// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libANGLE/Program.h" #include #include #include "common/bitset_utils.h" #include "common/debug.h" #include "common/platform.h" #include "common/string_utils.h" #include "common/utilities.h" #include "common/version.h" #include "compiler/translator/blocklayout.h" #include "libANGLE/Context.h" #include "libANGLE/MemoryProgramCache.h" #include "libANGLE/ProgramLinkedResources.h" #include "libANGLE/ResourceManager.h" #include "libANGLE/Uniform.h" #include "libANGLE/VaryingPacking.h" #include "libANGLE/Version.h" #include "libANGLE/features.h" #include "libANGLE/histogram_macros.h" #include "libANGLE/queryconversions.h" #include "libANGLE/renderer/GLImplFactory.h" #include "libANGLE/renderer/ProgramImpl.h" #include "platform/FrontendFeatures.h" #include "platform/Platform.h" namespace gl { namespace { // This simplified cast function doesn't need to worry about advanced concepts like // depth range values, or casting to bool. template DestT UniformStateQueryCast(SrcT value); // From-Float-To-Integer Casts template <> GLint UniformStateQueryCast(GLfloat value) { return clampCast(roundf(value)); } template <> GLuint UniformStateQueryCast(GLfloat value) { return clampCast(roundf(value)); } // From-Integer-to-Integer Casts template <> GLint UniformStateQueryCast(GLuint value) { return clampCast(value); } template <> GLuint UniformStateQueryCast(GLint value) { return clampCast(value); } // From-Boolean-to-Anything Casts template <> GLfloat UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1.0f : 0.0f); } template <> GLint UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1 : 0); } template <> GLuint UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1u : 0u); } // Default to static_cast template DestT UniformStateQueryCast(SrcT value) { return static_cast(value); } template void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components) { for (int comp = 0; comp < components; ++comp) { // We only work with strides of 4 bytes for uniform components. (GLfloat/GLint) // Don't use SrcT stride directly since GLboolean has a stride of 1 byte. size_t offset = comp * 4; const SrcT *typedSrcPointer = reinterpret_cast(&srcPointer[offset]); dataOut[comp] = UniformStateQueryCast(*typedSrcPointer); } } template GLuint GetResourceIndexFromName(const std::vector &list, const std::string &name) { std::string nameAsArrayName = name + "[0]"; for (size_t index = 0; index < list.size(); index++) { const VarT &resource = list[index]; if (resource.name == name || (resource.isArray() && resource.name == nameAsArrayName)) { return static_cast(index); } } return GL_INVALID_INDEX; } template GLint GetVariableLocation(const std::vector &list, const std::vector &locationList, const std::string &name) { size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); for (size_t location = 0u; location < locationList.size(); ++location) { const VariableLocation &variableLocation = locationList[location]; if (!variableLocation.used()) { continue; } const VarT &variable = list[variableLocation.index]; // Array output variables may be bound out of order, so we need to ensure we only pick the // first element if given the base name. Uniforms don't allow this behavior and some code // seemingly depends on the opposite behavior, so only enable it for output variables. if (angle::BeginsWith(variable.name, name) && (!std::is_base_of::value || variableLocation.arrayIndex == 0)) { if (name.length() == variable.name.length()) { ASSERT(name == variable.name); // GLES 3.1 November 2016 page 87. // The string exactly matches the name of the active variable. return static_cast(location); } if (name.length() + 3u == variable.name.length() && variable.isArray()) { ASSERT(name + "[0]" == variable.name); // The string identifies the base name of an active array, where the string would // exactly match the name of the variable if the suffix "[0]" were appended to the // string. return static_cast(location); } } if (variable.isArray() && variableLocation.arrayIndex == arrayIndex && nameLengthWithoutArrayIndex + 3u == variable.name.length() && angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex)) { ASSERT(name.substr(0u, nameLengthWithoutArrayIndex) + "[0]" == variable.name); // The string identifies an active element of the array, where the string ends with the // concatenation of the "[" character, an integer (with no "+" sign, extra leading // zeroes, or whitespace) identifying an array element, and the "]" character, the // integer is less than the number of active elements of the array variable, and where // the string would exactly match the enumerated name of the array if the decimal // integer were replaced with zero. return static_cast(location); } } return -1; } void CopyStringToBuffer(GLchar *buffer, const std::string &string, GLsizei bufSize, GLsizei *lengthOut) { ASSERT(bufSize > 0); size_t length = std::min(bufSize - 1, string.length()); memcpy(buffer, string.c_str(), length); buffer[length] = '\0'; if (lengthOut) { *lengthOut = length; } } bool IncludeSameArrayElement(const std::set &nameSet, const std::string &name) { std::vector subscripts; std::string baseName = ParseResourceName(name, &subscripts); for (const std::string &nameInSet : nameSet) { std::vector arrayIndices; std::string arrayName = ParseResourceName(nameInSet, &arrayIndices); if (baseName == arrayName && (subscripts.empty() || arrayIndices.empty() || subscripts == arrayIndices)) { return true; } } return false; } std::string GetInterfaceBlockLimitName(ShaderType shaderType, sh::BlockType blockType) { std::ostringstream stream; stream << "GL_MAX_" << GetShaderTypeString(shaderType) << "_"; switch (blockType) { case sh::BlockType::BLOCK_UNIFORM: stream << "UNIFORM_BUFFERS"; break; case sh::BlockType::BLOCK_BUFFER: stream << "SHADER_STORAGE_BLOCKS"; break; default: UNREACHABLE(); return ""; } if (shaderType == ShaderType::Geometry) { stream << "_EXT"; } return stream.str(); } const char *GetInterfaceBlockTypeString(sh::BlockType blockType) { switch (blockType) { case sh::BlockType::BLOCK_UNIFORM: return "uniform block"; case sh::BlockType::BLOCK_BUFFER: return "shader storage block"; default: UNREACHABLE(); return ""; } } void LogInterfaceBlocksExceedLimit(InfoLog &infoLog, ShaderType shaderType, sh::BlockType blockType, GLuint limit) { infoLog << GetShaderTypeString(shaderType) << " shader " << GetInterfaceBlockTypeString(blockType) << " count exceeds " << GetInterfaceBlockLimitName(shaderType, blockType) << " (" << limit << ")"; } bool ValidateInterfaceBlocksCount(GLuint maxInterfaceBlocks, const std::vector &interfaceBlocks, ShaderType shaderType, sh::BlockType blockType, GLuint *combinedInterfaceBlocksCount, InfoLog &infoLog) { GLuint blockCount = 0; for (const sh::InterfaceBlock &block : interfaceBlocks) { if (IsActiveInterfaceBlock(block)) { blockCount += std::max(block.arraySize, 1u); if (blockCount > maxInterfaceBlocks) { LogInterfaceBlocksExceedLimit(infoLog, shaderType, blockType, maxInterfaceBlocks); return false; } } } // [OpenGL ES 3.1] Chapter 7.6.2 Page 105: // If a uniform block is used by multiple shader stages, each such use counts separately // against this combined limit. // [OpenGL ES 3.1] Chapter 7.8 Page 111: // If a shader storage block in a program is referenced by multiple shaders, each such // reference counts separately against this combined limit. if (combinedInterfaceBlocksCount) { *combinedInterfaceBlocksCount += blockCount; } return true; } GLuint GetInterfaceBlockIndex(const std::vector &list, const std::string &name) { std::vector subscripts; std::string baseName = ParseResourceName(name, &subscripts); unsigned int numBlocks = static_cast(list.size()); for (unsigned int blockIndex = 0; blockIndex < numBlocks; blockIndex++) { const auto &block = list[blockIndex]; if (block.name == baseName) { const bool arrayElementZero = (subscripts.empty() && (!block.isArray || block.arrayElement == 0)); const bool arrayElementMatches = (subscripts.size() == 1 && subscripts[0] == block.arrayElement); if (arrayElementMatches || arrayElementZero) { return blockIndex; } } } return GL_INVALID_INDEX; } void GetInterfaceBlockName(const GLuint index, const std::vector &list, GLsizei bufSize, GLsizei *length, GLchar *name) { ASSERT(index < list.size()); const auto &block = list[index]; if (bufSize > 0) { std::string blockName = block.name; if (block.isArray) { blockName += ArrayString(block.arrayElement); } CopyStringToBuffer(name, blockName, bufSize, length); } } void InitUniformBlockLinker(const ProgramState &state, UniformBlockLinker *blockLinker) { for (ShaderType shaderType : AllShaderTypes()) { Shader *shader = state.getAttachedShader(shaderType); if (shader) { blockLinker->addShaderBlocks(shaderType, &shader->getUniformBlocks()); } } } void InitShaderStorageBlockLinker(const ProgramState &state, ShaderStorageBlockLinker *blockLinker) { for (ShaderType shaderType : AllShaderTypes()) { Shader *shader = state.getAttachedShader(shaderType); if (shader != nullptr) { blockLinker->addShaderBlocks(shaderType, &shader->getShaderStorageBlocks()); } } } // Find the matching varying or field by name. const sh::ShaderVariable *FindVaryingOrField(const ProgramMergedVaryings &varyings, const std::string &name) { const sh::ShaderVariable *var = nullptr; for (const auto &ref : varyings) { const sh::Varying *varying = ref.second.get(); if (varying->name == name) { var = varying; break; } GLuint fieldIndex = 0; var = FindShaderVarField(*varying, name, &fieldIndex); if (var != nullptr) { break; } } return var; } void AddParentPrefix(const std::string &parentName, std::string *mismatchedFieldName) { ASSERT(mismatchedFieldName); if (mismatchedFieldName->empty()) { *mismatchedFieldName = parentName; } else { std::ostringstream stream; stream << parentName << "." << *mismatchedFieldName; *mismatchedFieldName = stream.str(); } } const char *GetLinkMismatchErrorString(LinkMismatchError linkError) { switch (linkError) { case LinkMismatchError::TYPE_MISMATCH: return "Type"; case LinkMismatchError::ARRAY_SIZE_MISMATCH: return "Array size"; case LinkMismatchError::PRECISION_MISMATCH: return "Precision"; case LinkMismatchError::STRUCT_NAME_MISMATCH: return "Structure name"; case LinkMismatchError::FIELD_NUMBER_MISMATCH: return "Field number"; case LinkMismatchError::FIELD_NAME_MISMATCH: return "Field name"; case LinkMismatchError::INTERPOLATION_TYPE_MISMATCH: return "Interpolation type"; case LinkMismatchError::INVARIANCE_MISMATCH: return "Invariance"; case LinkMismatchError::BINDING_MISMATCH: return "Binding layout qualifier"; case LinkMismatchError::LOCATION_MISMATCH: return "Location layout qualifier"; case LinkMismatchError::OFFSET_MISMATCH: return "Offset layout qualifier"; case LinkMismatchError::INSTANCE_NAME_MISMATCH: return "Instance name qualifier"; case LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH: return "Layout qualifier"; case LinkMismatchError::MATRIX_PACKING_MISMATCH: return "Matrix Packing"; default: UNREACHABLE(); return ""; } } LinkMismatchError LinkValidateInterfaceBlockFields(const sh::InterfaceBlockField &blockField1, const sh::InterfaceBlockField &blockField2, bool webglCompatibility, std::string *mismatchedBlockFieldName) { if (blockField1.name != blockField2.name) { return LinkMismatchError::FIELD_NAME_MISMATCH; } // If webgl, validate precision of UBO fields, otherwise don't. See Khronos bug 10287. LinkMismatchError linkError = Program::LinkValidateVariablesBase( blockField1, blockField2, webglCompatibility, true, mismatchedBlockFieldName); if (linkError != LinkMismatchError::NO_MISMATCH) { AddParentPrefix(blockField1.name, mismatchedBlockFieldName); return linkError; } if (blockField1.isRowMajorLayout != blockField2.isRowMajorLayout) { AddParentPrefix(blockField1.name, mismatchedBlockFieldName); return LinkMismatchError::MATRIX_PACKING_MISMATCH; } return LinkMismatchError::NO_MISMATCH; } LinkMismatchError AreMatchingInterfaceBlocks(const sh::InterfaceBlock &interfaceBlock1, const sh::InterfaceBlock &interfaceBlock2, bool webglCompatibility, std::string *mismatchedBlockFieldName) { // validate blocks for the same member types if (interfaceBlock1.fields.size() != interfaceBlock2.fields.size()) { return LinkMismatchError::FIELD_NUMBER_MISMATCH; } if (interfaceBlock1.arraySize != interfaceBlock2.arraySize) { return LinkMismatchError::ARRAY_SIZE_MISMATCH; } if (interfaceBlock1.layout != interfaceBlock2.layout || interfaceBlock1.binding != interfaceBlock2.binding) { return LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH; } if (interfaceBlock1.instanceName.empty() != interfaceBlock2.instanceName.empty()) { return LinkMismatchError::INSTANCE_NAME_MISMATCH; } const unsigned int numBlockMembers = static_cast(interfaceBlock1.fields.size()); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++) { const sh::InterfaceBlockField &member1 = interfaceBlock1.fields[blockMemberIndex]; const sh::InterfaceBlockField &member2 = interfaceBlock2.fields[blockMemberIndex]; LinkMismatchError linkError = LinkValidateInterfaceBlockFields( member1, member2, webglCompatibility, mismatchedBlockFieldName); if (linkError != LinkMismatchError::NO_MISMATCH) { return linkError; } } return LinkMismatchError::NO_MISMATCH; } using ShaderInterfaceBlock = std::pair; using InterfaceBlockMap = std::map; void InitializeInterfaceBlockMap(const std::vector &interfaceBlocks, ShaderType shaderType, InterfaceBlockMap *linkedInterfaceBlocks) { ASSERT(linkedInterfaceBlocks); for (const sh::InterfaceBlock &interfaceBlock : interfaceBlocks) { (*linkedInterfaceBlocks)[interfaceBlock.name] = std::make_pair(shaderType, &interfaceBlock); } } bool ValidateGraphicsInterfaceBlocksPerShader( const std::vector &interfaceBlocksToLink, ShaderType shaderType, bool webglCompatibility, InterfaceBlockMap *linkedBlocks, InfoLog &infoLog) { ASSERT(linkedBlocks); for (const sh::InterfaceBlock &block : interfaceBlocksToLink) { const auto &entry = linkedBlocks->find(block.name); if (entry != linkedBlocks->end()) { const sh::InterfaceBlock &linkedBlock = *(entry->second.second); std::string mismatchedStructFieldName; LinkMismatchError linkError = AreMatchingInterfaceBlocks( block, linkedBlock, webglCompatibility, &mismatchedStructFieldName); if (linkError != LinkMismatchError::NO_MISMATCH) { LogLinkMismatch(infoLog, block.name, GetInterfaceBlockTypeString(block.blockType), linkError, mismatchedStructFieldName, entry->second.first, shaderType); return false; } } else { (*linkedBlocks)[block.name] = std::make_pair(shaderType, &block); } } return true; } bool ValidateInterfaceBlocksMatch( GLuint numShadersHasInterfaceBlocks, const ShaderMap *> &shaderInterfaceBlocks, InfoLog &infoLog, bool webglCompatibility) { if (numShadersHasInterfaceBlocks < 2u) { return true; } ASSERT(!shaderInterfaceBlocks[ShaderType::Compute]); // Check that interface blocks defined in the graphics shaders are identical InterfaceBlockMap linkedInterfaceBlocks; bool interfaceBlockMapInitialized = false; for (ShaderType shaderType : kAllGraphicsShaderTypes) { if (!shaderInterfaceBlocks[shaderType]) { continue; } if (!interfaceBlockMapInitialized) { InitializeInterfaceBlockMap(*shaderInterfaceBlocks[shaderType], shaderType, &linkedInterfaceBlocks); interfaceBlockMapInitialized = true; } else if (!ValidateGraphicsInterfaceBlocksPerShader(*shaderInterfaceBlocks[shaderType], shaderType, webglCompatibility, &linkedInterfaceBlocks, infoLog)) { return false; } } return true; } void WriteShaderVar(BinaryOutputStream *stream, const sh::ShaderVariable &var) { stream->writeInt(var.type); stream->writeInt(var.precision); stream->writeString(var.name); stream->writeString(var.mappedName); stream->writeIntVector(var.arraySizes); stream->writeInt(var.staticUse); stream->writeInt(var.active); stream->writeString(var.structName); stream->writeInt(var.hasParentArrayIndex() ? var.parentArrayIndex() : -1); ASSERT(var.fields.empty()); } void LoadShaderVar(BinaryInputStream *stream, sh::ShaderVariable *var) { var->type = stream->readInt(); var->precision = stream->readInt(); var->name = stream->readString(); var->mappedName = stream->readString(); stream->readIntVector(&var->arraySizes); var->staticUse = stream->readBool(); var->active = stream->readBool(); var->structName = stream->readString(); var->setParentArrayIndex(stream->readInt()); } void WriteShaderVariableBuffer(BinaryOutputStream *stream, const ShaderVariableBuffer &var) { stream->writeInt(var.binding); stream->writeInt(var.dataSize); for (ShaderType shaderType : AllShaderTypes()) { stream->writeInt(var.isActive(shaderType)); } stream->writeInt(var.memberIndexes.size()); for (unsigned int memberCounterIndex : var.memberIndexes) { stream->writeInt(memberCounterIndex); } } void LoadShaderVariableBuffer(BinaryInputStream *stream, ShaderVariableBuffer *var) { var->binding = stream->readInt(); var->dataSize = stream->readInt(); for (ShaderType shaderType : AllShaderTypes()) { var->setActive(shaderType, stream->readBool()); } unsigned int numMembers = stream->readInt(); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++) { var->memberIndexes.push_back(stream->readInt()); } } void WriteBufferVariable(BinaryOutputStream *stream, const BufferVariable &var) { WriteShaderVar(stream, var); stream->writeInt(var.bufferIndex); WriteBlockMemberInfo(stream, var.blockInfo); stream->writeInt(var.topLevelArraySize); for (ShaderType shaderType : AllShaderTypes()) { stream->writeInt(var.isActive(shaderType)); } } void LoadBufferVariable(BinaryInputStream *stream, BufferVariable *var) { LoadShaderVar(stream, var); var->bufferIndex = stream->readInt(); LoadBlockMemberInfo(stream, &var->blockInfo); var->topLevelArraySize = stream->readInt(); for (ShaderType shaderType : AllShaderTypes()) { var->setActive(shaderType, stream->readBool()); } } void WriteInterfaceBlock(BinaryOutputStream *stream, const InterfaceBlock &block) { stream->writeString(block.name); stream->writeString(block.mappedName); stream->writeInt(block.isArray); stream->writeInt(block.arrayElement); WriteShaderVariableBuffer(stream, block); } void LoadInterfaceBlock(BinaryInputStream *stream, InterfaceBlock *block) { block->name = stream->readString(); block->mappedName = stream->readString(); block->isArray = stream->readBool(); block->arrayElement = stream->readInt(); LoadShaderVariableBuffer(stream, block); } size_t CountUniqueBlocks(const std::vector &blocks) { size_t count = 0; for (const InterfaceBlock &block : blocks) { if (!block.isArray || block.arrayElement == 0) { ++count; } } return count; } } // anonymous namespace // Saves the linking context for later use in resolveLink(). struct Program::LinkingState { const Context *context; std::unique_ptr resources; egl::BlobCache::Key programHash; std::unique_ptr linkEvent; bool linkingFromBinary; }; const char *const g_fakepath = "C:\\fakepath"; // InfoLog implementation. InfoLog::InfoLog() {} InfoLog::~InfoLog() {} size_t InfoLog::getLength() const { if (!mLazyStream) { return 0; } const std::string &logString = mLazyStream->str(); return logString.empty() ? 0 : logString.length() + 1; } void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const { size_t index = 0; if (bufSize > 0) { const std::string logString(str()); if (!logString.empty()) { index = std::min(static_cast(bufSize) - 1, logString.length()); memcpy(infoLog, logString.c_str(), index); } infoLog[index] = '\0'; } if (length) { *length = static_cast(index); } } // append a santized message to the program info log. // The D3D compiler includes a fake file path in some of the warning or error // messages, so lets remove all occurrences of this fake file path from the log. void InfoLog::appendSanitized(const char *message) { ensureInitialized(); std::string msg(message); size_t found; do { found = msg.find(g_fakepath); if (found != std::string::npos) { msg.erase(found, strlen(g_fakepath)); } } while (found != std::string::npos); *mLazyStream << message << std::endl; } void InfoLog::reset() { if (mLazyStream) { mLazyStream.reset(nullptr); } } bool InfoLog::empty() const { if (!mLazyStream) { return true; } return mLazyStream->rdbuf()->in_avail() == 0; } void LogLinkMismatch(InfoLog &infoLog, const std::string &variableName, const char *variableType, LinkMismatchError linkError, const std::string &mismatchedStructOrBlockFieldName, ShaderType shaderType1, ShaderType shaderType2) { std::ostringstream stream; stream << GetLinkMismatchErrorString(linkError) << "s of " << variableType << " '" << variableName; if (!mismatchedStructOrBlockFieldName.empty()) { stream << "' member '" << variableName << "." << mismatchedStructOrBlockFieldName; } stream << "' differ between " << GetShaderTypeString(shaderType1) << " and " << GetShaderTypeString(shaderType2) << " shaders."; infoLog << stream.str(); } bool IsActiveInterfaceBlock(const sh::InterfaceBlock &interfaceBlock) { // Only 'packed' blocks are allowed to be considered inactive. return interfaceBlock.active || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED; } void WriteBlockMemberInfo(BinaryOutputStream *stream, const sh::BlockMemberInfo &var) { stream->writeInt(var.arrayStride); stream->writeInt(var.isRowMajorMatrix); stream->writeInt(var.matrixStride); stream->writeInt(var.offset); stream->writeInt(var.topLevelArrayStride); } void LoadBlockMemberInfo(BinaryInputStream *stream, sh::BlockMemberInfo *var) { var->arrayStride = stream->readInt(); var->isRowMajorMatrix = stream->readBool(); var->matrixStride = stream->readInt(); var->offset = stream->readInt(); var->topLevelArrayStride = stream->readInt(); } // VariableLocation implementation. VariableLocation::VariableLocation() : arrayIndex(0), index(kUnused), ignored(false) {} VariableLocation::VariableLocation(unsigned int arrayIndex, unsigned int index) : arrayIndex(arrayIndex), index(index), ignored(false) { ASSERT(arrayIndex != GL_INVALID_INDEX); } // SamplerBindings implementation. SamplerBinding::SamplerBinding(TextureType textureTypeIn, SamplerFormat formatIn, size_t elementCount, bool unreferenced) : textureType(textureTypeIn), format(formatIn), boundTextureUnits(elementCount, 0), unreferenced(unreferenced) {} SamplerBinding::SamplerBinding(const SamplerBinding &other) = default; SamplerBinding::~SamplerBinding() = default; // ProgramBindings implementation. ProgramBindings::ProgramBindings() {} ProgramBindings::~ProgramBindings() {} void ProgramBindings::bindLocation(GLuint index, const std::string &name) { mBindings[name] = ProgramBinding(index); // EXT_blend_func_extended spec: "If it specifies the base name of an array, // it identifies the resources associated with the first element of the array." // // Normalize array bindings so that "name" and "name[0]" map to the same entry. // If this binding is of the form "name[0]", then mark the "name" binding as // aliased but do not update it yet in case "name" is not actually an array. size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); if (arrayIndex == 0) { std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex); auto iter = mBindings.find(baseName); if (iter != mBindings.end()) { iter->second.aliased = true; } } } int ProgramBindings::getBindingByName(const std::string &name) const { auto iter = mBindings.find(name); return (iter != mBindings.end()) ? iter->second.location : -1; } int ProgramBindings::getBinding(const sh::VariableWithLocation &variable) const { const std::string &name = variable.name; // Check with the normalized array name if applicable. if (variable.isArray()) { size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); if (arrayIndex == 0) { std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex); auto iter = mBindings.find(baseName); // If "name" exists and is not aliased, that means it was modified more // recently than its "name[0]" form and should be used instead of that. if (iter != mBindings.end() && !iter->second.aliased) { return iter->second.location; } } } return getBindingByName(name); } ProgramBindings::const_iterator ProgramBindings::begin() const { return mBindings.begin(); } ProgramBindings::const_iterator ProgramBindings::end() const { return mBindings.end(); } // ImageBinding implementation. ImageBinding::ImageBinding(size_t count) : boundImageUnits(count, 0), unreferenced(false) {} ImageBinding::ImageBinding(GLuint imageUnit, size_t count, bool unreferenced) : unreferenced(unreferenced) { for (size_t index = 0; index < count; ++index) { boundImageUnits.push_back(imageUnit + static_cast(index)); } } ImageBinding::ImageBinding(const ImageBinding &other) = default; ImageBinding::~ImageBinding() = default; // ProgramState implementation. ProgramState::ProgramState() : mLabel(), mAttachedShaders{}, mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS), mMaxActiveAttribLocation(0), mSamplerUniformRange(0, 0), mImageUniformRange(0, 0), mAtomicCounterUniformRange(0, 0), mBinaryRetrieveableHint(false), mNumViews(-1), // [GL_EXT_geometry_shader] Table 20.22 mGeometryShaderInputPrimitiveType(PrimitiveMode::Triangles), mGeometryShaderOutputPrimitiveType(PrimitiveMode::TriangleStrip), mGeometryShaderInvocations(1), mGeometryShaderMaxVertices(0), mDrawIDLocation(-1), mActiveSamplerRefCounts{} { mComputeShaderLocalSize.fill(1); mActiveSamplerTypes.fill(TextureType::InvalidEnum); } ProgramState::~ProgramState() { ASSERT(!hasAttachedShader()); } const std::string &ProgramState::getLabel() { return mLabel; } Shader *ProgramState::getAttachedShader(ShaderType shaderType) const { ASSERT(shaderType != ShaderType::InvalidEnum); return mAttachedShaders[shaderType]; } size_t ProgramState::getUniqueUniformBlockCount() const { return CountUniqueBlocks(mUniformBlocks); } size_t ProgramState::getUniqueStorageBlockCount() const { return CountUniqueBlocks(mShaderStorageBlocks); } GLuint ProgramState::getUniformIndexFromName(const std::string &name) const { return GetResourceIndexFromName(mUniforms, name); } GLuint ProgramState::getBufferVariableIndexFromName(const std::string &name) const { return GetResourceIndexFromName(mBufferVariables, name); } GLuint ProgramState::getUniformIndexFromLocation(GLint location) const { ASSERT(location >= 0 && static_cast(location) < mUniformLocations.size()); return mUniformLocations[location].index; } Optional ProgramState::getSamplerIndex(GLint location) const { GLuint index = getUniformIndexFromLocation(location); if (!isSamplerUniformIndex(index)) { return Optional::Invalid(); } return getSamplerIndexFromUniformIndex(index); } bool ProgramState::isSamplerUniformIndex(GLuint index) const { return mSamplerUniformRange.contains(index); } GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const { ASSERT(isSamplerUniformIndex(uniformIndex)); return uniformIndex - mSamplerUniformRange.low(); } GLuint ProgramState::getUniformIndexFromSamplerIndex(GLuint samplerIndex) const { ASSERT(samplerIndex < mSamplerUniformRange.length()); return samplerIndex + mSamplerUniformRange.low(); } bool ProgramState::isImageUniformIndex(GLuint index) const { return mImageUniformRange.contains(index); } GLuint ProgramState::getImageIndexFromUniformIndex(GLuint uniformIndex) const { ASSERT(isImageUniformIndex(uniformIndex)); return uniformIndex - mImageUniformRange.low(); } GLuint ProgramState::getUniformIndexFromImageIndex(GLuint imageIndex) const { ASSERT(imageIndex < mImageUniformRange.length()); return imageIndex + mImageUniformRange.low(); } GLuint ProgramState::getAttributeLocation(const std::string &name) const { for (const sh::Attribute &attribute : mAttributes) { if (attribute.name == name) { return attribute.location; } } return static_cast(-1); } bool ProgramState::hasAttachedShader() const { for (const Shader *shader : mAttachedShaders) { if (shader) { return true; } } return false; } Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, GLuint handle) : mProgram(factory->createProgram(mState)), mValidated(false), mLinked(false), mLinkResolved(true), mDeleteStatus(false), mRefCount(0), mResourceManager(manager), mHandle(handle) { ASSERT(mProgram); unlink(); } Program::~Program() { ASSERT(!mProgram); } void Program::onDestroy(const Context *context) { resolveLink(context); for (ShaderType shaderType : AllShaderTypes()) { if (mState.mAttachedShaders[shaderType]) { mState.mAttachedShaders[shaderType]->release(context); mState.mAttachedShaders[shaderType] = nullptr; } } mProgram->destroy(context); ASSERT(!mState.hasAttachedShader()); SafeDelete(mProgram); delete this; } GLuint Program::id() const { ASSERT(mLinkResolved); return mHandle; } void Program::setLabel(const Context *context, const std::string &label) { ASSERT(mLinkResolved); mState.mLabel = label; } const std::string &Program::getLabel() const { ASSERT(mLinkResolved); return mState.mLabel; } void Program::attachShader(Shader *shader) { ASSERT(mLinkResolved); ShaderType shaderType = shader->getType(); ASSERT(shaderType != ShaderType::InvalidEnum); mState.mAttachedShaders[shaderType] = shader; mState.mAttachedShaders[shaderType]->addRef(); } void Program::detachShader(const Context *context, Shader *shader) { ASSERT(mLinkResolved); ShaderType shaderType = shader->getType(); ASSERT(shaderType != ShaderType::InvalidEnum); ASSERT(mState.mAttachedShaders[shaderType] == shader); shader->release(context); mState.mAttachedShaders[shaderType] = nullptr; } int Program::getAttachedShadersCount() const { ASSERT(mLinkResolved); int numAttachedShaders = 0; for (const Shader *shader : mState.mAttachedShaders) { if (shader) { ++numAttachedShaders; } } return numAttachedShaders; } const Shader *Program::getAttachedShader(ShaderType shaderType) const { ASSERT(mLinkResolved); return mState.getAttachedShader(shaderType); } void Program::bindAttributeLocation(GLuint index, const char *name) { ASSERT(mLinkResolved); mAttributeBindings.bindLocation(index, name); } void Program::bindUniformLocation(GLuint index, const char *name) { ASSERT(mLinkResolved); mUniformLocationBindings.bindLocation(index, name); } void Program::bindFragmentInputLocation(GLint index, const char *name) { ASSERT(mLinkResolved); mFragmentInputBindings.bindLocation(index, name); } void Program::bindFragmentOutputLocation(GLuint index, const char *name) { mFragmentOutputLocations.bindLocation(index, name); } void Program::bindFragmentOutputIndex(GLuint index, const char *name) { mFragmentOutputIndexes.bindLocation(index, name); } BindingInfo Program::getFragmentInputBindingInfo(GLint index) const { ASSERT(mLinkResolved); BindingInfo ret; ret.type = GL_NONE; ret.valid = false; Shader *fragmentShader = mState.getAttachedShader(ShaderType::Fragment); ASSERT(fragmentShader); // Find the actual fragment shader varying we're interested in const std::vector &inputs = fragmentShader->getInputVaryings(); for (const auto &binding : mFragmentInputBindings) { if (binding.second.location != static_cast(index)) continue; ret.valid = true; size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(binding.first, &nameLengthWithoutArrayIndex); for (const auto &in : inputs) { if (in.name.length() == nameLengthWithoutArrayIndex && angle::BeginsWith(in.name, binding.first, nameLengthWithoutArrayIndex)) { if (in.isArray()) { // The client wants to bind either "name" or "name[0]". // GL ES 3.1 spec refers to active array names with language such as: // "if the string identifies the base name of an active array, where the // string would exactly match the name of the variable if the suffix "[0]" // were appended to the string". if (arrayIndex == GL_INVALID_INDEX) arrayIndex = 0; ret.name = in.mappedName + "[" + ToString(arrayIndex) + "]"; } else { ret.name = in.mappedName; } ret.type = in.type; return ret; } } } return ret; } void Program::pathFragmentInputGen(GLint index, GLenum genMode, GLint components, const GLfloat *coeffs) { ASSERT(mLinkResolved); // If the location is -1 then the command is silently ignored if (index == -1) return; const auto &binding = getFragmentInputBindingInfo(index); // If the input doesn't exist then then the command is silently ignored // This could happen through optimization for example, the shader translator // decides that a variable is not actually being used and optimizes it away. if (binding.name.empty()) return; mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs); } // The attached shaders are checked for linking errors by matching up their variables. // Uniform, input and output variables get collected. // The code