/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ImageContainer.h" #include // for memcpy, memset #include "GeckoProfiler.h" #include "GLImages.h" // for SurfaceTextureImage #include "YCbCrUtils.h" // for YCbCr conversions #include "gfx2DGlue.h" #include "gfxPlatform.h" // for gfxPlatform #include "gfxUtils.h" // for gfxUtils #include "libyuv.h" #include "mozilla/CheckedInt.h" #include "mozilla/RefPtr.h" // for already_AddRefed #include "mozilla/StaticPrefs_layers.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/gfxVars.h" #include "mozilla/ipc/CrossProcessMutex.h" // for CrossProcessMutex, etc #include "mozilla/layers/CompositorTypes.h" #include "mozilla/layers/ImageBridgeChild.h" // for ImageBridgeChild #include "mozilla/layers/ImageClient.h" // for ImageClient #include "mozilla/layers/ImageDataSerializer.h" // for SurfaceDescriptorBuffer #include "mozilla/layers/LayersMessages.h" #include "mozilla/layers/SharedPlanarYCbCrImage.h" #include "mozilla/layers/SharedRGBImage.h" #include "mozilla/layers/SharedSurfacesChild.h" // for SharedSurfacesAnimation #include "mozilla/layers/TextureClientRecycleAllocator.h" #include "nsProxyRelease.h" #include "nsISupportsUtils.h" // for NS_IF_ADDREF #ifdef XP_MACOSX # include "MacIOSurfaceImage.h" # include "mozilla/gfx/QuartzSupport.h" #endif #ifdef XP_WIN # include # include "gfxWindowsPlatform.h" # include "mozilla/gfx/DeviceManagerDx.h" # include "mozilla/layers/D3D11YCbCrImage.h" #endif namespace mozilla::layers { using namespace mozilla::gfx; using namespace mozilla::ipc; Atomic Image::sSerialCounter(0); Atomic ImageContainer::sGenerationCounter(0); static void CopyPlane(uint8_t* aDst, const uint8_t* aSrc, const gfx::IntSize& aSize, int32_t aStride, int32_t aSkip); RefPtr ImageFactory::CreatePlanarYCbCrImage( const gfx::IntSize& aScaleHint, BufferRecycleBin* aRecycleBin) { return new RecyclingPlanarYCbCrImage(aRecycleBin); } BufferRecycleBin::BufferRecycleBin() : mLock("mozilla.layers.BufferRecycleBin.mLock") // This member is only valid when the bin is not empty and will be // properly initialized in RecycleBuffer, but initializing it here avoids // static analysis noise. , mRecycledBufferSize(0) {} void BufferRecycleBin::RecycleBuffer(UniquePtr aBuffer, uint32_t aSize) { MutexAutoLock lock(mLock); if (!mRecycledBuffers.IsEmpty() && aSize != mRecycledBufferSize) { mRecycledBuffers.Clear(); } mRecycledBufferSize = aSize; mRecycledBuffers.AppendElement(std::move(aBuffer)); } UniquePtr BufferRecycleBin::GetBuffer(uint32_t aSize) { MutexAutoLock lock(mLock); if (mRecycledBuffers.IsEmpty() || mRecycledBufferSize != aSize) { return UniquePtr(new (fallible) uint8_t[aSize]); } return mRecycledBuffers.PopLastElement(); } void BufferRecycleBin::ClearRecycledBuffers() { MutexAutoLock lock(mLock); if (!mRecycledBuffers.IsEmpty()) { mRecycledBuffers.Clear(); } mRecycledBufferSize = 0; } ImageContainerListener::ImageContainerListener(ImageContainer* aImageContainer) : mLock("mozilla.layers.ImageContainerListener.mLock"), mImageContainer(aImageContainer) {} ImageContainerListener::~ImageContainerListener() = default; void ImageContainerListener::NotifyComposite( const ImageCompositeNotification& aNotification) { MutexAutoLock lock(mLock); if (mImageContainer) { mImageContainer->NotifyComposite(aNotification); } } void ImageContainerListener::NotifyDropped(uint32_t aDropped) { MutexAutoLock lock(mLock); if (mImageContainer) { mImageContainer->NotifyDropped(aDropped); } } void ImageContainerListener::ClearImageContainer() { MutexAutoLock lock(mLock); mImageContainer = nullptr; } void ImageContainerListener::DropImageClient() { MutexAutoLock lock(mLock); if (mImageContainer) { mImageContainer->DropImageClient(); } } already_AddRefed ImageContainer::GetImageClient() { RecursiveMutexAutoLock mon(mRecursiveMutex); EnsureImageClient(); RefPtr imageClient = mImageClient; return imageClient.forget(); } void ImageContainer::DropImageClient() { RecursiveMutexAutoLock mon(mRecursiveMutex); if (mImageClient) { mImageClient->ClearCachedResources(); mImageClient = nullptr; } } void ImageContainer::EnsureImageClient() { // If we're not forcing a new ImageClient, then we can skip this if we don't // have an existing ImageClient, or if the existing one belongs to an IPC // actor that is still open. if (!mIsAsync) { return; } if (mImageClient && mImageClient->GetForwarder()->GetLayersIPCActor()->IPCOpen()) { return; } RefPtr imageBridge = ImageBridgeChild::GetSingleton(); if (imageBridge) { mImageClient = imageBridge->CreateImageClient(CompositableType::IMAGE, this); if (mImageClient) { mAsyncContainerHandle = mImageClient->GetAsyncHandle(); } else { // It's okay to drop the async container handle since