/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */ /* * Copyright © 2000 SuSE, Inc. * Copyright © 2007 Red Hat, Inc. * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of SuSE not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. SuSE makes no representations about the * suitability of this software for any purpose. It is provided "as is" * without express or implied warranty. * * SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE * BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * Author: Keith Packard, SuSE, Inc. */ #ifndef PIXMAN_FAST_PATH_H__ #define PIXMAN_FAST_PATH_H__ #include #include "pixman-private.h" #define PIXMAN_REPEAT_COVER -1 /* Flags describing input parameters to fast path macro template. * Turning on some flag values may indicate that * "some property X is available so template can use this" or * "some property X should be handled by template". * * FLAG_HAVE_SOLID_MASK * Input mask is solid so template should handle this. * * FLAG_HAVE_NON_SOLID_MASK * Input mask is bits mask so template should handle this. * * FLAG_HAVE_SOLID_MASK and FLAG_HAVE_NON_SOLID_MASK are mutually * exclusive. (It's not allowed to turn both flags on) */ #define FLAG_NONE (0) #define FLAG_HAVE_SOLID_MASK (1 << 1) #define FLAG_HAVE_NON_SOLID_MASK (1 << 2) /* To avoid too short repeated scanline function calls, extend source * scanlines having width less than below constant value. */ #define REPEAT_NORMAL_MIN_WIDTH 64 static force_inline pixman_bool_t repeat (pixman_repeat_t repeat, int *c, int size) { if (repeat == PIXMAN_REPEAT_NONE) { if (*c < 0 || *c >= size) return FALSE; } else if (repeat == PIXMAN_REPEAT_NORMAL) { while (*c >= size) *c -= size; while (*c < 0) *c += size; } else if (repeat == PIXMAN_REPEAT_PAD) { *c = CLIP (*c, 0, size - 1); } else /* REFLECT */ { *c = MOD (*c, size * 2); if (*c >= size) *c = size * 2 - *c - 1; } return TRUE; } static force_inline int pixman_fixed_to_bilinear_weight (pixman_fixed_t x) { return (x >> (16 - BILINEAR_INTERPOLATION_BITS)) & ((1 << BILINEAR_INTERPOLATION_BITS) - 1); } #if BILINEAR_INTERPOLATION_BITS <= 4 /* Inspired by Filter_32_opaque from Skia */ static force_inline uint32_t bilinear_interpolation (uint32_t tl, uint32_t tr, uint32_t bl, uint32_t br, int distx, int disty) { int distxy, distxiy, distixy, distixiy; uint32_t lo, hi; distx <<= (4 - BILINEAR_INTERPOLATION_BITS); disty <<= (4 - BILINEAR_INTERPOLATION_BITS); distxy = distx * disty; distxiy = (distx << 4) - distxy; /* distx * (16 - disty) */ distixy = (disty << 4) - distxy; /* disty * (16 - distx) */ distixiy = 16 * 16 - (disty << 4) - (distx << 4) + distxy; /* (16 - distx) * (16 - disty) */ lo = (tl & 0xff00ff) * distixiy; hi = ((tl >> 8) & 0xff00ff) * distixiy; lo += (tr & 0xff00ff) * distxiy; hi += ((tr >> 8) & 0xff00ff) * distxiy; lo += (bl & 0xff00ff) * distixy; hi += ((bl >> 8) & 0xff00ff) * distixy; lo += (br & 0xff00ff) * distxy; hi += ((br >> 8) & 0xff00ff) * distxy; return ((lo >> 8) & 0xff00ff) | (hi & ~0xff00ff); } #else #if SIZEOF_LONG > 4 static force_inline uint32_t bilinear_interpolation (uint32_t tl, uint32_t tr, uint32_t bl, uint32_t br, int distx, int disty) { uint64_t distxy, distxiy, distixy, distixiy; uint64_t tl64, tr64, bl64, br64; uint64_t f, r; distx <<= (8 - BILINEAR_INTERPOLATION_BITS); disty <<= (8 - BILINEAR_INTERPOLATION_BITS); distxy = distx * disty; distxiy = distx * (256 - disty); distixy = (256 - distx) * disty; distixiy = (256 - distx) * (256 - disty); /* Alpha and Blue */ tl64 = tl & 0xff0000ff; tr64 = tr & 0xff0000ff; bl64 = bl & 0xff0000ff; br64 = br & 0xff0000ff; f = tl64 * distixiy + tr64 * distxiy + bl64 * distixy + br64 * distxy; r = f & 0x0000ff0000ff0000ull; /* Red and Green */ tl64 = tl; tl64 = ((tl64 << 16) & 0x000000ff00000000ull) | (tl64 & 0x0000ff00ull); tr64 = tr; tr64 = ((tr64 << 16) & 0x000000ff00000000ull) | (tr64 & 0x0000ff00ull); bl64 = bl; bl64 = ((bl64 << 16) & 0x000000ff00000000ull) | (bl64 & 0x0000ff00ull); br64 = br; br64 = ((br64 << 16) & 0x000000ff00000000ull) | (br64 & 0x0000ff00ull); f = tl64 * distixiy + tr64 * distxiy + bl64 * distixy + br64 * distxy; r |= ((f >> 16) & 0x000000ff00000000ull) | (f & 0xff000000ull); return (uint32_t)(r >> 16); } #else #ifdef LOW_QUALITY_INTERPOLATION /* Based on Filter_32_opaque_portable from Skia */ static force_inline uint32_t bilinear_interpolation(uint32_t a00, uint32_t a01, uint32_t a10, uint32_t a11, int x, int y) { int xy = x * y; static const uint32_t mask = 0xff00ff; int scale = 256 - 16*y - 16*x + xy; uint32_t lo = (a00 & mask) * scale; uint32_t hi = ((a00 >> 8) & mask) * scale; scale = 16*x - xy; lo += (a01 & mask) * scale; hi += ((a01 >> 8) & mask) * scale; scale = 16*y - xy; lo += (a10 & mask) * scale; hi += ((a10 >> 8) & mask) * scale; lo += (a11 & mask) * xy; hi += ((a11 >> 8) & mask) * xy; return ((lo >> 8) & mask) | (hi & ~mask); } #else static force_inline