gets compiled into binaries. angle::Result Program::link(const Context *context) { ASSERT(mLinkResolved); const auto &data = context->getState(); auto *platform = ANGLEPlatformCurrent(); double startTime = platform->currentTime(platform); unlink(); mInfoLog.reset(); // Validate we have properly attached shaders before checking the cache. if (!linkValidateShaders(mInfoLog)) { return angle::Result::Continue; } egl::BlobCache::Key programHash = {0}; MemoryProgramCache *cache = context->getMemoryProgramCache(); if (cache) { angle::Result cacheResult = cache->getProgram(context, this, &programHash); ANGLE_TRY(cacheResult); // Check explicitly for Continue, Incomplete means a cache miss if (cacheResult == angle::Result::Continue) { // Succeeded in loading the binaries in the front-end, back end may still be loading // asynchronously double delta = platform->currentTime(platform) - startTime; int us = static_cast(delta * 1000000.0); ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us); return angle::Result::Continue; } } // Cache load failed, fall through to normal linking. unlink(); // Re-link shaders after the unlink call. ASSERT(linkValidateShaders(mInfoLog)); std::unique_ptr resources; if (mState.mAttachedShaders[ShaderType::Compute]) { resources.reset(new ProgramLinkedResources( 0, PackMode::ANGLE_RELAXED, &mState.mUniformBlocks, &mState.mUniforms, &mState.mShaderStorageBlocks, &mState.mBufferVariables, &mState.mAtomicCounterBuffers)); GLuint combinedImageUniforms = 0u; if (!linkUniforms(context->getCaps(), mInfoLog, mUniformLocationBindings, &combinedImageUniforms, &resources->unusedUniforms)) { return angle::Result::Continue; } GLuint combinedShaderStorageBlocks = 0u; if (!linkInterfaceBlocks(context->getCaps(), context->getClientVersion(), context->getExtensions().webglCompatibility, mInfoLog, &combinedShaderStorageBlocks)) { return angle::Result::Continue; } // [OpenGL ES 3.1] Chapter 8.22 Page 203: // A link error will be generated if the sum of the number of active image uniforms used in // all shaders, the number of active shader storage blocks, and the number of active // fragment shader outputs exceeds the implementation-dependent value of // MAX_COMBINED_SHADER_OUTPUT_RESOURCES. if (combinedImageUniforms + combinedShaderStorageBlocks > context->getCaps().maxCombinedShaderOutputResources) { mInfoLog << "The sum of the number of active image uniforms, active shader storage blocks " "and active fragment shader outputs exceeds " "MAX_COMBINED_SHADER_OUTPUT_RESOURCES (" << context->getCaps().maxCombinedShaderOutputResources << ")"; return angle::Result::Continue; } InitUniformBlockLinker(mState, &resources->uniformBlockLinker); InitShaderStorageBlockLinker(mState, &resources->shaderStorageBlockLinker); } else { // Map the varyings to the register file // In WebGL, we use a slightly different handling for packing variables. gl::PackMode packMode = PackMode::ANGLE_RELAXED; if (data.getLimitations().noFlexibleVaryingPacking) { // D3D9 pack mode is strictly more strict than WebGL, so takes priority. packMode = PackMode::ANGLE_NON_CONFORMANT_D3D9; } else if (data.getExtensions().webglCompatibility) { packMode = PackMode::WEBGL_STRICT; } resources.reset(new ProgramLinkedResources( data.getCaps().maxVaryingVectors, packMode, &mState.mUniformBlocks, &mState.mUniforms, &mState.mShaderStorageBlocks, &mState.mBufferVariables, &mState.mAtomicCounterBuffers)); if (!linkAttributes(context, mInfoLog)) { return angle::Result::Continue; } if (!linkVaryings(mInfoLog)) { return angle::Result::Continue; } GLuint combinedImageUniforms = 0u; if (!linkUniforms(context->getCaps(), mInfoLog, mUniformLocationBindings, &combinedImageUniforms, &resources->unusedUniforms)) { return angle::Result::Continue; } GLuint combinedShaderStorageBlocks = 0u; if (!linkInterfaceBlocks(context->getCaps(), context->getClientVersion(), context->getExtensions().webglCompatibility, mInfoLog, &combinedShaderStorageBlocks)) { return angle::Result::Continue; } if (!linkValidateGlobalNames(mInfoLog)) { return angle::Result::Continue; } if (!linkOutputVariables(context->getCaps(), context->getExtensions(), context->getClientVersion(), combinedImageUniforms, combinedShaderStorageBlocks)) { return angle::Result::Continue; } const auto &mergedVaryings = getMergedVaryings(); ASSERT(mState.mAttachedShaders[ShaderType::Vertex]); mState.mNumViews = mState.mAttachedShaders[ShaderType::Vertex]->getNumViews(); InitUniformBlockLinker(mState, &resources->uniformBlockLinker); InitShaderStorageBlockLinker(mState, &resources->shaderStorageBlockLinker); if (!linkValidateTransformFeedback(context->getClientVersion(), mInfoLog, mergedVaryings, context->getCaps())) { return angle::Result::Continue; } if (!resources->varyingPacking.collectAndPackUserVaryings( mInfoLog, mergedVaryings, mState.getTransformFeedbackVaryingNames())) { return angle::Result::Continue; } gatherTransformFeedbackVaryings(mergedVaryings); mState.updateTransformFeedbackStrides(); } updateLinkedShaderStages(); mLinkingState.reset(new LinkingState()); mLinkingState->context = context; mLinkingState->linkingFromBinary = false; mLinkingState->programHash = programHash; mLinkingState->linkEvent = mProgram->link(context, *resources, mInfoLog); mLinkingState->resources = std::move(resources); mLinkResolved = false; return angle::Result::Continue; } bool Program::isLinking() const { return (mLinkingState.get() && mLinkingState->linkEvent->isLinking()); } void Program::resolveLinkImpl(const Context *context) { ASSERT(mLinkingState.get()); angle::Result result = mLinkingState->linkEvent->wait(context); mLinked = result == angle::Result::Continue; mLinkResolved = true; std::unique_ptr linkingState = std::move(mLinkingState); if (!mLinked) { return; } if (linkingState->linkingFromBinary) { // All internal Program state is already loaded from the binary. return; } initInterfaceBlockBindings(); // According to GLES 3.0/3.1 spec for LinkProgram and UseProgram, // Only successfully linked program can replace the executables. ASSERT(mLinked); // Mark implementation-specific unreferenced uniforms as ignored. mProgram->markUnusedUniformLocations(&mState.mUniformLocations, &mState.mSamplerBindings, &mState.mImageBindings); // Must be called after markUnusedUniformLocations. postResolveLink(context); // TODO(syoussefi): this might need to be moved to postResolveLink() so it will be called from // deserialize() as well. http://anglebug.com/3089 setUniformValuesFromBindingQualifiers(); // Save to the program cache. auto *cache = linkingState->context->getMemoryProgramCache(); if (cache && (mState.mLinkedTransformFeedbackVaryings.empty() || !linkingState->context->getFrontendFeatures() .disableProgramCachingForTransformFeedback.enabled)) { cache->putProgram(linkingState->programHash, linkingState->context, this); } } void Program::updateLinkedShaderStages() { mState.mLinkedShaderStages.reset(); for (const Shader *shader : mState.mAttachedShaders) { if (shader) { mState.mLinkedShaderStages.set(shader->getType()); } } } void ProgramState::updateTransformFeedbackStrides() { if (mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS) { mTransformFeedbackStrides.resize(1); size_t totalSize = 0; for (const TransformFeedbackVarying &varying : mLinkedTransformFeedbackVaryings) { totalSize += varying.size() * VariableExternalSize(varying.type); } mTransformFeedbackStrides[0] = static_cast(totalSize); } else { mTransformFeedbackStrides.resize(mLinkedTransformFeedbackVaryings.size()); for (size_t i = 0; i < mLinkedTransformFeedbackVaryings.size(); i++) { TransformFeedbackVarying &varying = mLinkedTransformFeedbackVaryings[i]; mTransformFeedbackStrides[i] = static_cast(varying.size() * VariableExternalSize(varying.type)); } } } void ProgramState::updateActiveSamplers() { mActiveSamplerRefCounts.fill(0); for (SamplerBinding &samplerBinding : mSamplerBindings) { if (samplerBinding.unreferenced) continue; for (GLint textureUnit : samplerBinding.boundTextureUnits) { if (++mActiveSamplerRefCounts[textureUnit] == 1) { mActiveSamplerTypes[textureUnit] = samplerBinding.textureType; mActiveSamplerFormats[textureUnit] = samplerBinding.format; } else { if (mActiveSamplerTypes[textureUnit] != samplerBinding.textureType) { mActiveSamplerTypes[textureUnit] = TextureType::InvalidEnum; } if (mActiveSamplerFormats[textureUnit] != samplerBinding.format) { mActiveSamplerFormats[textureUnit] = SamplerFormat::InvalidEnum; } } mActiveSamplersMask.set(textureUnit); } } } void ProgramState::updateActiveImages() { for (ImageBinding &imageBinding : mImageBindings) { if (imageBinding.unreferenced) continue; for (GLint imageUnit : imageBinding.boundImageUnits) { mActiveImagesMask.set(imageUnit); } } } // Returns the program object to an unlinked state, before re-linking, or at destruction void Program::unlink() { mState.mAttributes.clear(); mState.mAttributesTypeMask.reset(); mState.mAttributesMask.reset(); mState.mActiveAttribLocationsMask.reset(); mState.mMaxActiveAttribLocation = 0; mState.mLinkedTransformFeedbackVaryings.clear(); mState.mUniforms.clear(); mState.mUniformLocations.clear(); mState.mUniformBlocks.clear(); mState.mActiveUniformBlockBindings.reset(); mState.mAtomicCounterBuffers.clear(); mState.mOutputVariables.clear(); mState.mOutputLocations.clear(); mState.mSecondaryOutputLocations.clear(); mState.mOutputVariableTypes.clear(); mState.mDrawBufferTypeMask.reset(); mState.mActiveOutputVariables.reset(); mState.mComputeShaderLocalSize.fill(1); mState.mSamplerBindings.clear(); mState.mImageBindings.clear(); mState.mActiveImagesMask.reset(); mState.mNumViews = -1; mState.mGeometryShaderInputPrimitiveType = PrimitiveMode::Triangles; mState.mGeometryShaderOutputPrimitiveType = PrimitiveMode::TriangleStrip; mState.mGeometryShaderInvocations = 1; mState.mGeometryShaderMaxVertices = 0; mState.mDrawIDLocation = -1; mValidated = false; mLinked = false; mInfoLog.reset(); } angle::Result Program::loadBinary(const Context *context, GLenum binaryFormat, const void *binary, GLsizei length) { ASSERT(mLinkResolved); unlink(); #if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED return angle::Result::Continue; #else ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE); if (binaryFormat != GL_PROGRAM_BINARY_ANGLE) { mInfoLog << "Invalid program binary format."; return angle::Result::Continue; } BinaryInputStream stream(binary, length); ANGLE_TRY(deserialize(context, stream, mInfoLog)); // Currently we require the full shader text to compute the program hash. // We could also store the binary in the internal program cache. for (size_t uniformBlockIndex = 0; uniformBlockIndex < mState.mUniformBlocks.size(); ++uniformBlockIndex) { mDirtyBits.set(uniformBlockIndex); } mLinkingState.reset(new LinkingState()); mLinkingState->context = context; mLinkingState->linkingFromBinary = true; mLinkingState->linkEvent = mProgram->load(context, &stream, mInfoLog); mLinkResolved = false; return angle::Result::Continue; #endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED } angle::Result Program::saveBinary(Context *context, GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) const { ASSERT(mLinkResolved); if (binaryFormat) { *binaryFormat = GL_PROGRAM_BINARY_ANGLE; } angle::MemoryBuffer memoryBuf; serialize(context, &memoryBuf); GLsizei streamLength = static_cast(memoryBuf.size()); const uint8_t *streamState = memoryBuf.data(); if (streamLength > bufSize) { if (length) { *length = 0; } // TODO: This should be moved to the validation layer but computing the size of the binary // before saving it causes the save to happen twice. It may be possible to write the binary // to a separate buffer, validate sizes and then copy it. ANGLE_CHECK(context, false, "Insufficient buffer size", GL_INVALID_OPERATION); } if (binary) { char *ptr = reinterpret_cast(binary); memcpy(ptr, streamState, streamLength); ptr += streamLength; ASSERT(ptr - streamLength == binary); } if (length) { *length = streamLength; } return angle::Result::Continue; } GLint Program::getBinaryLength(Context *context) const { ASSERT(mLinkResolved); if (!mLinked) { return 0; } GLint length; angle::Result result = saveBinary(context, nullptr, nullptr, std::numeric_limits::max(), &length); if (result != angle::Result::Continue) { return 0; } return length; } void Program::setBinaryRetrievableHint(bool retrievable) { ASSERT(mLinkResolved); // TODO(jmadill) : replace with dirty bits mProgram->setBinaryRetrievableHint(retrievable); mState.mBinaryRetrieveableHint = retrievable; } bool Program::getBinaryRetrievableHint() const { ASSERT(mLinkResolved); return mState.mBinaryRetrieveableHint; } void Program::setSeparable(bool separable) { ASSERT(mLinkResolved); // TODO(yunchao) : replace with dirty bits if (mState.mSeparable != separable) { mProgram->setSeparable(separable); mState.mSeparable = separable; } } bool Program::isSeparable() const { ASSERT(mLinkResolved); return mState.mSeparable; } void Program::deleteSelf(const Context *context) { ASSERT(mRefCount == 0 && mDeleteStatus); mResourceManager->deleteProgram(context, mHandle); } unsigned int Program::getRefCount() const { return mRefCount; } int Program::getInfoLogLength() const { ASSERT(mLinkResolved); return static_cast(mInfoLog.getLength()); } void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const { ASSERT(mLinkResolved); return mInfoLog.getLog(bufSize, length, infoLog); } void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const { ASSERT(mLinkResolved); int total = 0; for (const Shader *shader : mState.mAttachedShaders) { if (shader && (total < maxCount)) { shaders[total] = shader->getHandle(); ++total; } } if (count) { *count = total; } } GLuint Program::getAttributeLocation(const std::string &name) const { ASSERT(mLinkResolved); return mState.getAttributeLocation(name); } bool Program::isAttribLocationActive(size_t attribLocation) const { ASSERT(mLinkResolved); ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size()); return mState.mActiveAttribLocationsMask[attribLocation]; } void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { ASSERT(mLinkResolved); if (!mLinked) { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *type = GL_NONE; *size = 1; return; } ASSERT(index < mState.mAttributes.size()); const sh::Attribute &attrib = mState.mAttributes[index]; if (bufsize > 0) { CopyStringToBuffer(name, attrib.name, bufsize, length); } // Always a single 'type' instance *size = 1; *type = attrib.type; } GLint Program::getActiveAttributeCount() const { ASSERT(mLinkResolved); if (!mLinked) { return 0; } return static_cast(mState.mAttributes.size()); } GLint Program::getActiveAttributeMaxLength() const { ASSERT(mLinkResolved); if (!mLinked) { return 0; } size_t maxLength = 0; for (const sh::Attribute &attrib : mState.mAttributes) { maxLength = std::max(attrib.name.length() + 1, maxLength); } return static_cast(maxLength); } const std::vector &Program::getAttributes() const { ASSERT(mLinkResolved); return mState.mAttributes; } const std::vector &Program::getSamplerBindings() const { ASSERT(mLinkResolved); return mState.mSamplerBindings; } const sh::WorkGroupSize &Program::getComputeShaderLocalSize() const { ASSERT(mLinkResolved); return mState.mComputeShaderLocalSize; } PrimitiveMode Program::getGeometryShaderInputPrimitiveType() const { ASSERT(mLinkResolved); return mState.mGeometryShaderInputPrimitiveType; } PrimitiveMode Program::getGeometryShaderOutputPrimitiveType() const { ASSERT(mLinkResolved); return mState.mGeometryShaderOutputPrimitiveType; } GLint Program::getGeometryShaderInvocations() const { ASSERT(mLinkResolved); return mState.mGeometryShaderInvocations; } GLint Program::getGeometryShaderMaxVertices() const { ASSERT(mLinkResolved); return mState.mGeometryShaderMaxVertices; } GLuint Program::getInputResourceIndex(const GLchar *name) const { ASSERT(mLinkResolved); return GetResourceIndexFromName(mState.mAttributes, std::string(name)); } GLuint Program::getOutputResourceIndex(const GLchar *name) const { ASSERT(mLinkResolved); return GetResourceIndexFromName(mState.mOutputVariables, std::string(name)); } size_t Program::getOutputResourceCount() const { ASSERT(mLinkResolved); return (mLinked ? mState.mOutputVariables.size() : 