL_FLOAT_MAT2x4: case GL_FLOAT_MAT3x4: case GL_FLOAT_MAT4x2: case GL_FLOAT_MAT4x3: case GL_FLOAT_VEC4: case GL_INT_VEC4: case GL_BOOL_VEC4: case GL_UNSIGNED_INT_VEC4: return 4; case GL_FLOAT_MAT3: case GL_FLOAT_MAT2x3: case GL_FLOAT_MAT3x2: case GL_FLOAT_VEC3: case GL_INT_VEC3: case GL_BOOL_VEC3: case GL_UNSIGNED_INT_VEC3: return 3; case GL_FLOAT_VEC2: case GL_INT_VEC2: case GL_BOOL_VEC2: case GL_UNSIGNED_INT_VEC2: return 2; default: ASSERT(gl::VariableComponentCount(type) == 1); return 1; } } int GetTypePackingRows(sh::GLenum type) { switch (type) { case GL_FLOAT_MAT4: case GL_FLOAT_MAT2x4: case GL_FLOAT_MAT3x4: case GL_FLOAT_MAT4x3: case GL_FLOAT_MAT4x2: return 4; case GL_FLOAT_MAT3: case GL_FLOAT_MAT2x3: case GL_FLOAT_MAT3x2: return 3; case GL_FLOAT_MAT2: return 2; default: ASSERT(gl::VariableRowCount(type) == 1); return 1; } } template bool CheckVariablesInPackingLimits(unsigned int maxVectors, const std::vector &variables) { VariablePacker packer; std::vector expandedVariables; for (const ShaderVariable &variable : variables) { ExpandVariable(variable, variable.name, &expandedVariables); } return packer.checkExpandedVariablesWithinPackingLimits(maxVectors, &expandedVariables); } template bool CheckVariablesInPackingLimits( unsigned int maxVectors, const std::vector &variables); template bool CheckVariablesInPackingLimits(unsigned int maxVectors, const std::vector &variables); } // namespace sh