uint32_t bilinear_interpolation (uint32_t tl, uint32_t tr, uint32_t bl, uint32_t br, int distx, int disty) { int distxy, distxiy, distixy, distixiy; uint32_t f, r; distx <<= (8 - BILINEAR_INTERPOLATION_BITS); disty <<= (8 - BILINEAR_INTERPOLATION_BITS); distxy = distx * disty; distxiy = (distx << 8) - distxy; /* distx * (256 - disty) */ distixy = (disty << 8) - distxy; /* disty * (256 - distx) */ distixiy = 256 * 256 - (disty << 8) - (distx << 8) + distxy; /* (256 - distx) * (256 - disty) */ /* Blue */ r = (tl & 0x000000ff) * distixiy + (tr & 0x000000ff) * distxiy + (bl & 0x000000ff) * distixy + (br & 0x000000ff) * distxy; /* Green */ f = (tl & 0x0000ff00) * distixiy + (tr & 0x0000ff00) * distxiy + (bl & 0x0000ff00) * distixy + (br & 0x0000ff00) * distxy; r |= f & 0xff000000; tl >>= 16; tr >>= 16; bl >>= 16; br >>= 16; r >>= 16; /* Red */ f = (tl & 0x000000ff) * distixiy + (tr & 0x000000ff) * distxiy + (bl & 0x000000ff) * distixy + (br & 0x000000ff) * distxy; r |= f & 0x00ff0000; /* Alpha */ f = (tl & 0x0000ff00) * distixiy + (tr & 0x0000ff00) * distxiy + (bl & 0x0000ff00) * distixy + (br & 0x0000ff00) * distxy; r |= f & 0xff000000; return r; } #endif #endif #endif // BILINEAR_INTERPOLATION_BITS <= 4 /* * For each scanline fetched from source image with PAD repeat: * - calculate how many pixels need to be padded on the left side * - calculate how many pixels need to be padded on the right side * - update width to only count pixels which are fetched from the image * All this information is returned via 'width', 'left_pad', 'right_pad' * arguments. The code is assuming that 'unit_x' is positive. * * Note: 64-bit math is used in order to avoid potential overflows, which * is probably excessive in many cases. This particular function * may need its own correctness test and performance tuning. */ static force_inline void pad_repeat_get_scanline_bounds (int32_t source_image_width, pixman_fixed_t vx, pixman_fixed_t unit_x, int32_t * width, int32_t * left_pad, int32_t * right_pad) { int64_t max_vx = (int64_t) source_image_width << 16; int64_t tmp; if (vx < 0) { tmp = ((int64_t) unit_x - 1 - vx) / unit_x; if (tmp > *width) { *left_pad = *width; *width = 0; } else { *left_pad = (int32_t) tmp; *width -= (int32_t) tmp; } } else { *left_pad = 0; } tmp = ((int64_t) unit_x - 1 - vx + max_vx) / unit_x - *left_pad; if (tmp < 0) { *right_pad = *width; *width = 0; } else if (tmp >= *width) { *right_pad = 0; } else { *right_pad = *width - (int32_t) tmp; *width = (int32_t) tmp; } } /* A macroified version of specialized nearest scalers for some * common 8888 and 565 formats. It supports SRC and OVER ops. * * There are two repeat versions, one that handles repeat normal, * and one without repeat handling that only works if the src region * used is completely covered by the pre-repeated source samples. * * The loops are unrolled to process two pixels per iteration for better * performance on most CPU architectures (superscalar processors * can issue several operations simultaneously, other processors can hide * instructions latencies by pipelining operations). Unrolling more * does not make much sense because the compiler will start running out * of spare registers soon. */ #define GET_8888_ALPHA(s) ((s) >> 24) /* This is not actually used since we don't have an OVER with 565 source, but it is needed to build. */ #define GET_0565_ALPHA(s) 0xff #define GET_x888_ALPHA(s) 0xff #define FAST_NEAREST_SCANLINE(scanline_func_name, SRC_FORMAT, DST_FORMAT, \ src_type_t, dst_type_t, OP, repeat_mode) \ static force_inline void \ scanline_func_name (dst_type_t *dst, \ const src_type_t *src, \ int32_t w, \ pixman_fixed_t vx, \ pixman_fixed_t unit_x, \ pixman_fixed_t src_width_fixed, \ pixman_bool_t fully_transparent_src) \ { \ uint32_t d; \ src_type_t s1, s2; \ uint8_t a1, a2; \ int x1, x2; \ \ if (PIXMAN_OP_ ## OP == PIXMAN_OP_OVER && fully_transparent_src) \ return; \ \ if (PIXMAN_OP_ ## OP != PIXMAN_OP_SRC && PIXMAN_OP_ ## OP != PIXMAN_OP_OVER) \ abort(); \ \ while ((w -= 2) >= 0) \ { \ x1 = pixman_fixed_to_int (vx); \ vx += unit_x; \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \ { \ /* This works because we know that unit_x is positive */ \ while (vx >= 0) \ vx -= src_width_fixed; \ } \ s1 = *(src + x1); \ \ x2 = pixman_fixed_to_int (vx); \ vx += unit_x; \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \ { \ /* This works because we know that unit_x is positive */ \ while (vx >= 0) \ vx -= src_width_fixed; \ } \ s2 = *(src + x2); \ \ if (PIXMAN_OP_ ## OP == PIXMAN_OP_OVER) \ { \ a1 = GET_ ## SRC_FORMAT ## _ALPHA(s1); \ a2 = GET_ ## SRC_FORMAT ## _ALPHA(s2); \ \ if (a1 == 0xff) \ { \ *dst = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \ } \ else if (s1) \ { \ d = convert_ ## DST_FORMAT ## _to_8888 (*dst); \ s1 = convert_ ## SRC_FORMAT ## _to_8888 (s1); \ a1 ^= 0xff; \ UN8x4_MUL_UN8_ADD_UN8x4 (d, a1, s1); \ *dst = convert_8888_to_ ## DST_FORMAT (d); \ } \ dst++; \ \ if (a2 == 0xff) \ { \ *dst = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s2); \ } \ else if (s2) \ { \ d = convert_## DST_FORMAT ## _to_8888 (*dst); \ s2 = convert_## SRC_FORMAT ## _to_8888 (s2); \ a2 ^= 0xff; \ UN8x4_MUL_UN8_ADD_UN8x4 (d, a2, s2); \ *dst = convert_8888_to_ ## DST_FORMAT (d); \ } \ dst++; \ } \ else /* PIXMAN_OP_SRC */ \ { \ *dst++ = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \ *dst++ = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s2); \ } \ } \ \ if (w & 1) \ { \ x1 = pixman_fixed_to_int (vx); \ s1 = *(src + x1); \ \ if (PIXMAN_OP_ ## OP == PIXMAN_OP_OVER) \ { \ a1 = GET_ ## SRC_FORMAT ## _ALPHA(s1); \ \ if (a1 == 0xff) \ { \ *dst = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \ } \ else if (s1) \ { \ d = convert_## DST_FORMAT ## _to_8888 (*dst); \ s1 = convert_ ## SRC_FORMAT ## _to_8888 (s1); \ a1 ^= 0xff; \ UN8x4_MUL_UN8_ADD_UN8x4 (d, a1, s1); \ *dst = convert_8888_to_ ## DST_FORMAT (d); \ } \ dst++; \ } \ else /* PIXMAN_OP_SRC */ \ { \ *dst++ = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \ } \ } \ } #define FAST_NEAREST_MAINLOOP_INT(scale_func_name, scanline_func, src_type_t, mask_type_t, \ dst_type_t, repeat_mode, have_mask, mask_is_solid) \ static void \ fast_composite_scaled_nearest ## scale_func_name (pixman_implementation_t *imp, \ pixman_composite_info_t *info) \ { \ PIXMAN_COMPOSITE_ARGS (info); \ dst_type_t *dst_line; \ mask_type_t *mask_line; \ src_type_t *src_first_line; \ int y; \ pixman_fixed_t src_width_fixed = pixman_int_to_fixed (src_image->bits.width); \ pixman_fixed_t max_vy; \ pixman_vector_t v; \ pixman_fixed_t vx, vy; \ pixman_fixed_t unit_x, unit_y; \ int32_t left_pad, right_pad; \ \ src_type_t *src; \ dst_type_t *dst; \ mask_type_t solid_mask; \ const mask_type_t *mask = &solid_mask; \ int src_stride, mask_stride, dst_stride; \ \ PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, dst_type_t, dst_stride, dst_line, 1); \ if (have_mask) \ { \ if (mask_is_solid) \ solid_mask = _pixman_image_get_solid (imp, mask_image, dest_image->bits.format); \ else \ PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, mask_type_t, \ mask_stride, mask_line, 1); \ } \ /* pass in 0 instead of src_x and src_y because src_x and src_y need to be \ * transformed from destination space to source space */ \ PIXMAN_IMAGE_GET_LINE (src_image, 0, 0, src_type_t, src_stride, src_first_line, 1); \ \ /* reference point is the center of the pixel */ \ v.vector[0] = pixman_int_to_fixed (src_x) + pixman_fixed_1 / 2; \ v.vector[1] = pixman_int_to_fixed (src_y) + pixman_fixed_1 / 2; \ v.vector[2] = pixman_fixed_1; \ \ if (!pixman_transform_point_3d (src_image->common.transform, &v)) \ return; \ \ unit_x = src_image->common.transform->matrix[0][0]; \ unit_y = src_image->common.transform->matrix[1][1]; \ \ /* Round down to closest integer, ensuring that 0.5 rounds to 0, not 1 */ \ v.vector[0] -= pixman_fixed_e; \ v.vector[1] -= pixman_fixed_e; \ \ vx = v.vector[0]; \ vy = v.vector[1]; \ \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \ { \ max_vy = pixman_int_to_fixed (src_image->bits.height); \ \ /* Clamp repeating positions inside the actual samples */ \ repeat (PIXMAN_REPEAT_NORMAL, &vx, src_width_fixed); \ repeat (PIXMAN_REPEAT_NORMAL, &vy, max_vy); \ } \ \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD || \ PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \ { \ pad_repeat_get_scanline_bounds (src_image->bits.width, vx, unit_x, \ &width, &left_pad, &right_pad); \ vx += left_pad * unit_x; \ } \ \ while (--height >= 0) \ { \ dst = dst_line; \ dst_line += dst_stride; \ if (have_mask && !mask_is_solid) \ { \ mask = mask_line; \ mask_line += mask_stride; \ } \ \ y = pixman_fixed_to_int (vy); \ vy += unit_y; \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \ repeat (PIXMAN_REPEAT_NORMAL, &vy, max_vy); \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD) \ { \ repeat (PIXMAN_REPEAT_PAD, &y, src_image->bits.height); \ src = src_first_line + src_stride * y; \ if (left_pad > 0) \ { \ scanline_func (mask, dst, \ src + src_image->bits.width - src_image->bits.width + 1, \ left_pad, -pixman_fixed_e, 0, src_width_fixed, FALSE); \ } \ if (width > 0) \ { \ scanline_func (mask + (mask_is_solid ? 0 : left_pad), \ dst + left_pad, src + src_image->bits.width, width, \ vx - src_width_fixed, unit_x, src_width_fixed, FALSE); \ } \ if (right_pad > 0) \ { \ scanline_func (mask + (mask_is_solid ? 0 : left_pad + width), \ dst + left_pad + width, src + src_image->bits.width, \ right_pad, -pixman_fixed_e, 0, src_width_fixed, FALSE); \ } \ } \ else if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \ { \ static const src_type_t zero[1] = { 0 }; \ if (y < 0 || y >= src_image->bits.height) \ { \ scanline_func (mask, dst, zero + 1, left_pad + width + right_pad, \ -pixman_fixed_e, 0, src_width_fixed, TRUE); \ continue; \ } \ src = src_first_line + src_stride * y; \ if (left_pad > 0) \ { \ scanline_func (mask, dst, zero + 1, left_pad, \ -pixman_fixed_e, 0, src_width_fixed, TRUE); \ } \ if (width > 0) \ { \ scanline_func (mask + (mask_is_solid ? 