0); } const std::vector &Program::getOutputVariableTypes() const { ASSERT(mLinkResolved); return mState.mOutputVariableTypes; } template void Program::getResourceName(GLuint index, const std::vector &resources, GLsizei bufSize, GLsizei *length, GLchar *name) const { if (length) { *length = 0; } if (!mLinked) { if (bufSize > 0) { name[0] = '\0'; } return; } ASSERT(index < resources.size()); const auto &resource = resources[index]; if (bufSize > 0) { CopyStringToBuffer(name, resource.name, bufSize, length); } } void Program::getInputResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(mLinkResolved); getResourceName(index, mState.mAttributes, bufSize, length, name); } void Program::getOutputResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(mLinkResolved); getResourceName(index, mState.mOutputVariables, bufSize, length, name); } void Program::getUniformResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(mLinkResolved); getResourceName(index, mState.mUniforms, bufSize, length, name); } void Program::getBufferVariableResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(mLinkResolved); getResourceName(index, mState.mBufferVariables, bufSize, length, name); } const sh::Attribute &Program::getInputResource(GLuint index) const { ASSERT(mLinkResolved); ASSERT(index < mState.mAttributes.size()); return mState.mAttributes[index]; } const sh::OutputVariable &Program::getOutputResource(GLuint index) const { ASSERT(mLinkResolved); ASSERT(index < mState.mOutputVariables.size()); return mState.mOutputVariables[index]; } const ProgramBindings &Program::getAttributeBindings() const { ASSERT(mLinkResolved); return mAttributeBindings; } const ProgramBindings &Program::getUniformLocationBindings() const { ASSERT(mLinkResolved); return mUniformLocationBindings; } const ProgramBindings &Program::getFragmentInputBindings() const { ASSERT(mLinkResolved); return mFragmentInputBindings; } ComponentTypeMask Program::getDrawBufferTypeMask() const { ASSERT(mLinkResolved); return mState.mDrawBufferTypeMask; } ComponentTypeMask Program::getAttributesTypeMask() const { ASSERT(mLinkResolved); return mState.mAttributesTypeMask; } AttributesMask Program::getAttributesMask() const { ASSERT(mLinkResolved); return mState.mAttributesMask; } const std::vector &Program::getTransformFeedbackStrides() const { ASSERT(mLinkResolved); return mState.mTransformFeedbackStrides; } GLint Program::getFragDataLocation(const std::string &name) const { ASSERT(mLinkResolved); GLint primaryLocation = GetVariableLocation(mState.mOutputVariables, mState.mOutputLocations, name); if (primaryLocation != -1) { return primaryLocation; } return GetVariableLocation(mState.mOutputVariables, mState.mSecondaryOutputLocations, name); } GLint Program::getFragDataIndex(const std::string &name) const { ASSERT(mLinkResolved); if (GetVariableLocation(mState.mOutputVariables, mState.mOutputLocations, name) != -1) { return 0; } if (GetVariableLocation(mState.mOutputVariables, mState.mSecondaryOutputLocations, name) != -1) { return 1; } return -1; } void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { ASSERT(mLinkResolved); if (mLinked) { // index must be smaller than getActiveUniformCount() ASSERT(index < mState.mUniforms.size()); const LinkedUniform &uniform = mState.mUniforms[index]; if (bufsize > 0) { std::string string = uniform.name; CopyStringToBuffer(name, string, bufsize, length); } *size = clampCast(uniform.getBasicTypeElementCount()); *type = uniform.type; } else { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *size = 0; *type = GL_NONE; } } GLint Program::getActiveUniformCount() const { ASSERT(mLinkResolved); if (mLinked) { return static_cast(mState.mUniforms.size()); } else { return 0; } } size_t Program::getActiveBufferVariableCount() const { ASSERT(mLinkResolved); return mLinked ? mState.mBufferVariables.size() : 0; } GLint Program::getActiveUniformMaxLength() const { ASSERT(mLinkResolved); size_t maxLength = 0; if (mLinked) { for (const LinkedUniform &uniform : mState.mUniforms) { if (!uniform.name.empty()) { size_t length = uniform.name.length() + 1u; if (uniform.isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } } return static_cast(maxLength); } bool Program::isValidUniformLocation(GLint location) const { ASSERT(mLinkResolved); ASSERT(angle::IsValueInRangeForNumericType(mState.mUniformLocations.size())); return (location >= 0 && static_cast(location) < mState.mUniformLocations.size() && mState.mUniformLocations[static_cast(location)].used()); } const LinkedUniform &Program::getUniformByLocation(GLint location) const { ASSERT(mLinkResolved); ASSERT(location >= 0 && static_cast(location) < mState.mUniformLocations.size()); return mState.mUniforms[mState.getUniformIndexFromLocation(location)]; } const VariableLocation &Program::getUniformLocation(GLint location) const { ASSERT(mLinkResolved); ASSERT(location >= 0 && static_cast(location) < mState.mUniformLocations.size()); return mState.mUniformLocations[location]; } const BufferVariable &Program::getBufferVariableByIndex(GLuint index) const { ASSERT(mLinkResolved); ASSERT(index < static_cast(mState.mBufferVariables.size())); return mState.mBufferVariables[index]; } GLint Program::getUniformLocation(const std::string &name) const { ASSERT(mLinkResolved); return GetVariableLocation(mState.mUniforms, mState.mUniformLocations, name); } GLuint Program::getUniformIndex(const std::string &name) const { ASSERT(mLinkResolved); return mState.getUniformIndexFromName(name); } void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v); mProgram->setUniform1fv(location, clampedCount, v); } void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v); mProgram->setUniform2fv(location, clampedCount, v); } void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v); mProgram->setUniform3fv(location, clampedCount, v); } void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v); mProgram->setUniform4fv(location, clampedCount, v); } void Program::setUniform1iv(Context *context, GLint location, GLsizei count, const GLint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v); mProgram->setUniform1iv(location, clampedCount, v); if (mState.isSamplerUniformIndex(locationInfo.index)) { updateSamplerUniform(context, locationInfo, clampedCount, v); } } void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v); mProgram->setUniform2iv(location, clampedCount, v); } void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v); mProgram->setUniform3iv(location, clampedCount, v); } void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v); mProgram->setUniform4iv(location, clampedCount, v); } void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v); mProgram->setUniform1uiv(location, clampedCount, v); } void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v); mProgram->setUniform2uiv(location, clampedCount, v); } void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v); mProgram->setUniform3uiv(location, clampedCount, v); } void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) { ASSERT(mLinkResolved); const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v); mProgram->setUniform4uiv(location, clampedCount, v); } void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<2, 2>(location, count, transpose, v); mProgram->setUniformMatrix2fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<3, 3>(location, count, transpose, v); mProgram->setUniformMatrix3fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<4, 4>(location, count, transpose, v); mProgram->setUniformMatrix4fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<2, 3>(location, count, transpose, v); mProgram->setUniformMatrix2x3fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<2, 4>(location, count, transpose, v); mProgram->setUniformMatrix2x4fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<3, 2>(location, count, transpose, v); mProgram->setUniformMatrix3x2fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<3, 4>(location, count, transpose, v); mProgram->setUniformMatrix3x4fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<4, 2>(location, count, transpose, v); mProgram->setUniformMatrix4x2fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { ASSERT(mLinkResolved); GLsizei clampedCount = clampMatrixUniformCount<4, 3>(location, count, transpose, v); mProgram->setUniformMatrix4x3fv(location, clampedCount, transpose, v); } GLuint Program::getSamplerUniformBinding(const VariableLocation &uniformLocation) const { ASSERT(mLinkResolved); GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(uniformLocation.index); const std::vector &boundTextureUnits = mState.mSamplerBindings[samplerIndex].boundTextureUnits; return boundTextureUnits[uniformLocation.arrayIndex]; } void Program::getUniformfv(const Context *context, GLint location, GLfloat *v) const { ASSERT(mLinkResolved); const VariableLocation &uniformLocation = mState.getUniformLocations()[location]; const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index]; if (uniform.isSampler()) { *v = static_cast(getSamplerUniformBinding(uniformLocation)); return; } const GLenum nativeType = gl::VariableComponentType(uniform.type); if (nativeType == GL_FLOAT) { mProgram->getUniformfv(context, location, v); } else { getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type)); } } void Program::getUniformiv(const Context *context, GLint location, GLint *v) const { ASSERT(mLinkResolved); const VariableLocation &uniformLocation = mState.getUniformLocations()[location]; const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index]; if (uniform.isSampler()) { *v = static_cast(getSamplerUniformBinding(uniformLocation)); return; } const GLenum nativeType = gl::VariableComponentType(uniform.type); if (nativeType == GL_INT || nativeType == GL_BOOL) { mProgram->getUniformiv(context, location, v); } else { getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type)); } } void Program::getUniformuiv(const Context *context, GLint location, GLuint *v) const { ASSERT(mLinkResolved); const VariableLocation &uniformLocation = mState.getUniformLocations()[location]; const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index]; if (uniform.isSampler()) { *v = getSamplerUniformBinding(uniformLocation); return; } const GLenum nativeType = VariableComponentType(uniform.type); if (nativeType == GL_UNSIGNED_INT) { mProgram->getUniformuiv(context, location, v); } else { getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type)); } } void Program::flagForDeletion() { ASSERT(mLinkResolved); mDeleteStatus = true; } bool Program::isFlaggedForDeletion() const { ASSERT(mLinkResolved); return mDeleteStatus; } void Program::validate(const Caps &caps) { ASSERT(mLinkResolved); mInfoLog.reset(); if (mLinked) { mValidated = ConvertToBool(mProgram->validate(caps, &mInfoLog)); } else { mInfoLog << "Program has not been successfully linked."; } } bool Program::validateSamplersImpl(InfoLog *infoLog, const Caps &caps) { ASSERT(mLinkResolved); // if any two active samplers in a program are of different types, but refer to the same // texture image unit, and this is the current program, then ValidateProgram will fail, and // DrawArrays and DrawElements will issue the INVALID_OPERATION error. for (size_t textureUnit : mState.mActiveSamplersMask) { if (mState.mActiveSamplerTypes[textureUnit] == TextureType::InvalidEnum) { if (infoLog) { (*infoLog) << "Samplers of conflicting types refer to the same texture " "image unit (" << textureUnit << ")."; } mCachedValidateSamplersResult = false; return false; } } mCachedValidateSamplersResult = true; return true; } bool Program::isValidated() const { ASSERT(mLinkResolved); return mValidated; } void Program::getActiveUniformBlockName(const GLuint blockIndex, GLsizei bufSize, GLsizei *length, GLchar *blockName) const { ASSERT(mLinkResolved); GetInterfaceBlockName(blockIndex, mState.mUniformBlocks, bufSize, length, blockName); } void Program::getActiveShaderStorageBlockName(const GLuint blockIndex, GLsizei bufSize, GLsizei *length, GLchar *blockName) const { ASSERT(mLinkResolved); GetInterfaceBlockName(blockIndex, mState.mShaderStorageBlocks, bufSize, length, blockName); } template GLint Program::getActiveInterfaceBlockMaxNameLength(const std::vector &resources) const { int maxLength = 0; if (mLinked) { for (const T &resource : resources) { if (!resource.name.empty()) { int length = static_cast(resource.nameWithArrayIndex().length()); maxLength = std::max(length + 1, maxLength); } } } return maxLength; } GLint Program::getActiveUniformBlockMaxNameLength() const { ASSERT(mLinkResolved); return getActiveInterfaceBlockMaxNameLength(mState.mUniformBlocks); } GLint Program::getActiveShaderStorageBlockMaxNameLength() const { ASSERT(mLinkResolved); return getActiveInterfaceBlockMaxNameLength(mState.mShaderStorageBlocks); } GLuint Program::getUniformBlockIndex(const std::string &name) const { ASSERT(mLinkResolved); return GetInterfaceBlockIndex(mState.mUniformBlocks, name); } GLuint Program::getShaderStorageBlockIndex(const std::string &name) const { ASSERT(mLinkResolved); return GetInterfaceBlockIndex(mState.mShaderStorageBlocks, name); } const InterfaceBlock &Program::getUniformBlockByIndex(GLuint index) const { ASSERT(mLinkResolved); ASSERT(index < static_cast(mState.mUniformBlocks.size())); return mState.mUniformBlocks[index]; } const InterfaceBlock &Program::getShaderStorageBlockByIndex(GLuint index) const { ASSERT(mLinkResolved); ASSERT(index < static_cast(mState.mShaderStorageBlocks.size())); return mState.mShaderStorageBlocks[index]; } void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding) { ASSERT(mLinkResolved); mState.mUniformBlocks[uniformBlockIndex].binding = uniformBlockBinding; mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlockBinding != 0); mDirtyBits.set(DIRTY_BIT_UNIFORM_BLOCK_BINDING_0 + uniformBlockIndex); } GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const { ASSERT(mLinkResolved); return mState.getUniformBlockBinding(uniformBlockIndex); } GLuint Program::getShaderStorageBlockBinding(GLuint shaderStorageBlockIndex) const { ASSERT(mLinkResolved); return mState.getShaderStorageBlockBinding(shaderStorageBlockIndex); } void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode) { ASSERT(mLinkResolved); mState.mTransformFeedbackVaryingNames.resize(count); for (GLsizei i = 0; i < count; i++) { mState.mTransformFeedbackVaryingNames[i] = varyings[i]; } mState.mTransformFeedbackBufferMode = bufferMode; } void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const { ASSERT(mLinkResolved); if (mLinked) { ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size()); const auto &var = mState.mLinkedTransformFeedbackVaryings[index]; std::string varName = var.nameWithArrayIndex(); GLsizei lastNameIdx = std::min(bufSize - 1, static_cast(varName.length())); if (length) { *length = lastNameIdx; } if (size) { *size = var.size(); } if (type) { *type = var.type; } if (name) { memcpy(name, varName.c_str(), lastNameIdx); name[lastNameIdx] = '\0'; } } } GLsizei Program::getTransformFeedbackVaryingCount() const { ASSERT(mLinkResolved); if (mLinked) { return static_cast(mState.mLinkedTransformFeedbackVaryings.size()); } else { return 0; } } GLsizei Program::getTransformFeedbackVaryingMaxLength() const { ASSERT(mLinkResolved); if (mLinked) { GLsizei maxSize = 0; for (const auto &var : mState.mLinkedTransformFeedbackVaryings) { maxSize = std::max(maxSize, static_cast(var.nameWithArrayIndex().length() + 1)); } return maxSize; } else { return 0; } } GLenum Program::getTransformFeedbackBufferMode() const { ASSERT(mLinkResolved); return mState.mTransformFeedbackBufferMode; } bool Program::linkValidateShaders(InfoLog &infoLog) { Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex]; Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment]; Shader *computeShader = mState.mAttachedShaders[ShaderType::Compute]; Shader *geometryShader = mState.mAttachedShaders[ShaderType::Geometry]; bool isComputeShaderAttached = (computeShader != nullptr); bool isGraphicsShaderAttached = (vertexShader != nullptr || fragmentShader != nullptr || geometryShader != nullptr); // Check whether we both have a compute and non-compute shaders attached. // If there are of both types attached, then linking should fail. // OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram if (isComputeShaderAttached == true && isGraphicsShaderAttached == true) { infoLog << "Both compute and graphics shaders are attached to the same program."; return false; } if (computeShader) { if (!computeShader->isCompiled()) { infoLog << "Attached compute shader is not compiled."; return false; } ASSERT(computeShader->getType() == ShaderType::Compute); mState.mComputeShaderLocalSize = computeShader->getWorkGroupSize(); // GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs // If the work group size is not specified, a link time error should occur. if (!mState.mComputeShaderLocalSize.isDeclared()) { infoLog << "Work group size is not specified."; return false; } } else { if (!fragmentShader || !fragmentShader->isCompiled()) { infoLog << "No compiled fragment shader when at least one graphics shader is attached."; return false; } ASSERT(fragmentShader->getType() == ShaderType::Fragment); if (!vertexShader || !vertexShader->isCompiled()) { infoLog << "No compiled vertex shader when at least one graphics shader is attached."; return false; } ASSERT(vertexShader->getType() == ShaderType::Vertex); int vertexShaderVersion = vertexShader->getShaderVersion(); if (fragmentShader->getShaderVersion() != vertexShaderVersion) { infoLog << "Fragment shader version does not match vertex shader version."; return false; } if (geometryShader) { // [GL_EXT_geometry_shader] Chapter 7 // Linking can fail for a variety of reasons as specified in the OpenGL ES Shading // Language Specification, as well as any of the following reasons: // * One or more of the shader objects attached to are not compiled // successfully. // * The shaders do not use the same shader language version. // * contains objects to form a geometry shader, and // - is not separable and contains no objects to form a vertex shader; or // - the input primitive type, output primitive type, or maximum output vertex count // is not specified in the compiled geometry shader object. if (!geometryShader->isCompiled()) { infoLog << "The attached geometry shader isn't compiled."; return false; } if (geometryShader->getShaderVersion() != vertexShaderVersion) { mInfoLog << "Geometry shader version does not match vertex shader version."; return false; } ASSERT(geometryShader->getType() == ShaderType::Geometry); Optional inputPrimitive = geometryShader->getGeometryShaderInputPrimitiveType(); if (!inputPrimitive.valid()) { mInfoLog << "Input primitive type is not specified in the geometry shader."; return false; } Optional outputPrimitive = geometryShader->getGeometryShaderOutputPrimitiveType(); if (!outputPrimitive.valid()) { mInfoLog << "Output primitive type is not specified in the geometry shader."; return false; } Optional maxVertices = geometryShader->getGeometryShaderMaxVertices(); if (!maxVertices.valid()) { mInfoLog << "'max_vertices' is not specified in the geometry shader."; return false; } mState.mGeometryShaderInputPrimitiveType = inputPrimitive.value(); mState.mGeometryShaderOutputPrimitiveType = outputPrimitive.value(); mState.mGeometryShaderMaxVertices = maxVertices.value(); mState.mGeometryShaderInvocations = geometryShader->getGeometryShaderInvocations(); } } return true; } GLuint Program::getTransformFeedbackVaryingResourceIndex(const GLchar *name) const { ASSERT(mLinkResolved); for (GLuint tfIndex = 0; tfIndex < mState.mLinkedTransformFeedbackVaryings.size(); ++tfIndex) { const auto &tf = mState.mLinkedTransformFeedbackVaryings[tfIndex]; if (tf.nameWithArrayIndex() == name) { return tfIndex; } } return GL_INVALID_INDEX; } const TransformFeedbackVarying &Program::getTransformFeedbackVaryingResource(GLuint index) const { ASSERT(mLinkResolved); ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size()); return mState.mLinkedTransformFeedbackVaryings[index]; } bool Program::hasDrawIDUniform() const { ASSERT(mLinkResolved); return mState.mDrawIDLocation >= 0; } void Program::setDrawIDUniform(GLint drawid) { ASSERT(mLinkResolved); ASSERT(mState.mDrawIDLocation >= 0); mProgram->setUniform1iv(mState.mDrawIDLocation, 1, &drawid); } bool Program::linkVaryings(InfoLog &infoLog) const { Shader *previousShader = nullptr; for (ShaderType shaderType : kAllGraphicsShaderTypes) { Shader *currentShader = mState.mAttachedShaders[shaderType]; if (!currentShader) { continue; } if (previousShader) { if (!linkValidateShaderInterfaceMatching(previousShader, currentShader, infoLog)) { return false; } } previousShader = currentShader; } if (!linkValidateBuiltInVaryings(infoLog)) { return false; } if (!linkValidateFragmentInputBindings(infoLog)) { return false; } return true; } // [OpenGL ES 3.1] Chapter 7.4.1 "Shader Interface Matching" Page 91 // TODO(jiawei.shao@intel.com): add validation on input/output blocks matching bool Program::linkValidateShaderInterfaceMatching(gl::Shader *generatingShader, gl::Shader *consumingShader, gl::InfoLog &infoLog) const { ASSERT(generatingShader->getShaderVersion() == consumingShader->getShaderVersion()); const std::vector &outputVaryings = generatingShader->getOutputVaryings(); const std::vector &inputVaryings = consumingShader->getInputVaryings(); bool validateGeometryShaderInputs = consumingShader->getType() == ShaderType::Geometry; for (const sh::Varying &input : inputVaryings) { bool matched = false; // Built-in varyings obey special rules if (input.isBuiltIn()) { continue; } // An output variable is considered to match an input variable in the subsequent // shader if: // - the two variables match in name, type, and qualification; or // - the two variables are declared with the same location qualifier and // match in type and qualification. for (const sh::Varying &output : outputVaryings) { bool namesMatch = input.name == output.name; bool locationsMatch = (input.location != -1) && (input.location == output.location); if (namesMatch || locationsMatch) { ASSERT(!output.isBuiltIn()); std::string mismatchedStructFieldName; LinkMismatchError linkError = LinkValidateVaryings(output, input, generatingShader->getShaderVersion(), validateGeometryShaderInputs, &mismatchedStructFieldName); if (linkError != LinkMismatchError::NO_MISMATCH) { LogLinkMismatch(infoLog, input.name, "varying", linkError, mismatchedStructFieldName, generatingShader->getType(), consumingShader->getType()); return false; } matched = true; break; } } // We permit unmatched, unreferenced varyings. Note that this specifically depends on // whether the input is statically used - a statically used input should fail this test even // if it is not active. GLSL ES 3.00.6 section 4.3.10. if (!matched && input.staticUse) { infoLog << GetShaderTypeString(consumingShader->getType()) << " varying " << input.name << " does not match any " << GetShaderTypeString(generatingShader->getType()) << " varying"; return false; } } // TODO(jmadill): verify no unmatched output varyings? return true; } bool Program::linkValidateFragmentInputBindings(gl::InfoLog &infoLog) const { ASSERT(mState.mAttachedShaders[ShaderType::Fragment]); std::map staticFragmentInputLocations; const std::vector &fragmentInputVaryings = mState.mAttachedShaders[ShaderType::Fragment]->getInputVaryings(); for (const sh::Varying &input : fragmentInputVaryings) { if (input.isBuiltIn() || !input.staticUse) { continue; } const auto inputBinding = mFragmentInputBindings.getBinding(input); if (inputBinding == -1) continue; const auto it = staticFragmentInputLocations.find(inputBinding); if (it == std::end(staticFragmentInputLocations)) { staticFragmentInputLocations.insert(std::make_pair(inputBinding, input.name)); } else { infoLog << "Binding for fragment input " << input.name << " conflicts with " << it->second; return false; } } return true; } bool Program::linkUniforms(const Caps &caps, InfoLog &infoLog, const ProgramBindings &uniformLocationBindings, GLuint *combinedImageUniformsCount, std::vector *unusedUniforms) { UniformLinker linker(mState); if (!linker.link(caps, infoLog, uniformLocationBindings)) { return false; } linker.getResults(&mState.mUniforms, unusedUniforms, &mState.mUniformLocations); linkSamplerAndImageBindings(combinedImageUniformsCount); if (!linkAtomicCounterBuffers()) { return false; } return true; } void Program::linkSamplerAndImageBindings(GLuint *combinedImageUniforms) { ASSERT(combinedImageUniforms); unsigned int high = static_cast(mState.mUniforms.size()); unsigned int low = high; for (auto counterIter = mState.mUniforms.rbegin(); counterIter != mState.mUniforms.rend() && counterIter->isAtomicCounter(); ++counterIter) { --low; } mState.mAtomicCounterUniformRange = RangeUI(low, high); high = low; for (auto imageIter = mState.mUniforms.rbegin(); imageIter != mState.mUniforms.rend() && imageIter->isImage(); ++imageIter) { --low; } mState.mImageUniformRange = RangeUI(low, high); *combinedImageUniforms = 0u; // If uniform is a image type, insert it into the mImageBindings array. for (unsigned int imageIndex : mState.mImageUniformRange) { // ES3.1 (section 7.6.1) and GLSL ES3.1 (section 4.4.5), Uniform*i{v} commands // cannot load values into a uniform defined as an image. if declare without a // binding qualifier, any uniform image variable (include all elements of // unbound image array) shoud be bound to unit zero. auto &imageUniform = mState.mUniforms[imageIndex]; if (imageUniform.binding == -1) { mState.mImageBindings.emplace_back( ImageBinding(imageUniform.getBasicTypeElementCount())); } else { mState.mImageBindings.emplace_back( ImageBinding(imageUniform.binding, imageUniform.getBasicTypeElementCount(), false)); } GLuint arraySize = imageUniform.isArray() ? imageUniform.arraySizes[0] : 1u; *combinedImageUniforms += imageUniform.activeShaderCount() * arraySize; } high = low; for (auto samplerIter = mState.mUniforms.rbegin() + mState.mImageUniformRange.length(); samplerIter != mState.mUniforms.rend() && samplerIter->isSampler(); ++samplerIter) { --low; } mState.mSamplerUniformRange = RangeUI(low, high); // If uniform is a sampler type, insert it into the mSamplerBindings array. for (unsigned int samplerIndex : mState.mSamplerUniformRange) { const auto &samplerUniform = mState.mUniforms[samplerIndex]; TextureType textureType = SamplerTypeToTextureType(samplerUniform.type); unsigned int elementCount = samplerUniform.getBasicTypeElementCount(); SamplerFormat format = samplerUniform.typeInfo->samplerFormat; mState.mSamplerBindings.emplace_back(textureType, format, elementCount, false); } } bool Program::linkAtomicCounterBuffers() { for (unsigned int index : mState.mAtomicCounterUniformRange) { auto &uniform = mState.mUniforms[index]; uniform.blockInfo.offset = uniform.offset; uniform.blockInfo.arrayStride = (uniform.isArray() ? 4 : 0); uniform.blockInfo.matrixStride = 0; uniform.blockInfo.isRowMajorMatrix = false; bool found = false; for (unsigned int bufferIndex = 0; bufferIndex < mState.mAtomicCounterBuffers.size(); ++bufferIndex) { auto &buffer = mState.mAtomicCounterBuffers[bufferIndex]; if (buffer.binding == uniform.binding) { buffer.memberIndexes.push_back(index); uniform.bufferIndex = bufferIndex; found = true; buffer.unionReferencesWith(uniform); break; } } if (!found) { AtomicCounterBuffer atomicCounterBuffer; atomicCounterBuffer.binding = uniform.binding; atomicCounterBuffer.memberIndexes.push_back(index); atomicCounterBuffer.unionReferencesWith(uniform); mState.mAtomicCounterBuffers.push_back(atomicCounterBuffer); uniform.bufferIndex = static_cast(mState.mAtomicCounterBuffers.size() - 1); } } // TODO(jie.a.chen@intel.com): Count each atomic counter buffer to validate against // gl_Max[Vertex|Fragment|Compute|Geometry|Combined]AtomicCounterBuffers. return true; } // Assigns locations to all attributes from the bindings and program locations. bool Program::linkAttributes(const Context *context, InfoLog &infoLog) { const Caps &caps = context->getCaps(); const Limitations &limitations = context->getLimitations(); bool webglCompatibility = context->getExtensions().webglCompatibility; Shader *vertexShader = mState.getAttachedShader(ShaderType::Vertex); int shaderVersion = vertexShader->getShaderVersion(); unsigned int usedLocations = 0; if (shaderVersion >= 300) { // In GLSL ES 3.00.6, aliasing checks should be done with all declared attributes - see GLSL // ES 3.00.6 section 12.46. Inactive attributes will be pruned after aliasing checks. mState.mAttributes = vertexShader->getAllAttributes(); } else { // In GLSL ES 1.00.17 we only do aliasing checks for active attributes. mState.mAttributes = vertexShader->getActiveAttributes(); } GLuint maxAttribs = caps.maxVertexAttributes; std::vector usedAttribMap(maxAttribs, nullptr); // Assign locations to attributes that have a binding location and check for attribute aliasing. for (sh::Attribute &attribute : mState.mAttributes) { // GLSL ES 3.10 January 2016 section 4.3.4: Vertex shader inputs can't be arrays or // structures, so we don't need to worry about adjusting their names or generating entries // for each member/element (unlike uniforms for example). ASSERT(!attribute.isArray() && !attribute.isStruct()); int bindingLocation = mAttributeBindings.getBinding(attribute); if (attribute.location == -1 && bindingLocation != -1) { attribute.location = bindingLocation; } if (attribute.location != -1) { // Location is set by glBindAttribLocation or by location layout qualifier const int regs = VariableRegisterCount(attribute.type); if (static_cast(regs + attribute.location) > maxAttribs) { infoLog << "Attribute (" << attribute.name << ") at location " << attribute.location << " is too big to fit"; return false; } for (int reg = 0; reg < regs; reg++) { const int regLocation = attribute.location + reg; sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation]; // In GLSL ES 3.00.6 and in WebGL, attribute aliasing produces a link error. // In non-WebGL GLSL ES 1.00.17, attribute aliasing is allowed with some // restrictions - see GLSL ES 1.00.17 section 2.10.4, but ANGLE currently has a bug. // In D3D 9 and 11, aliasing is not supported, so check a limitation. if (linkedAttribute) { if (shaderVersion >= 300 || webglCompatibility || limitations.noVertexAttributeAliasing) { infoLog << "Attribute '" << attribute.name << "' aliases attribute '" << linkedAttribute->name << "' at location " << regLocation; return false; } } else { usedAttribMap[regLocation] = &attribute; } usedLocations |= 1 << regLocation; } } } // Assign locations to attributes that don't have a binding location. for (sh::Attribute &attribute : mState.mAttributes) { // Not set by glBindAttribLocation or by location layout qualifier if (attribute.location == -1) { int regs = VariableRegisterCount(attribute.type); int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs); if (availableIndex == -1 || static_cast(availableIndex + regs) > maxAttribs) { infoLog << "Too many attributes (" << attribute.name << ")"; return false; } attribute.location = availableIndex; } } ASSERT(mState.mAttributesTypeMask.none()); ASSERT(mState.mAttributesMask.none()); // Prune inactive attributes. This step is only needed on shaderVersion >= 300 since on earlier // shader versions we're only processing active attributes to begin with. if (shaderVersion >= 300) { for (auto attributeIter = mState.mAttributes.begin(); attributeIter != mState.mAttributes.end();) { if (attributeIter->active) { ++attributeIter; } else { attributeIter = mState.mAttributes.erase(attributeIter); } } } for (const sh::Attribute &attribute : mState.mAttributes) { ASSERT(attribute.active); ASSERT(attribute.location != -1); unsigned int regs = static_cast(VariableRegisterCount(attribute.type)); for (unsigned int r = 0; r < regs; r++) { unsigned int location = static_cast(attribute.location) + r; mState.mActiveAttribLocationsMask.set(location); mState.mMaxActiveAttribLocation = std::max(mState.mMaxActiveAttribLocation, location + 1); // gl_VertexID and gl_InstanceID are active attributes but don't have a bound attribute. if (!attribute.isBuiltIn()) { ComponentType componentType = GLenumToComponentType(VariableComponentType(attribute.type)); SetComponentTypeMask(componentType, location, &mState.mAttributesTypeMask); mState.mAttributesMask.set(location); } } } return