0 : left_pad), \ dst + left_pad, src + src_image->bits.width, width, \ vx - src_width_fixed, unit_x, src_width_fixed, FALSE); \ } \ if (right_pad > 0) \ { \ scanline_func (mask + (mask_is_solid ? 0 : left_pad + width), \ dst + left_pad + width, zero + 1, right_pad, \ -pixman_fixed_e, 0, src_width_fixed, TRUE); \ } \ } \ else \ { \ src = src_first_line + src_stride * y; \ scanline_func (mask, dst, src + src_image->bits.width, width, vx - src_width_fixed, \ unit_x, src_width_fixed, FALSE); \ } \ } \ } /* A workaround for old sun studio, see: https://bugs.freedesktop.org/show_bug.cgi?id=32764 */ #define FAST_NEAREST_MAINLOOP_COMMON(scale_func_name, scanline_func, src_type_t, mask_type_t, \ dst_type_t, repeat_mode, have_mask, mask_is_solid) \ FAST_NEAREST_MAINLOOP_INT(_ ## scale_func_name, scanline_func, src_type_t, mask_type_t, \ dst_type_t, repeat_mode, have_mask, mask_is_solid) #define FAST_NEAREST_MAINLOOP_NOMASK(scale_func_name, scanline_func, src_type_t, dst_type_t, \ repeat_mode) \ static force_inline void \ scanline_func##scale_func_name##_wrapper ( \ const uint8_t *mask, \ dst_type_t *dst, \ const src_type_t *src, \ int32_t w, \ pixman_fixed_t vx, \ pixman_fixed_t unit_x, \ pixman_fixed_t max_vx, \ pixman_bool_t fully_transparent_src) \ { \ scanline_func (dst, src, w, vx, unit_x, max_vx, fully_transparent_src); \ } \ FAST_NEAREST_MAINLOOP_INT (scale_func_name, scanline_func##scale_func_name##_wrapper, \ src_type_t, uint8_t, dst_type_t, repeat_mode, FALSE, FALSE) #define FAST_NEAREST_MAINLOOP(scale_func_name, scanline_func, src_type_t, dst_type_t, \ repeat_mode) \ FAST_NEAREST_MAINLOOP_NOMASK(_ ## scale_func_name, scanline_func, src_type_t, \ dst_type_t, repeat_mode) #define FAST_NEAREST(scale_func_name, SRC_FORMAT, DST_FORMAT, \ src_type_t, dst_type_t, OP, repeat_mode) \ FAST_NEAREST_SCANLINE(scaled_nearest_scanline_ ## scale_func_name ## _ ## OP, \ SRC_FORMAT, DST_FORMAT, src_type_t, dst_type_t, \ OP, repeat_mode) \ FAST_NEAREST_MAINLOOP_NOMASK(_ ## scale_func_name ## _ ## OP, \ scaled_nearest_scanline_ ## scale_func_name ## _ ## OP, \ src_type_t, dst_type_t, repeat_mode) #define SCALED_NEAREST_FLAGS \ (FAST_PATH_SCALE_TRANSFORM | \ FAST_PATH_NO_ALPHA_MAP | \ FAST_PATH_NEAREST_FILTER | \ FAST_PATH_NO_ACCESSORS | \ FAST_PATH_NARROW_FORMAT) #define SIMPLE_NEAREST_FAST_PATH_NORMAL(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_NORMAL_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _normal ## _ ## op, \ } #define SIMPLE_NEAREST_FAST_PATH_PAD(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_PAD_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _pad ## _ ## op, \ } #define SIMPLE_NEAREST_FAST_PATH_NONE(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_NONE_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _none ## _ ## op, \ } #define SIMPLE_NEAREST_FAST_PATH_COVER(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ SCALED_NEAREST_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_NEAREST, \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _cover ## _ ## op, \ } #define SIMPLE_NEAREST_A8_MASK_FAST_PATH_NORMAL(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_NORMAL_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _normal ## _ ## op, \ } #define SIMPLE_NEAREST_A8_MASK_FAST_PATH_PAD(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_PAD_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _pad ## _ ## op, \ } #define SIMPLE_NEAREST_A8_MASK_FAST_PATH_NONE(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_NONE_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _none ## _ ## op, \ } #define SIMPLE_NEAREST_A8_MASK_FAST_PATH_COVER(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ SCALED_NEAREST_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_NEAREST, \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _cover ## _ ## op, \ } #define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_NORMAL(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_NORMAL_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _normal ## _ ## op, \ } #define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_PAD(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_PAD_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _pad ## _ ## op, \ } #define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_NONE(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_NEAREST_FLAGS | \ FAST_PATH_NONE_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _none ## _ ## op, \ } #define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_COVER(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ SCALED_NEAREST_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_NEAREST, \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_nearest_ ## func ## _cover ## _ ## op, \ } /* Prefer the use of 'cover' variant, because it is faster */ #define SIMPLE_NEAREST_FAST_PATH(op,s,d,func) \ SIMPLE_NEAREST_FAST_PATH_COVER (op,s,d,func), \ SIMPLE_NEAREST_FAST_PATH_NONE (op,s,d,func), \ SIMPLE_NEAREST_FAST_PATH_PAD (op,s,d,func), \ SIMPLE_NEAREST_FAST_PATH_NORMAL (op,s,d,func) #define SIMPLE_NEAREST_A8_MASK_FAST_PATH(op,s,d,func) \ SIMPLE_NEAREST_A8_MASK_FAST_PATH_COVER (op,s,d,func), \ SIMPLE_NEAREST_A8_MASK_FAST_PATH_NONE (op,s,d,func), \ SIMPLE_NEAREST_A8_MASK_FAST_PATH_PAD (op,s,d,func) #define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH(op,s,d,func) \ SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_COVER (op,s,d,func), \ SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_NONE (op,s,d,func), \ SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_PAD (op,s,d,func) /*****************************************************************************/ /* * Identify 5 zones in each scanline for bilinear scaling. Depending on * whether 2 pixels to be interpolated are fetched from the image itself, * from the padding area around it or from both image and padding area. */ static force_inline void bilinear_pad_repeat_get_scanline_bounds (int32_t source_image_width, pixman_fixed_t vx, pixman_fixed_t unit_x, int32_t * left_pad, int32_t * left_tz, int32_t * width, int32_t * right_tz, int32_t * right_pad) { int width1 = *width, left_pad1, right_pad1; int width2 = *width, left_pad2, right_pad2; pad_repeat_get_scanline_bounds (source_image_width, vx, unit_x, &width1, &left_pad1, &right_pad1); pad_repeat_get_scanline_bounds (source_image_width, vx + pixman_fixed_1, unit_x, &width2, &left_pad2, &right_pad2); *left_pad = left_pad2; *left_tz = left_pad1 - left_pad2; *right_tz = right_pad2 - right_pad1; *right_pad = right_pad1; *width -= *left_pad + *left_tz + *right_tz + *right_pad; } /* * Main loop template for single pass bilinear scaling. It needs to be * provided with 'scanline_func' which should do the compositing operation. * The needed function has the following prototype: * * scanline_func (dst_type_t * dst, * const mask_type_ * mask, * const src_type_t * src_top, * const src_type_t * src_bottom, * int32_t width, * int weight_top, * int weight_bottom, * pixman_fixed_t vx, * pixman_fixed_t unit_x, * pixman_fixed_t max_vx, * pixman_bool_t zero_src) * * Where: * dst - destination scanline buffer for storing results * mask - mask buffer (or single value for solid mask) * src_top, src_bottom - two source scanlines * width - number of pixels to process * weight_top - weight of the top row for interpolation * weight_bottom - weight of the bottom row for interpolation * vx - initial position for fetching the first pair of * pixels from the source buffer * unit_x - position increment needed to move to the next pair * of pixels * max_vx - image size as a fixed point value, can be used for * implementing NORMAL repeat (when it is supported) * zero_src - boolean hint variable, which is set to TRUE when * all source pixels are fetched from zero padding * zone for NONE repeat * * Note: normally the sum of 'weight_top' and 'weight_bottom' is equal to * BILINEAR_INTERPOLATION_RANGE, but sometimes it may be less than that * for NONE repeat when handling fuzzy antialiased top or bottom image * edges. Also both top and bottom weight variables are guaranteed to * have value, which is less than BILINEAR_INTERPOLATION_RANGE. * For example, the weights can fit into unsigned byte or be used * with 8-bit SIMD multiplication instructions for 8-bit interpolation * precision. */ /* Replace a single "scanline_func" with "fetch_func" & "op_func" to allow optional * two stage processing (bilinear fetch to a temp buffer, followed by unscaled * combine), "op_func" may be NULL, in this case we keep old behavior. * This is ugly and gcc issues some warnings, but works. * * An advice: clang has much better error reporting than gcc for deeply nested macros. */ #define scanline_func(dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buf, mask, src_top, src_bottom, width, \ weight_top, weight_bottom, vx, unit_x, max_vx, zero_src) \ do { \ if (op_func != NULL) \ { \ fetch_func ((void *)scanline_buf, (mask), (src_top), (src_bottom), (width), \ (weight_top), (weight_bottom), (vx), (unit_x), (max_vx), (zero_src)); \ ((void (*)(dst_type_t *, const mask_type_t *, const src_type_t *, int)) op_func)\ ((dst), (mask), (src_type_t *)scanline_buf, (width)); \ } \ else \ { \ fetch_func ((void*)(dst), (mask), (src_top), (src_bottom), (width), (weight_top), \ (weight_bottom), (vx), (unit_x), (max_vx), (zero_src)); \ } \ } while (0) #define SCANLINE_BUFFER_LENGTH 3072 #define FAST_BILINEAR_MAINLOOP_INT(scale_func_name, fetch_func, op_func, src_type_t, \ mask_type_t, dst_type_t, repeat_mode, flags) \ static void \ fast_composite_scaled_bilinear ## scale_func_name (pixman_implementation_t *imp, \ pixman_composite_info_t *info) \ { \ PIXMAN_COMPOSITE_ARGS (info); \ dst_type_t *dst_line; \ mask_type_t *mask_line; \ src_type_t *src_first_line; \ int y1, y2; \ pixman_fixed_t max_vx = INT32_MAX; /* suppress uninitialized variable warning */ \ pixman_vector_t v; \ pixman_fixed_t vx, vy; \ pixman_fixed_t unit_x, unit_y; \ int32_t left_pad, left_tz, right_tz, right_pad; \ \ dst_type_t *dst; \ mask_type_t solid_mask; \ const mask_type_t *mask = &solid_mask; \ int src_stride, mask_stride, dst_stride; \ \ int src_width; \ pixman_fixed_t src_width_fixed; \ int max_x; \ pixman_bool_t need_src_extension; \ \ uint64_t stack_scanline_buffer[SCANLINE_BUFFER_LENGTH]; \ uint8_t *scanline_buffer = (uint8_t *) stack_scanline_buffer; \ \ PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, dst_type_t, dst_stride, dst_line, 1); \ if (flags & FLAG_HAVE_SOLID_MASK) \ { \ solid_mask = _pixman_image_get_solid (imp, mask_image, dest_image->bits.format); \ mask_stride = 0; \ } \ else if (flags & FLAG_HAVE_NON_SOLID_MASK) \ { \ PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, mask_type_t, \ mask_stride, mask_line, 1); \ } \ \ /* pass in 0 instead of src_x and src_y because src_x and src_y need to be \ * transformed from destination space to source space */ \ PIXMAN_IMAGE_GET_LINE (src_image, 0, 0, src_type_t, src_stride, src_first_line, 1); \ \ /* reference point is the center of the pixel */ \ v.vector[0] = pixman_int_to_fixed (src_x) + pixman_fixed_1 / 2; \ v.vector[1] = pixman_int_to_fixed (src_y) + pixman_fixed_1 / 2; \ v.vector[2] = pixman_fixed_1; \ \ if (!pixman_transform_point_3d (src_image->common.transform, &v)) \ return; \ \ unit_x = src_image->common.transform->matrix[0][0]; \ unit_y = src_image->common.transform->matrix[1][1]; \ \ v.vector[0] -= pixman_fixed_1 / 2; \ v.vector[1] -= pixman_fixed_1 / 2; \ \ vy = v.vector[1]; \ \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD || \ PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \ { \ bilinear_pad_repeat_get_scanline_bounds (src_image->bits.width, v.vector[0], unit_x, \ &left_pad, &left_tz, &width, &right_tz, &right_pad); \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD) \ { \ /* PAD repeat does not need special handling for 'transition zones' and */ \ /* they can be combined with 'padding zones' safely */ \ left_pad += left_tz; \ right_pad += right_tz; \ left_tz = right_tz = 0; \ } \ v.vector[0] += left_pad * unit_x; \ } \ \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \ { \ vx = v.vector[0]; \ repeat (PIXMAN_REPEAT_NORMAL, &vx, pixman_int_to_fixed(src_image->bits.width)); \ max_x = pixman_fixed_to_int (vx + (width - 1) * (int64_t)unit_x) + 1; \ \ if (src_image->bits.width < REPEAT_NORMAL_MIN_WIDTH) \ { \ src_width = 0; \ \ while (src_width < REPEAT_NORMAL_MIN_WIDTH && src_width <= max_x) \ src_width += src_image->bits.width; \ \ need_src_extension = TRUE; \ } \ else \ { \ src_width = src_image->bits.width; \ need_src_extension = FALSE; \ } \ \ src_width_fixed = pixman_int_to_fixed (src_width); \ } \ \ if (op_func != NULL && width * sizeof(src_type_t) > sizeof(stack_scanline_buffer)) \ { \ scanline_buffer = pixman_malloc_ab (width, sizeof(src_type_t)); \ \ if (!scanline_buffer) \ return; \ } \ \ while (--height >= 0) \ { \ int weight1, weight2; \ dst = dst_line; \ dst_line += dst_stride; \ vx = v.vector[0]; \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ { \ mask = mask_line; \ mask_line += mask_stride; \ } \ \ y1 = pixman_fixed_to_int (vy); \ weight2 = pixman_fixed_to_bilinear_weight (vy); \ if (weight2) \ { \ /* both weight1 and weight2 are smaller than BILINEAR_INTERPOLATION_RANGE */ \ y2 = y1 + 1; \ weight1 = BILINEAR_INTERPOLATION_RANGE - weight2; \ } \ else \ { \ /* set both top and bottom row to the same scanline and tweak weights */ \ y2 = y1; \ weight1 = weight2 = BILINEAR_INTERPOLATION_RANGE / 2; \ } \ vy += unit_y; \ if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD) \ { \ src_type_t *src1, *src2; \ src_type_t buf1[2]; \ src_type_t buf2[2]; \ repeat (PIXMAN_REPEAT_PAD, &y1, src_image->bits.height); \ repeat (PIXMAN_REPEAT_PAD, &y2, src_image->bits.height); \ src1 = src_first_line + src_stride * y1; \ src2 = src_first_line + src_stride * y2; \ \ if (left_pad > 0) \ { \ buf1[0] = buf1[1] = src1[0]; \ buf2[0] = buf2[1] = src2[0]; \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, buf1, buf2, left_pad, weight1, weight2, \ 0, 0, 0, FALSE); \ dst += left_pad; \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += left_pad; \ } \ if (width > 0) \ { \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, src1, src2, width, weight1, weight2, \ vx, unit_x, 0, FALSE); \ dst += width; \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += width; \ } \ if (right_pad > 0) \ { \ buf1[0] = buf1[1] = src1[src_image->bits.width - 1]; \ buf2[0] = buf2[1] = src2[src_image->bits.width - 1]; \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, buf1, buf2, right_pad, weight1, weight2, \ 0, 0, 0, FALSE); \ } \ } \ else if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \ { \ src_type_t *src1, *src2; \ src_type_t buf1[2]; \ src_type_t buf2[2]; \ /* handle top/bottom zero padding by just setting weights to 0 if needed */ \ if (y1 < 0) \ { \ weight1 = 0; \ y1 = 0; \ } \ if (y1 >= src_image->bits.height) \ { \ weight1 = 0; \ y1 = src_image->bits.height - 1; \ } \ if (y2 < 0) \ { \ weight2 = 0; \ y2 = 0; \ } \ if (y2 >= src_image->bits.height) \ { \ weight2 = 0; \ y2 = src_image->bits.height - 1; \ } \ src1 = src_first_line + src_stride * y1; \ src2 = src_first_line + src_stride * y2; \ \ if (left_pad > 0) \ { \ buf1[0] = buf1[1] = 0; \ buf2[0] = buf2[1] = 0; \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, buf1, buf2, left_pad, weight1, weight2, \ 0, 0, 0, TRUE); \ dst += left_pad; \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += left_pad; \ } \ if (left_tz > 0) \ { \ buf1[0] = 0; \ buf1[1] = src1[0]; \ buf2[0] = 0; \ buf2[1] = src2[0]; \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, buf1, buf2, left_tz, weight1, weight2, \ pixman_fixed_frac (vx), unit_x, 0, FALSE); \ dst += left_tz; \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += left_tz; \ vx += left_tz * unit_x; \ } \ if (width > 0) \ { \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, src1, src2, width, weight1, weight2, \ vx, unit_x, 0, FALSE); \ dst += width; \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += width; \ vx += width * unit_x; \ } \ if (right_tz > 0) \ { \ buf1[0] = src1[src_image->bits.width - 1]; \ buf1[1] = 0; \ buf2[0] = src2[src_image->bits.width - 1]; \ buf2[1] = 0; \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, buf1, buf2, right_tz, weight1, weight2, \ pixman_fixed_frac (vx), unit_x, 0, FALSE); \ dst += right_tz; \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += right_tz; \ } \ if (right_pad > 0) \ { \ buf1[0] = buf1[1] = 0; \ buf2[0] = buf2[1] = 0; \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, buf1, buf2, right_pad, weight1, weight2, \ 0, 0, 0, TRUE); \ } \ } \ else if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \ { \ int32_t num_pixels; \ int32_t width_remain; \ src_type_t * src_line_top; \ src_type_t * src_line_bottom; \ src_type_t buf1[2]; \ src_type_t buf2[2]; \ src_type_t extended_src_line0[REPEAT_NORMAL_MIN_WIDTH*2]; \ src_type_t extended_src_line1[REPEAT_NORMAL_MIN_WIDTH*2]; \ int i, j; \ \ repeat (PIXMAN_REPEAT_NORMAL, &y1, src_image->bits.height); \ repeat (PIXMAN_REPEAT_NORMAL, &y2, src_image->bits.height); \ src_line_top = src_first_line + src_stride * y1; \ src_line_bottom = src_first_line + src_stride * y2; \ \ if (need_src_extension) \ { \ for (i=0; ibits.width; j++, i++) \ { \ extended_src_line0[i] = src_line_top[j]; \ extended_src_line1[i] = src_line_bottom[j]; \ } \ } \ \ src_line_top = &extended_src_line0[0]; \ src_line_bottom = &extended_src_line1[0]; \ } \ \ /* Top & Bottom wrap around buffer */ \ buf1[0] = src_line_top[src_width - 1]; \ buf1[1] = src_line_top[0]; \ buf2[0] = src_line_bottom[src_width - 1]; \ buf2[1] = src_line_bottom[0]; \ \ width_remain = width; \ \ while (width_remain > 0) \ { \ /* We use src_width_fixed because it can make vx in original source range */ \ repeat (PIXMAN_REPEAT_NORMAL, &vx, src_width_fixed); \ \ /* Wrap around part */ \ if (pixman_fixed_to_int (vx) == src_width - 1) \ { \ /* for positive unit_x \ * num_pixels = max(n) + 1, where vx + n*unit_x < src_width_fixed \ * \ * vx is in range [0, src_width_fixed - pixman_fixed_e] \ * So we are safe from overflow. \ */ \ num_pixels = ((src_width_fixed - vx - pixman_fixed_e) / unit_x) + 1; \ \ if (num_pixels > width_remain) \ num_pixels = width_remain; \ \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, \ dst, scanline_buffer, mask, buf1, buf2, num_pixels, \ weight1, weight2, pixman_fixed_frac(vx), \ unit_x, src_width_fixed, FALSE); \ \ width_remain -= num_pixels; \ vx += num_pixels * unit_x; \ dst += num_pixels; \ \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += num_pixels; \ \ repeat (PIXMAN_REPEAT_NORMAL, &vx, src_width_fixed); \ } \ \ /* Normal scanline composite */ \ if (pixman_fixed_to_int (vx) != src_width - 1 && width_remain > 0) \ { \ /* for positive unit_x \ * num_pixels = max(n) + 1, where vx + n*unit_x < (src_width_fixed - 1) \ * \ * vx is in range [0, src_width_fixed - pixman_fixed_e] \ * So we are safe from overflow here. \ */ \ num_pixels = ((src_width_fixed - pixman_fixed_1 - vx - pixman_fixed_e) \ / unit_x) + 1; \ \ if (num_pixels > width_remain) \ num_pixels = width_remain; \ \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, \ dst, scanline_buffer, mask, src_line_top, src_line_bottom, \ num_pixels, weight1, weight2, vx, unit_x, src_width_fixed, \ FALSE); \ \ width_remain -= num_pixels; \ vx += num_pixels * unit_x; \ dst += num_pixels; \ \ if (flags & FLAG_HAVE_NON_SOLID_MASK) \ mask += num_pixels; \ } \ } \ } \ else \ { \ scanline_func (dst_type_t, mask_type_t, src_type_t, fetch_func, op_func, dst, \ scanline_buffer, mask, \ src_first_line + src_stride * y1, \ src_first_line + src_stride * y2, width, \ weight1, weight2, vx, unit_x, max_vx, FALSE); \ } \ } \ if (scanline_buffer != (uint8_t *) stack_scanline_buffer) \ free (scanline_buffer); \ } /* A workaround for old sun studio, see: https://bugs.freedesktop.org/show_bug.cgi?id=32764 */ #define FAST_BILINEAR_MAINLOOP_COMMON(scale_func_name, fetch_func, op_func, src_type_t, mask_type_t,\ dst_type_t, repeat_mode, flags) \ FAST_BILINEAR_MAINLOOP_INT(_ ## scale_func_name, fetch_func, op_func, src_type_t, mask_type_t,\ dst_type_t, repeat_mode, flags) #define SCALED_BILINEAR_FLAGS \ (FAST_PATH_SCALE_TRANSFORM | \ FAST_PATH_NO_ALPHA_MAP | \ FAST_PATH_BILINEAR_FILTER | \ FAST_PATH_NO_ACCESSORS | \ FAST_PATH_NARROW_FORMAT) #define SIMPLE_BILINEAR_FAST_PATH_PAD(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_PAD_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _pad ## _ ## op, \ } #define SIMPLE_BILINEAR_FAST_PATH_NONE(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_NONE_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _none ## _ ## op, \ } #define SIMPLE_BILINEAR_FAST_PATH_COVER(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ SCALED_BILINEAR_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR, \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _cover ## _ ## op, \ } #define SIMPLE_BILINEAR_FAST_PATH_NORMAL(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_NORMAL_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_null, 0, \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _normal ## _ ## op, \ } #define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_PAD(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_PAD_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _pad ## _ ## op, \ } #define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NONE(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_NONE_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _none ## _ ## op, \ } #define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_COVER(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ SCALED_BILINEAR_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR, \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _cover ## _ ## op, \ } #define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NORMAL(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_NORMAL_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _normal ## _ ## op, \ } #define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_PAD(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_PAD_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _pad ## _ ## op, \ } #define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NONE(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_NONE_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _none ## _ ## op, \ } #define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_COVER(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ SCALED_BILINEAR_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR, \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _cover ## _ ## op, \ } #define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NORMAL(op,s,d,func) \ { PIXMAN_OP_ ## op, \ PIXMAN_ ## s, \ (SCALED_BILINEAR_FLAGS | \ FAST_PATH_NORMAL_REPEAT | \ FAST_PATH_X_UNIT_POSITIVE), \ PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \ PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \ fast_composite_scaled_bilinear_ ## func ## _normal ## _ ## op, \ } /* Prefer the use of 'cover' variant, because it is faster */ #define SIMPLE_BILINEAR_FAST_PATH(op,s,d,func) \ SIMPLE_BILINEAR_FAST_PATH_COVER (op,s,d,func), \ SIMPLE_BILINEAR_FAST_PATH_NONE (op,s,d,func), \ SIMPLE_BILINEAR_FAST_PATH_PAD (op,s,d,func), \ SIMPLE_BILINEAR_FAST_PATH_NORMAL (op,s,d,func) #define SIMPLE_BILINEAR_A8_MASK_FAST_PATH(op,s,d,func) \ SIMPLE_BILINEAR_A8_MASK_FAST_PATH_COVER (op,s,d,func), \ SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NONE (op,s,d,func), \ SIMPLE_BILINEAR_A8_MASK_FAST_PATH_PAD (op,s,d,func), \ SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NORMAL (op,s,d,func) #define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH(op,s,d,func) \ SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_COVER (op,s,d,func), \ SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NONE (op,s,d,func), \ SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_PAD (op,s,d,func), \ SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NORMAL (op,s,d,func) #endif