true; } bool Program::linkInterfaceBlocks(const Caps &caps, const Version &version, bool webglCompatibility, InfoLog &infoLog, GLuint *combinedShaderStorageBlocksCount) { ASSERT(combinedShaderStorageBlocksCount); GLuint combinedUniformBlocksCount = 0u; GLuint numShadersHasUniformBlocks = 0u; ShaderMap *> allShaderUniformBlocks = {}; for (ShaderType shaderType : AllShaderTypes()) { Shader *shader = mState.mAttachedShaders[shaderType]; if (!shader) { continue; } const auto &uniformBlocks = shader->getUniformBlocks(); if (!uniformBlocks.empty()) { if (!ValidateInterfaceBlocksCount( caps.maxShaderUniformBlocks[shaderType], uniformBlocks, shaderType, sh::BlockType::BLOCK_UNIFORM, &combinedUniformBlocksCount, infoLog)) { return false; } allShaderUniformBlocks[shaderType] = &uniformBlocks; ++numShadersHasUniformBlocks; } } if (combinedUniformBlocksCount > caps.maxCombinedUniformBlocks) { infoLog << "The sum of the number of active uniform blocks exceeds " "MAX_COMBINED_UNIFORM_BLOCKS (" << caps.maxCombinedUniformBlocks << ")."; return false; } if (!ValidateInterfaceBlocksMatch(numShadersHasUniformBlocks, allShaderUniformBlocks, infoLog, webglCompatibility)) { return false; } if (version >= Version(3, 1)) { *combinedShaderStorageBlocksCount = 0u; GLuint numShadersHasShaderStorageBlocks = 0u; ShaderMap *> allShaderStorageBlocks = {}; for (ShaderType shaderType : AllShaderTypes()) { Shader *shader = mState.mAttachedShaders[shaderType]; if (!shader) { continue; } const auto &shaderStorageBlocks = shader->getShaderStorageBlocks(); if (!shaderStorageBlocks.empty()) { if (!ValidateInterfaceBlocksCount( caps.maxShaderStorageBlocks[shaderType], shaderStorageBlocks, shaderType, sh::BlockType::BLOCK_BUFFER, combinedShaderStorageBlocksCount, infoLog)) { return false; } allShaderStorageBlocks[shaderType] = &shaderStorageBlocks; ++numShadersHasShaderStorageBlocks; } } if (*combinedShaderStorageBlocksCount > caps.maxCombinedShaderStorageBlocks) { infoLog << "The sum of the number of active shader storage blocks exceeds " "MAX_COMBINED_SHADER_STORAGE_BLOCKS (" << caps.maxCombinedShaderStorageBlocks << ")."; return false; } if (!ValidateInterfaceBlocksMatch(numShadersHasShaderStorageBlocks, allShaderStorageBlocks, infoLog, webglCompatibility)) { return false; } } return true; } LinkMismatchError Program::LinkValidateVariablesBase(const sh::ShaderVariable &variable1, const sh::ShaderVariable &variable2, bool validatePrecision, bool validateArraySize, std::string *mismatchedStructOrBlockMemberName) { if (variable1.type != variable2.type) { return LinkMismatchError::TYPE_MISMATCH; } if (validateArraySize && variable1.arraySizes != variable2.arraySizes) { return LinkMismatchError::ARRAY_SIZE_MISMATCH; } if (validatePrecision && variable1.precision != variable2.precision) { return LinkMismatchError::PRECISION_MISMATCH; } if (variable1.structName != variable2.structName) { return LinkMismatchError::STRUCT_NAME_MISMATCH; } if (variable1.fields.size() != variable2.fields.size()) { return LinkMismatchError::FIELD_NUMBER_MISMATCH; } const unsigned int numMembers = static_cast(variable1.fields.size()); for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++) { const sh::ShaderVariable &member1 = variable1.fields[memberIndex]; const sh::ShaderVariable &member2 = variable2.fields[memberIndex]; if (member1.name != member2.name) { return LinkMismatchError::FIELD_NAME_MISMATCH; } LinkMismatchError linkErrorOnField = LinkValidateVariablesBase( member1, member2, validatePrecision, true, mismatchedStructOrBlockMemberName); if (linkErrorOnField != LinkMismatchError::NO_MISMATCH) { AddParentPrefix(member1.name, mismatchedStructOrBlockMemberName); return linkErrorOnField; } } return LinkMismatchError::NO_MISMATCH; } LinkMismatchError Program::LinkValidateVaryings(const sh::Varying &outputVarying, const sh::Varying &inputVarying, int shaderVersion, bool validateGeometryShaderInputVarying, std::string *mismatchedStructFieldName) { if (validateGeometryShaderInputVarying) { // [GL_EXT_geometry_shader] Section 11.1gs.4.3: // The OpenGL ES Shading Language doesn't support multi-dimensional arrays as shader inputs // or outputs. ASSERT(inputVarying.arraySizes.size() == 1u); // Geometry shader input varyings are not treated as arrays, so a vertex array output // varying cannot match a geometry shader input varying. // [GL_EXT_geometry_shader] Section 7.4.1: // Geometry shader per-vertex input variables and blocks are required to be declared as // arrays, with each element representing input or output values for a single vertex of a // multi-vertex primitive. For the purposes of interface matching, such variables and blocks // are treated as though they were not declared as arrays. if (outputVarying.isArray()) { return LinkMismatchError::ARRAY_SIZE_MISMATCH; } } // Skip the validation on the array sizes between a vertex output varying and a geometry input // varying as it has been done before. LinkMismatchError linkError = LinkValidateVariablesBase(outputVarying, inputVarying, false, !validateGeometryShaderInputVarying, mismatchedStructFieldName); if (linkError != LinkMismatchError::NO_MISMATCH) { return linkError; } if (!sh::InterpolationTypesMatch(outputVarying.interpolation, inputVarying.interpolation)) { return LinkMismatchError::INTERPOLATION_TYPE_MISMATCH; } if (shaderVersion == 100 && outputVarying.isInvariant != inputVarying.isInvariant) { return LinkMismatchError::INVARIANCE_MISMATCH; } return LinkMismatchError::NO_MISMATCH; } bool Program::linkValidateBuiltInVaryings(InfoLog &infoLog) const { Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex]; Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment]; const auto &vertexVaryings = vertexShader->getOutputVaryings(); const auto &fragmentVaryings = fragmentShader->getInputVaryings(); int shaderVersion = vertexShader->getShaderVersion(); if (shaderVersion != 100) { // Only ESSL 1.0 has restrictions on matching input and output invariance return true; } bool glPositionIsInvariant = false; bool glPointSizeIsInvariant = false; bool glFragCoordIsInvariant = false; bool glPointCoordIsInvariant = false; for (const sh::Varying &varying : vertexVaryings) { if (!varying.isBuiltIn()) { continue; } if (varying.name.compare("gl_Position") == 0) { glPositionIsInvariant = varying.isInvariant; } else if (varying.name.compare("gl_PointSize") == 0) { glPointSizeIsInvariant = varying.isInvariant; } } for (const sh::Varying &varying : fragmentVaryings) { if (!varying.isBuiltIn()) { continue; } if (varying.name.compare("gl_FragCoord") == 0) { glFragCoordIsInvariant = varying.isInvariant; } else if (varying.name.compare("gl_PointCoord") == 0) { glPointCoordIsInvariant = varying.isInvariant; } } // There is some ambiguity in ESSL 1.00.17 paragraph 4.6.4 interpretation, // for example, https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13842. // Not requiring invariance to match is supported by: // dEQP, WebGL CTS, Nexus 5X GLES if (glFragCoordIsInvariant && !glPositionIsInvariant) { infoLog << "gl_FragCoord can only be declared invariant if and only if gl_Position is " "declared invariant."; return false; } if (glPointCoordIsInvariant && !glPointSizeIsInvariant) { infoLog << "gl_PointCoord can only be declared invariant if and only if gl_PointSize is " "declared invariant."; return false; } return true; } bool Program::linkValidateTransformFeedback(const Version &version, InfoLog &infoLog, const ProgramMergedVaryings &varyings, const Caps &caps) const { // Validate the tf names regardless of the actual program varyings. std::set uniqueNames; for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames) { if (version < Version(3, 1) && tfVaryingName.find('[') != std::string::npos) { infoLog << "Capture of array elements is undefined and not supported."; return false; } if (version >= Version(3, 1)) { if (IncludeSameArrayElement(uniqueNames, tfVaryingName)) { infoLog << "Two transform feedback varyings include the same array element (" << tfVaryingName << ")."; return false; } } else { if (uniqueNames.count(tfVaryingName) > 0) { infoLog << "Two transform feedback varyings specify the same output variable (" << tfVaryingName << ")."; return false; } } uniqueNames.insert(tfVaryingName); } // Validate against program varyings. size_t totalComponents = 0; for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames) { std::vector subscripts; std::string baseName = ParseResourceName(tfVaryingName, &subscripts); const sh::ShaderVariable *var = FindVaryingOrField(varyings, baseName); if (var == nullptr) { infoLog << "Transform feedback varying " << tfVaryingName << " does not exist in the vertex shader."; return false; } // Validate the matching variable. if (var->isStruct()) { infoLog << "Struct cannot be captured directly (" << baseName << ")."; return false; } size_t elementCount = 0; size_t componentCount = 0; if (var->isArray()) { if (version < Version(3, 1)) { infoLog << "Capture of arrays is undefined and not supported."; return false; } // GLSL ES 3.10 section 4.3.6: A vertex output can't be an array of arrays. ASSERT(!var->isArrayOfArrays()); if (!subscripts.empty() && subscripts[0] >= var->getOutermostArraySize()) { infoLog << "Cannot capture outbound array element '" << tfVaryingName << "'."; return false; } elementCount = (subscripts.empty() ? var->getOutermostArraySize() : 1); } else { if (!subscripts.empty()) { infoLog << "Varying '" << baseName << "' is not an array to be captured by element."; return false; } elementCount = 1; } // TODO(jmadill): Investigate implementation limits on D3D11 componentCount = VariableComponentCount(var->type) * elementCount; if (mState.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS && componentCount > caps.maxTransformFeedbackSeparateComponents) { infoLog << "Transform feedback varying " << tfVaryingName << " components (" << componentCount << ") exceed the maximum separate components (" << caps.maxTransformFeedbackSeparateComponents << ")."; return false; } totalComponents += componentCount; if (mState.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > caps.maxTransformFeedbackInterleavedComponents) { infoLog << "Transform feedback varying total components (" << totalComponents << ") exceed the maximum interleaved components (" << caps.maxTransformFeedbackInterleavedComponents << ")."; return false; } } return true; } bool Program::linkValidateGlobalNames(InfoLog &infoLog) const { const std::vector &attributes = mState.mAttachedShaders[ShaderType::Vertex]->getActiveAttributes(); std::unordered_map uniformMap; using BlockAndFieldPair = std::pair; std::unordered_map> uniformBlockFieldMap; for (ShaderType shaderType : kAllGraphicsShaderTypes) { Shader *shader = mState.mAttachedShaders[shaderType]; if (!shader) { continue; } // Build a map of Uniforms const std::vector uniforms = shader->getUniforms(); for (const auto &uniform : uniforms) { uniformMap[uniform.name] = &uniform; } // Build a map of Uniform Blocks // This will also detect any field name conflicts between Uniform Blocks without instance // names const std::vector &uniformBlocks = shader->getUniformBlocks(); for (const auto &uniformBlock : uniformBlocks) { // Only uniform blocks without an instance name can create a conflict with their field // names if (!uniformBlock.instanceName.empty()) { continue; } for (const auto &field : uniformBlock.fields) { if (!uniformBlockFieldMap.count(field.name)) { // First time we've seen this uniform block field name, so add the // (Uniform Block, Field) pair immediately since there can't be a conflict yet BlockAndFieldPair blockAndFieldPair(&uniformBlock, &field); std::vector newUniformBlockList; newUniformBlockList.push_back(blockAndFieldPair); uniformBlockFieldMap[field.name] = newUniformBlockList; continue; } // We've seen this name before. // We need to check each of the uniform blocks that contain a field with this name // to see if there's a conflict or not. std::vector prevBlockFieldPairs = uniformBlockFieldMap[field.name]; for (const auto prevBlockFieldPair : prevBlockFieldPairs) { const sh::InterfaceBlock *prevUniformBlock = prevBlockFieldPair.first; const sh::InterfaceBlockField *prevUniformBlockField = prevBlockFieldPair.second; if (uniformBlock.isSameInterfaceBlockAtLinkTime(*prevUniformBlock)) { // The same uniform block should, by definition, contain the same field name continue; } // The uniform blocks don't match, so check if the necessary field properties // also match if ((field.name == prevUniformBlockField->name) && (field.type == prevUniformBlockField->type) && (field.precision == prevUniformBlockField->precision)) { infoLog << "Name conflicts between uniform block field names: " << field.name; return false; } } // No conflict, so record this pair BlockAndFieldPair blockAndFieldPair(&uniformBlock, &field); uniformBlockFieldMap[field.name].push_back(blockAndFieldPair); } } } // Validate no uniform names conflict with attribute names for (const auto &attrib : attributes) { if (uniformMap.count(attrib.name)) { infoLog << "Name conflicts between a uniform and an attribute: " << attrib.name; return false; } } // Validate no Uniform Block fields conflict with other Uniforms for (const auto &uniformBlockField : uniformBlockFieldMap) { const std::string &fieldName = uniformBlockField.first; if (uniformMap.count(fieldName)) { infoLog << "Name conflicts between a uniform and a uniform block field: " << fieldName; return false; } } return true; } void Program::gatherTransformFeedbackVaryings(const ProgramMergedVaryings &varyings) { // Gather the linked varyings that are used for transform feedback, they should all exist. mState.mLinkedTransformFeedbackVaryings.clear(); for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames) { std::vector subscripts; std::string baseName = ParseResourceName(tfVaryingName, &subscripts); size_t subscript = GL_INVALID_INDEX; if (!subscripts.empty()) { subscript = subscripts.back(); } for (const auto &ref : varyings) { const sh::Varying *varying = ref.second.get(); if (baseName == varying->name) { mState.mLinkedTransformFeedbackVaryings.emplace_back( *varying, static_cast(subscript)); break; } else if (varying->isStruct()) { GLuint fieldIndex = 0; const auto *field = FindShaderVarField(*varying, tfVaryingName, &fieldIndex); if (field != nullptr) { mState.mLinkedTransformFeedbackVaryings.emplace_back(*field, *varying); break; } } } } } ProgramMergedVaryings Program::getMergedVaryings() const { ProgramMergedVaryings merged; for (const sh::Varying &varying : mState.mAttachedShaders[ShaderType::Vertex]->getOutputVaryings()) { merged[varying.name].vertex = &varying; } for (const sh::Varying &varying : mState.mAttachedShaders[ShaderType::Fragment]->getInputVaryings()) { merged[varying.name].fragment = &varying; } return merged; } bool CompareOutputVariable(const sh::OutputVariable &a, const sh::OutputVariable &b) { return a.getArraySizeProduct() > b.getArraySizeProduct(); } int Program::getOutputLocationForLink(const sh::OutputVariable &outputVariable) const { if (outputVariable.location != -1) { return outputVariable.location; } int apiLocation = mFragmentOutputLocations.getBinding(outputVariable); if (apiLocation != -1) { return apiLocation; } return -1; } bool Program::isOutputSecondaryForLink(const sh::OutputVariable &outputVariable) const { if (outputVariable.index != -1) { ASSERT(outputVariable.index == 0 || outputVariable.index == 1); return (outputVariable.index == 1); } int apiIndex = mFragmentOutputIndexes.getBinding(outputVariable); if (apiIndex != -1) { // Index layout qualifier from the shader takes precedence, so the index from the API is // checked only if the index was not set in the shader. This is not specified in the EXT // spec, but is specified in desktop OpenGL specs. return (apiIndex == 1); } // EXT_blend_func_extended: Outputs get index 0 by default. return false; } namespace { bool FindUsedOutputLocation(std::vector &outputLocations, unsigned int baseLocation, unsigned int elementCount, const std::vector &reservedLocations, unsigned int variableIndex) { if (baseLocation + elementCount > outputLocations.size()) { elementCount = baseLocation < outputLocations.size() ? outputLocations.size() - baseLocation : 0; } for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++) { const unsigned int location = baseLocation + elementIndex; if (outputLocations[location].used()) { VariableLocation locationInfo(elementIndex, variableIndex); if (std::find(reservedLocations.begin(), reservedLocations.end(), locationInfo) == reservedLocations.end()) { return true; } } } return false; } void AssignOutputLocations(std::vector &outputLocations, unsigned int baseLocation, unsigned int elementCount, const std::vector &reservedLocations, unsigned int variableIndex) { if (baseLocation + elementCount > outputLocations.size()) { outputLocations.resize(baseLocation + elementCount); } for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++) { VariableLocation locationInfo(elementIndex, variableIndex); if (std::find(reservedLocations.begin(), reservedLocations.end(), locationInfo) == reservedLocations.end()) { const unsigned int location = baseLocation + elementIndex; outputLocations[location] = locationInfo; } } } } // anonymous namespace bool Program::linkOutputVariables(const Caps &caps, const Extensions &extensions, const Version &version, GLuint combinedImageUniformsCount, GLuint combinedShaderStorageBlocksCount) { Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment]; ASSERT(fragmentShader != nullptr); ASSERT(mState.mOutputVariableTypes.empty()); ASSERT(mState.mActiveOutputVariables.none()); ASSERT(mState.mDrawBufferTypeMask.none()); const auto &outputVariables = fragmentShader->getActiveOutputVariables(); // Gather output variable types for (const auto &outputVariable : outputVariables) { if (outputVariable.isBuiltIn() && outputVariable.name != "gl_FragColor" && outputVariable.name != "gl_FragData") { continue; } unsigned int baseLocation = (outputVariable.location == -1 ? 0u : static_cast(outputVariable.location)); // GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of // structures, so we may use getBasicTypeElementCount(). unsigned int elementCount = outputVariable.getBasicTypeElementCount(); for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++) { const unsigned int location = baseLocation + elementIndex; if (location >= mState.mOutputVariableTypes.size()) { mState.mOutputVariableTypes.resize(location + 1, GL_NONE); } ASSERT(location < mState.mActiveOutputVariables.size()); mState.mActiveOutputVariables.set(location); mState.mOutputVariableTypes[location] = VariableComponentType(outputVariable.type); ComponentType componentType = GLenumToComponentType(mState.mOutputVariableTypes[location]); SetComponentTypeMask(componentType, location, &mState.mDrawBufferTypeMask); } } if (version >= ES_3_1) { // [OpenGL ES 3.1] Chapter 8.22 Page 203: // A link error will be generated if the sum of the number of active image uniforms used in // all shaders, the number of active shader storage blocks, and the number of active // fragment shader outputs exceeds the implementation-dependent value of // MAX_COMBINED_SHADER_OUTPUT_RESOURCES. if (combinedImageUniformsCount + combinedShaderStorageBlocksCount + mState.mActiveOutputVariables.count() > caps.maxCombinedShaderOutputResources) { mInfoLog << "The sum of the number of active image uniforms, active shader storage blocks " "and active fragment shader outputs exceeds " "MAX_COMBINED_SHADER_OUTPUT_RESOURCES (" << caps.maxCombinedShaderOutputResources << ")"; return false; } } // Skip this step for GLES2 shaders. if (fragmentShader->getShaderVersion() == 100) return true; mState.mOutputVariables = outputVariables; // TODO(jmadill): any caps validation here? for (sh::OutputVariable &outputVariable : mState.mOutputVariables) { if (outputVariable.isArray()) { // We're following the GLES 3.1 November 2016 spec section 7.3.1.1 Naming Active // Resources and including [0] at the end of array variable names. outputVariable.name += "[0]"; outputVariable.mappedName += "[0]"; } } // EXT_blend_func_extended doesn't specify anything related to binding specific elements of an // output array in explicit terms. // // Assuming fragData is an output array, you can defend the position that: // P1) you must support binding "fragData" because it's specified // P2) you must support querying "fragData[x]" because it's specified // P3) you must support binding "fragData[0]" because it's a frequently used pattern // // Then you can make the leap of faith: // P4) you must support binding "fragData[x]" because you support "fragData[0]" // P5) you must support binding "fragData[x]" because you support querying "fragData[x]" // // The spec brings in the "world of arrays" when it mentions binding the arrays and the // automatic binding. Thus it must be interpreted that the thing is not undefined, rather you // must infer the only possible interpretation (?). Note again: this need of interpretation // might be completely off of what GL spec logic is. // // The other complexity is that unless you implement this feature, it's hard to understand what // should happen when the client invokes the feature. You cannot add an additional error as it // is not specified. One can ignore it, but obviously it creates the discrepancies... std::vector reservedLocations; // Process any output API bindings for arrays that don't alias to the first element. for (const auto &binding : mFragmentOutputLocations) { size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(binding.first, &nameLengthWithoutArrayIndex); if (arrayIndex == 0 || arrayIndex == GL_INVALID_INDEX) { continue; } for (unsigned int outputVariableIndex = 0; outputVariableIndex < mState.mOutputVariables.size(); outputVariableIndex++) { const sh::OutputVariable &outputVariable = mState.mOutputVariables[outputVariableIndex]; // Check that the binding corresponds to an output array and its array index fits. if (outputVariable.isBuiltIn() || !outputVariable.isArray() || !angle::BeginsWith(outputVariable.name, binding.first, nameLengthWithoutArrayIndex) || arrayIndex >= outputVariable.getOutermostArraySize()) { continue; } // Get the API index that corresponds to this exact binding. // This index may differ from the index used for the array's base. auto &outputLocations = mFragmentOutputIndexes.getBindingByName(binding.first) == 1 ? mState.mSecondaryOutputLocations : mState.mOutputLocations; unsigned int location = binding.second.location; VariableLocation locationInfo(arrayIndex, outputVariableIndex); if (location >= outputLocations.size()) { outputLocations.resize(location + 1); } if (outputLocations[location].used()) { mInfoLog << "Location of variable " << outputVariable.name << " conflicts with another variable."; return false; } outputLocations[location] = locationInfo; // Note the array binding location so that it can be skipped later. reservedLocations.push_back(locationInfo); } } // Reserve locations for output variables whose location is fixed in the shader or through the // API. Otherwise, the remaining unallocated outputs will be processed later. for (unsigned int outputVariableIndex = 0; outputVariableIndex < mState.mOutputVariables.size(); outputVariableIndex++) { const sh::OutputVariable &outputVariable = mState.mOutputVariables[outputVariableIndex]; // Don't store outputs for gl_FragDepth, gl_FragColor, etc. if (outputVariable.isBuiltIn()) continue; int fixedLocation = getOutputLocationForLink(outputVariable); if (fixedLocation == -1) { // Here we're only reserving locations for variables whose location is fixed. continue; } unsigned int baseLocation = static_cast(fixedLocation); auto &outputLocations = isOutputSecondaryForLink(outputVariable) ? mState.mSecondaryOutputLocations : mState.mOutputLocations; // GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of // structures, so we may use getBasicTypeElementCount(). unsigned int elementCount = outputVariable.getBasicTypeElementCount(); if (FindUsedOutputLocation(outputLocations, baseLocation, elementCount, reservedLocations, outputVariableIndex)) { mInfoLog << "Location of variable " << outputVariable.name << " conflicts with another variable."; return false; } AssignOutputLocations(outputLocations, baseLocation, elementCount, reservedLocations, outputVariableIndex); } // Here we assign locations for the output variables that don't yet have them. Note that we're // not necessarily able to fit the variables optimally, since then we might have to try // different arrangements of output arrays. Now we just assign the locations in the order that // we got the output variables. The spec isn't clear on what kind of algorithm is required for // finding locations for the output variables, so this should be acceptable at least for now. GLuint maxLocation = caps.maxDrawBuffers; if (!mState.mSecondaryOutputLocations.empty()) { // EXT_blend_func_extended: Program outputs will be validated against // MAX_DUAL_SOURCE_DRAW_BUFFERS_EXT if there's even one output with index one. maxLocation = extensions.maxDualSourceDrawBuffers; } for (unsigned int outputVariableIndex = 0; outputVariableIndex < mState.mOutputVariables.size(); outputVariableIndex++) { const sh::OutputVariable &outputVariable = mState.mOutputVariables[outputVariableIndex]; // Don't store outputs for gl_FragDepth, gl_FragColor, etc. if (outputVariable.isBuiltIn()) continue; int fixedLocation = getOutputLocationForLink(outputVariable); auto &outputLocations = isOutputSecondaryForLink(outputVariable) ? mState.mSecondaryOutputLocations : mState.mOutputLocations; unsigned int baseLocation = 0; unsigned int elementCount = outputVariable.getBasicTypeElementCount(); if (fixedLocation != -1) { // Secondary inputs might have caused the max location to drop below what has already // been explicitly assigned locations. Check for any fixed locations above the max // that should cause linking to fail. baseLocation = static_cast(fixedLocation); } else { // No fixed location, so try to fit the output in unassigned locations. // Try baseLocations starting from 0 one at a time and see if the variable fits. while (FindUsedOutputLocation(outputLocations, baseLocation, elementCount, reservedLocations, outputVariableIndex)) { baseLocation++; } AssignOutputLocations(outputLocations, baseLocation, elementCount, reservedLocations, outputVariableIndex); } // Check for any elements assigned above the max location that are actually used. if (baseLocation + elementCount > maxLocation && (baseLocation >= maxLocation || FindUsedOutputLocation(outputLocations, maxLocation, baseLocation + elementCount - maxLocation, reservedLocations, outputVariableIndex))) { // EXT_blend_func_extended: Linking can fail: // "if the explicit binding assignments do not leave enough space for the linker to // automatically assign a location for a varying out array, which requires multiple // contiguous locations." mInfoLog << "Could not fit output variable into available locations: " << outputVariable.name; return false; } } return true; } void Program::setUniformValuesFromBindingQualifiers() { for (unsigned int samplerIndex : mState.mSamplerUniformRange) { const auto &samplerUniform = mState.mUniforms[samplerIndex]; if (samplerUniform.binding != -1) { GLint location = getUniformLocation(samplerUniform.name); ASSERT(location != -1); std::vector boundTextureUnits; for (unsigned int elementIndex = 0; elementIndex < samplerUniform.getBasicTypeElementCount(); ++elementIndex) { boundTextureUnits.push_back(samplerUniform.binding + elementIndex); } // Here we pass nullptr to avoid a large chain of calls that need a non-const Context. // We know it's safe not to notify the Context because this is only called after link. setUniform1iv(nullptr, location, static_cast(boundTextureUnits.size()), boundTextureUnits.data()); } } } void Program::initInterfaceBlockBindings() { // Set initial bindings from shader. for (unsigned int blockIndex = 0; blockIndex < mState.mUniformBlocks.size(); blockIndex++) { InterfaceBlock &uniformBlock = mState.mUniformBlocks[blockIndex]; bindUniformBlock(blockIndex, uniformBlock.binding); } } void Program::updateSamplerUniform(Context *context, const VariableLocation &locationInfo, GLsizei clampedCount, const GLint *v) { ASSERT(mState.isSamplerUniformIndex(locationInfo.index)); GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(locationInfo.index); SamplerBinding &samplerBinding = mState.mSamplerBindings[samplerIndex]; std::vector &boundTextureUnits = samplerBinding.boundTextureUnits; if (samplerBinding.unreferenced) return; // Update the sampler uniforms. for (GLsizei arrayIndex = 0; arrayIndex < clampedCount; ++arrayIndex) { GLint oldTextureUnit = boundTextureUnits[arrayIndex + locationInfo.arrayIndex]; GLint newTextureUnit = v[arrayIndex]; if (oldTextureUnit == newTextureUnit) continue; boundTextureUnits[arrayIndex + locationInfo.arrayIndex] = newTextureUnit; // Update the reference counts. uint32_t &oldRefCount = mState.mActiveSamplerRefCounts[oldTextureUnit]; uint32_t &newRefCount = mState.mActiveSamplerRefCounts[newTextureUnit]; ASSERT(oldRefCount > 0); ASSERT(newRefCount < std::numeric_limits::max()); oldRefCount--; newRefCount++; // Check for binding type change. TextureType &newSamplerType = mState.mActiveSamplerTypes[newTextureUnit]; TextureType &oldSamplerType = mState.mActiveSamplerTypes[oldTextureUnit]; SamplerFormat &newSamplerFormat = mState.mActiveSamplerFormats[newTextureUnit]; SamplerFormat &oldSamplerFormat = mState.mActiveSamplerFormats[oldTextureUnit]; if (newRefCount == 1) { newSamplerType = samplerBinding.textureType; newSamplerFormat = samplerBinding.format; mState.mActiveSamplersMask.set(newTextureUnit); } else { if (newSamplerType != samplerBinding.textureType) { // Conflict detected. Ensure we reset it properly. newSamplerType = TextureType::InvalidEnum; } if (newSamplerFormat != samplerBinding.format) { newSamplerFormat = SamplerFormat::InvalidEnum; } } // Unset previously active sampler. if (oldRefCount == 0) { oldSamplerType = TextureType::InvalidEnum; oldSamplerFormat = SamplerFormat::InvalidEnum; mState.mActiveSamplersMask.reset(oldTextureUnit); } else { if (oldSamplerType == TextureType::InvalidEnum || oldSamplerFormat == SamplerFormat::InvalidEnum) { // Previous conflict. Check if this new change fixed the conflict. mState.setSamplerUniformTextureTypeAndFormat(oldTextureUnit); } } // Notify context. if (context) { context->onSamplerUniformChange(newTextureUnit); context->onSamplerUniformChange(oldTextureUnit); } } // Invalidate the validation cache. mCachedValidateSamplersResult.reset(); } void ProgramState::setSamplerUniformTextureTypeAndFormat(size_t textureUnitIndex) { bool foundBinding = false; TextureType foundType = TextureType::InvalidEnum; SamplerFormat foundFormat = SamplerFormat::InvalidEnum; for (const SamplerBinding &binding : mSamplerBindings) { if (binding.unreferenced) continue; // A conflict exists if samplers of different types are sourced by the same texture unit. // We need to check all bound textures to detect this error case. for (GLuint textureUnit : binding.boundTextureUnits) { if (textureUnit == textureUnitIndex) { if (!foundBinding) { foundBinding = true; foundType = binding.textureType; foundFormat = binding.format; } else { if (foundType != binding.textureType) { foundType = TextureType::InvalidEnum; } if (foundFormat != binding.format) { foundFormat = SamplerFormat::InvalidEnum; } } } } } mActiveSamplerTypes[textureUnitIndex] = foundType; mActiveSamplerFormats[textureUnitIndex] = foundFormat; } template GLsizei Program::clampUniformCount(const VariableLocation &locationInfo, GLsizei count, int vectorSize, const T *v) { if (count == 1) return 1; const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index]; // OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array // element index used, as reported by GetActiveUniform, will be ignored by the GL." unsigned int remainingElements = linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex; GLsizei maxElementCount = static_cast(remainingElements * linkedUniform.getElementComponents()); if (count * vectorSize > maxElementCount) { return maxElementCount / vectorSize; } return count; } template GLsizei Program::clampMatrixUniformCount(GLint location, GLsizei count, GLboolean transpose, const T *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; if (!transpose) { return clampUniformCount(locationInfo, count, cols * rows, v); } const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index]; // OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array // element index used, as reported by GetActiveUniform, will be ignored by the GL." unsigned int remainingElements = linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex; return std::min(count, static_cast(remainingElements)); } // Driver differences mean that doing the uniform value cast ourselves gives consistent results. // EG: on NVIDIA drivers, it was observed that getUniformi for MAX_INT+1 returned MIN_INT. template void Program::getUniformInternal(const Context *context, DestT *dataOut, GLint location, GLenum nativeType, int components) const { switch (nativeType) { case GL_BOOL: { GLint tempValue[16] = {0}; mProgram->getUniformiv(context, location, tempValue); UniformStateQueryCastLoop( dataOut, reinterpret_cast(tempValue), components); break; } case GL_INT: { GLint tempValue[16] = {0}; mProgram->getUniformiv(context, location, tempValue); UniformStateQueryCastLoop(dataOut, reinterpret_cast(tempValue), components); break; } case GL_UNSIGNED_INT: { GLuint tempValue[16] = {0}; mProgram->getUniformuiv(context, location, tempValue); UniformStateQueryCastLoop(dataOut, reinterpret_cast(tempValue), components); break; } case GL_FLOAT: { GLfloat tempValue[16] = {0}; mProgram->getUniformfv(context, location, tempValue); UniformStateQueryCastLoop( dataOut, reinterpret_cast(tempValue), components); break; } default: UNREACHABLE(); break; } } angle::Result Program::syncState(const Context *context) { if (mDirtyBits.any()) { ASSERT(mLinkResolved); ANGLE_TRY(mProgram->syncState(context, mDirtyBits)); mDirtyBits.reset(); } return angle::Result::Continue; } void Program::serialize(const Context *context, angle::MemoryBuffer *binaryOut) const { BinaryOutputStream stream; stream.writeBytes(reinterpret_cast(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE); // nullptr context is supported when computing binary length. if (context) { stream.writeInt(context->getClientVersion().major); stream.writeInt(context->getClientVersion().minor); } else { stream.writeInt(2); stream.writeInt(0); } const auto &computeLocalSize = mState.getComputeShaderLocalSize(); stream.writeInt(computeLocalSize[0]); stream.writeInt(computeLocalSize[1]); stream.writeInt(computeLocalSize[2]); ASSERT(mState.mGeometryShaderInvocations >= 1 && mState.mGeometryShaderMaxVertices >= 0); stream.writeEnum(mState.mGeometryShaderInputPrimitiveType); stream.writeEnum(mState.mGeometryShaderOutputPrimitiveType); stream.writeInt(mState.mGeometryShaderInvocations); stream.writeInt(mState.mGeometryShaderMaxVertices); stream.writeInt(mState.mNumViews); stream.writeInt(mState.mMaxActiveAttribLocation); static_assert(MAX_VERTEX_ATTRIBS * 2 <= sizeof(uint32_t) * 8, "All bits of mAttributesTypeMask types and mask fit into 32 bits each"); stream.writeInt(static_cast(mState.mAttributesTypeMask.to_ulong())); stream.writeInt(static_cast(mState.mAttributesMask.to_ulong())); stream.writeInt(mState.getActiveAttribLocationsMask().to_ulong()); stream.writeInt(mState.getAttributes().size()); for (const sh::Attribute &attrib : mState.getAttributes()) { WriteShaderVar(&stream, attrib); stream.writeInt(attrib.location); } stream.writeInt(mState.getUniforms().size()); for (const LinkedUniform &uniform : mState.getUniforms()) { WriteShaderVar(&stream, uniform); // FIXME: referenced stream.writeInt(uniform.bufferIndex); WriteBlockMemberInfo(&stream, uniform.blockInfo); // Active shader info for (ShaderType shaderType : gl::AllShaderTypes()) { stream.writeInt(uniform.isActive(shaderType)); } } stream.writeInt(mState.getUniformLocations().size()); for (const auto &variable : mState.getUniformLocations()) { stream.writeInt(variable.arrayIndex); stream.writeIntOrNegOne(variable.index); stream.writeInt(variable.ignored); } stream.writeInt(mState.getUniformBlocks().size()); for (const InterfaceBlock &uniformBlock : mState.getUniformBlocks()) { WriteInterfaceBlock(&stream, uniformBlock); } stream.writeInt(mState.getBufferVariables().size()); for (const BufferVariable &bufferVariable : mState.getBufferVariables()) { WriteBufferVariable(&stream, bufferVariable); } stream.writeInt(mState.getShaderStorageBlocks().size()); for (const InterfaceBlock &shaderStorageBlock : mState.getShaderStorageBlocks()) { WriteInterfaceBlock(&stream, shaderStorageBlock); } stream.writeInt(mState.mAtomicCounterBuffers.size()); for (const auto &atomicCounterBuffer : mState.mAtomicCounterBuffers) { WriteShaderVariableBuffer(&stream, atomicCounterBuffer); } // Warn the app layer if saving a binary with unsupported transform feedback. if (!mState.getLinkedTransformFeedbackVaryings().empty() && context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled) { WARN() << "Saving program binary with transform feedback, which is not supported on this " "driver."; } stream.writeInt(mState.getLinkedTransformFeedbackVaryings().size()); for (const auto &var : mState.getLinkedTransformFeedbackVaryings()) { stream.writeIntVector(var.arraySizes); stream.writeInt(var.type); stream.writeString(var.name); stream.writeIntOrNegOne(var.arrayIndex); } stream.writeInt(mState.getTransformFeedbackBufferMode()); stream.writeInt(mState.getOutputVariables().size()); for (const sh::OutputVariable &output : mState.getOutputVariables()) { WriteShaderVar(&stream, output); stream.writeInt(output.location); stream.writeInt(output.index); } stream.writeInt(mState.getOutputLocations().size()); for (const auto &outputVar : mState.getOutputLocations()) { stream.writeInt(outputVar.arrayIndex); stream.writeIntOrNegOne(outputVar.index); stream.writeInt(outputVar.ignored); } stream.writeInt(mState.getSecondaryOutputLocations().size()); for (const auto &outputVar : mState.getSecondaryOutputLocations()) { stream.writeInt(outputVar.arrayIndex); stream.writeIntOrNegOne(outputVar.index); stream.writeInt(outputVar.ignored); } stream.writeInt(mState.mOutputVariableTypes.size()); for (const auto &outputVariableType : mState.mOutputVariableTypes) { stream.writeInt(outputVariableType); } static_assert( IMPLEMENTATION_MAX_DRAW_BUFFERS * 2 <= 8 * sizeof(uint32_t), "All bits of mDrawBufferTypeMask and mActiveOutputVariables can be contained in 32 bits"); stream.writeInt(static_cast(mState.mDrawBufferTypeMask.to_ulong())); stream.writeInt(static_cast(mState.mActiveOutputVariables.to_ulong())); stream.writeInt(mState.getSamplerUniformRange().low()); stream.writeInt(mState.getSamplerUniformRange().high()); stream.writeInt(mState.getSamplerBindings().size()); for (const auto &samplerBinding : mState.getSamplerBindings()) { stream.writeEnum(samplerBinding.textureType); stream.writeEnum(samplerBinding.format); stream.writeInt(samplerBinding.boundTextureUnits.size()); stream.writeInt(samplerBinding.unreferenced); } stream.writeInt(mState.getImageUniformRange().low()); stream.writeInt(mState.getImageUniformRange().high()); stream.writeInt(mState.getImageBindings().size()); for (const auto &imageBinding : mState.getImageBindings()) { stream.writeInt(imageBinding.boundImageUnits.size()); for (size_t i = 0; i < imageBinding.boundImageUnits.size(); ++i) { stream.writeInt(imageBinding.boundImageUnits[i]); } } stream.writeInt(mState.getAtomicCounterUniformRange().low()); stream.writeInt(mState.getAtomicCounterUniformRange().high()); stream.writeInt(mState.getLinkedShaderStages().to_ulong()); mProgram->save(context, &stream); ASSERT(binaryOut); binaryOut->resize(stream.length()); memcpy(binaryOut->data(), stream.data(), stream.length()); } angle::Result Program::deserialize(const Context *context, BinaryInputStream &stream, InfoLog &infoLog) { unsigned char commitString[ANGLE_COMMIT_HASH_SIZE]; stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE); if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0) { infoLog << "Invalid program binary version."; return angle::Result::Incomplete; } int majorVersion = stream.readInt(); int minorVersion = stream.readInt(); if (majorVersion != context->getClientMajorVersion() || minorVersion != context->getClientMinorVersion()) { infoLog << "Cannot load program binaries across different ES context versions."; return angle::Result::Incomplete; } mState.mComputeShaderLocalSize[0] = stream.readInt(); mState.mComputeShaderLocalSize[1] = stream.readInt(); mState.mComputeShaderLocalSize[2] = stream.readInt(); mState.mGeometryShaderInputPrimitiveType = stream.readEnum(); mState.mGeometryShaderOutputPrimitiveType = stream.readEnum(); mState.mGeometryShaderInvocations = stream.readInt(); mState.mGeometryShaderMaxVertices = stream.readInt(); mState.mNumViews = stream.readInt(); mState.mMaxActiveAttribLocation = stream.readInt(); static_assert(MAX_VERTEX_ATTRIBS * 2 <= sizeof(uint32_t) * 8, "All bits of mAttributesTypeMask types and mask fit into 32 bits each"); mState.mAttributesTypeMask = gl::ComponentTypeMask(stream.readInt()); mState.mAttributesMask = stream.readInt(); static_assert(MAX_VERTEX_ATTRIBS <= sizeof(unsigned long) * 8, "Too many vertex attribs for mask"); mState.mActiveAttribLocationsMask = stream.readInt(); unsigned int attribCount = stream.readInt(); ASSERT(mState.mAttributes.empty()); for (unsigned int attribIndex = 0; attribIndex < attribCount; ++attribIndex) { sh::Attribute attrib; LoadShaderVar(&stream, &attrib); attrib.location = stream.readInt(); mState.mAttributes.push_back(attrib); } unsigned int uniformCount = stream.readInt(); ASSERT(mState.mUniforms.empty()); for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; ++uniformIndex) { LinkedUniform uniform; LoadShaderVar(&stream, &uniform); uniform.bufferIndex = stream.readInt(); LoadBlockMemberInfo(&stream, &uniform.blockInfo); uniform.typeInfo = &GetUniformTypeInfo(uniform.type); // Active shader info for (ShaderType shaderType : gl::AllShaderTypes()) { uniform.setActive(shaderType, stream.readBool()); } mState.mUniforms.push_back(uniform); } const unsigned int uniformIndexCount = stream.readInt(); ASSERT(mState.mUniformLocations.empty()); for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount; uniformIndexIndex++) { VariableLocation variable; stream.readInt(&variable.arrayIndex); stream.readInt(&variable.index); stream.readBool(&variable.ignored); mState.mUniformLocations.push_back(variable); } unsigned int uniformBlockCount = stream.readInt(); ASSERT(mState.mUniformBlocks.empty()); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount; ++uniformBlockIndex) { InterfaceBlock uniformBlock; LoadInterfaceBlock(&stream, &uniformBlock); mState.mUniformBlocks.push_back(uniformBlock); mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlock.binding != 0); } unsigned int bufferVariableCount = stream.readInt(); ASSERT(mState.mBufferVariables.empty()); for (unsigned int index = 0; index < bufferVariableCount; ++index) { BufferVariable bufferVariable; LoadBufferVariable(&stream, &bufferVariable); mState.mBufferVariables.push_back(bufferVariable); } unsigned int shaderStorageBlockCount = stream.readInt(); ASSERT(mState.mShaderStorageBlocks.empty()); for (unsigned int shaderStorageBlockIndex = 0; shaderStorageBlockIndex < shaderStorageBlockCount; ++shaderStorageBlockIndex) { InterfaceBlock shaderStorageBlock; LoadInterfaceBlock(&stream, &shaderStorageBlock); mState.mShaderStorageBlocks.push_back(shaderStorageBlock); } unsigned int atomicCounterBufferCount = stream.readInt(); ASSERT(mState.mAtomicCounterBuffers.empty()); for (unsigned int bufferIndex = 0; bufferIndex < atomicCounterBufferCount; ++bufferIndex) { AtomicCounterBuffer atomicCounterBuffer; LoadShaderVariableBuffer(&stream, &atomicCounterBuffer); mState.mAtomicCounterBuffers.push_back(atomicCounterBuffer); } unsigned int transformFeedbackVaryingCount = stream.readInt(); // Reject programs that use transform feedback varyings if the hardware cannot support them. if (transformFeedbackVaryingCount > 0 && context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled) { infoLog << "Current driver does not support transform feedback in binary programs."; return angle::Result::Incomplete; } ASSERT(mState.mLinkedTransformFeedbackVaryings.empty()); for (unsigned int transformFeedbackVaryingIndex = 0; transformFeedbackVaryingIndex < transformFeedbackVaryingCount; ++transformFeedbackVaryingIndex) { sh::Varying varying; stream.readIntVector(&varying.arraySizes); stream.readInt(&varying.type); stream.readString(&varying.name); GLuint arrayIndex = stream.readInt(); mState.mLinkedTransformFeedbackVaryings.emplace_back(varying, arrayIndex); } stream.readInt(&mState.mTransformFeedbackBufferMode); unsigned int outputCount = stream.readInt(); ASSERT(mState.mOutputVariables.empty()); for (unsigned int outputIndex = 0; outputIndex < outputCount; ++outputIndex) { sh::OutputVariable output; LoadShaderVar(&stream, &output); output.location = stream.readInt(); output.index = stream.readInt(); mState.mOutputVariables.push_back(output); } unsigned int outputVarCount = stream.readInt(); ASSERT(mState.mOutputLocations.empty()); for (unsigned int outputIndex = 0; outputIndex < outputVarCount; ++outputIndex) { VariableLocation locationData; stream.readInt(&locationData.arrayIndex); stream.readInt(&locationData.index); stream.readBool(&locationData.ignored); mState.mOutputLocations.push_back(locationData); } unsigned int secondaryOutputVarCount = stream.readInt(); ASSERT(mState.mSecondaryOutputLocations.empty()); for (unsigned int outputIndex = 0; outputIndex < secondaryOutputVarCount; ++outputIndex) { VariableLocation locationData; stream.readInt(&locationData.arrayIndex); stream.readInt(&locationData.index); stream.readBool(&locationData.ignored); mState.mSecondaryOutputLocations.push_back(locationData); } unsigned int outputTypeCount = stream.readInt(); for (unsigned int outputIndex = 0; outputIndex < outputTypeCount; ++outputIndex) { mState.mOutputVariableTypes.push_back(stream.readInt()); } static_assert(IMPLEMENTATION_MAX_DRAW_BUFFERS * 2 <= 8 * sizeof(uint32_t), "All bits of mDrawBufferTypeMask and mActiveOutputVariables types and mask fit " "into 32 bits each"); mState.mDrawBufferTypeMask = gl::ComponentTypeMask(stream.readInt()); mState.mActiveOutputVariables = stream.readInt(); unsigned int samplerRangeLow = stream.readInt(); unsigned int samplerRangeHigh = stream.readInt(); mState.mSamplerUniformRange = RangeUI(samplerRangeLow, samplerRangeHigh); unsigned int samplerCount = stream.readInt(); for (unsigned int samplerIndex = 0; samplerIndex < samplerCount; ++samplerIndex) { TextureType textureType = stream.readEnum(); SamplerFormat format = stream.readEnum(); size_t bindingCount = stream.readInt(); bool unreferenced = stream.readBool(); mState.mSamplerBindings.emplace_back(textureType, format, bindingCount, unreferenced); } unsigned int imageRangeLow = stream.readInt(); unsigned int imageRangeHigh = stream.readInt(); mState.mImageUniformRange = RangeUI(imageRangeLow, imageRangeHigh); unsigned int imageBindingCount = stream.readInt(); for (unsigned int imageIndex = 0; imageIndex < imageBindingCount; ++imageIndex) { unsigned int elementCount = stream.readInt(); ImageBinding imageBinding(elementCount); for (unsigned int i = 0; i < elementCount; ++i) { imageBinding.boundImageUnits[i] = stream.readInt(); } mState.mImageBindings.emplace_back(imageBinding); } unsigned int atomicCounterRangeLow = stream.readInt(); unsigned int atomicCounterRangeHigh = stream.readInt(); mState.mAtomicCounterUniformRange = RangeUI(atomicCounterRangeLow, atomicCounterRangeHigh); static_assert(static_cast(ShaderType::EnumCount) <= sizeof(unsigned long) * 8, "Too many shader types"); mState.mLinkedShaderStages = ShaderBitSet(stream.readInt()); if (!mState.mAttachedShaders[ShaderType::Compute]) { mState.updateTransformFeedbackStrides(); } postResolveLink(context); return angle::Result::Continue; } void Program::postResolveLink(const gl::Context *context) { mState.updateActiveSamplers(); mState.updateActiveImages(); if (context->getExtensions().multiDraw) { mState.mDrawIDLocation = getUniformLocation("gl_DrawID"); } } } // namespace gl