the ImageBridgeChild // is going to die anyway. mAsyncContainerHandle = CompositableHandle(); } } } SharedSurfacesAnimation* ImageContainer::EnsureSharedSurfacesAnimation() { if (!mSharedAnimation) { mSharedAnimation = new SharedSurfacesAnimation(); } return mSharedAnimation; } ImageContainer::ImageContainer(Mode flag) : mRecursiveMutex("ImageContainer.mRecursiveMutex"), mGenerationCounter(++sGenerationCounter), mPaintCount(0), mDroppedImageCount(0), mImageFactory(new ImageFactory()), mRecycleBin(new BufferRecycleBin()), mIsAsync(flag == ASYNCHRONOUS), mCurrentProducerID(-1) { if (flag == ASYNCHRONOUS) { mNotifyCompositeListener = new ImageContainerListener(this); EnsureImageClient(); } } ImageContainer::ImageContainer(const CompositableHandle& aHandle) : mRecursiveMutex("ImageContainer.mRecursiveMutex"), mGenerationCounter(++sGenerationCounter), mPaintCount(0), mDroppedImageCount(0), mImageFactory(nullptr), mRecycleBin(nullptr), mIsAsync(true), mAsyncContainerHandle(aHandle), mCurrentProducerID(-1) { MOZ_ASSERT(mAsyncContainerHandle); } ImageContainer::~ImageContainer() { if (mNotifyCompositeListener) { mNotifyCompositeListener->ClearImageContainer(); } if (mAsyncContainerHandle) { if (RefPtr imageBridge = ImageBridgeChild::GetSingleton()) { imageBridge->ForgetImageContainer(mAsyncContainerHandle); } } if (mSharedAnimation) { mSharedAnimation->Destroy(); } } Maybe Image::GetDesc() { return {}; } Maybe Image::GetDescFromTexClient( TextureClient* const forTc) { RefPtr tc = forTc; if (!forTc) { tc = GetTextureClient(nullptr); } const auto& tcd = tc->GetInternalData(); SurfaceDescriptor ret; if (!tcd->Serialize(ret)) { return {}; } return Some(ret); } RefPtr ImageContainer::CreatePlanarYCbCrImage() { RecursiveMutexAutoLock lock(mRecursiveMutex); EnsureImageClient(); if (mImageClient && mImageClient->AsImageClientSingle()) { return new SharedPlanarYCbCrImage(mImageClient); } if (mRecycleAllocator) { return new SharedPlanarYCbCrImage(mRecycleAllocator); } return mImageFactory->CreatePlanarYCbCrImage(mScaleHint, mRecycleBin); } RefPtr ImageContainer::CreateSharedRGBImage() { RecursiveMutexAutoLock lock(mRecursiveMutex); EnsureImageClient(); if (mImageClient && mImageClient->AsImageClientSingle()) { return new SharedRGBImage(mImageClient); } if (mRecycleAllocator) { return new SharedRGBImage(mRecycleAllocator); } return nullptr; } void ImageContainer::SetCurrentImageInternal( const nsTArray& aImages) { RecursiveMutexAutoLock lock(mRecursiveMutex); mGenerationCounter = ++sGenerationCounter; if (!aImages.IsEmpty()) { NS_ASSERTION(mCurrentImages.IsEmpty() || mCurrentImages[0].mProducerID != aImages[0].mProducerID || mCurrentImages[0].mFrameID <= aImages[0].mFrameID, "frame IDs shouldn't go backwards"); if (aImages[0].mProducerID != mCurrentProducerID) { mCurrentProducerID = aImages[0].mProducerID; } } nsTArray newImages; for (uint32_t i = 0; i < aImages.Length(); ++i) { NS_ASSERTION(aImages[i].mImage, "image can't be null"); NS_ASSERTION(!aImages[i].mTimeStamp.IsNull() || aImages.Length() == 1, "Multiple images require timestamps"); if (i > 0) { NS_ASSERTION(aImages[i].mTimeStamp >= aImages[i - 1].mTimeStamp, "Timestamps must not decrease"); NS_ASSERTION(aImages[i].mFrameID > aImages[i - 1].mFrameID, "FrameIDs must increase"); NS_ASSERTION(aImages[i].mProducerID == aImages[i - 1].mProducerID, "ProducerIDs must be the same"); } OwningImage* img = newImages.AppendElement(); img->mImage = aImages[i].mImage; img->mTimeStamp = aImages[i].mTimeStamp; img->mFrameID = aImages[i].mFrameID; img->mProducerID = aImages[i].mProducerID; for (const auto& oldImg : mCurrentImages) { if (oldImg.mFrameID == img->mFrameID && oldImg.mProducerID == img->mProducerID) { img->mComposited = oldImg.mComposited; break; } } } mCurrentImages = std::move(newImages); } void ImageContainer::ClearImagesFromImageBridge() { RecursiveMutexAutoLock lock(mRecursiveMutex); SetCurrentImageInternal(nsTArray()); } void ImageContainer::SetCurrentImages(const nsTArray& aImages) { AUTO_PROFILER_LABEL("ImageContainer::SetCurrentImages", GRAPHICS); MOZ_ASSERT(!aImages.IsEmpty()); RecursiveMutexAutoLock lock(mRecursiveMutex); if (mIsAsync) { if (RefPtr imageBridge = ImageBridgeChild::GetSingleton()) { imageBridge->UpdateImageClient(this); } } SetCurrentImageInternal(aImages); } void ImageContainer::ClearAllImages() { if (mImageClient) { // Let ImageClient release all TextureClients. This doesn't return // until ImageBridge has called ClearCurrentImageFromImageBridge. if (RefPtr imageBridge = ImageBridgeChild::GetSingleton()) { imageBridge->FlushAllImages(mImageClient, this); } return; } RecursiveMutexAutoLock lock(mRecursiveMutex); SetCurrentImageInternal(nsTArray()); } void ImageContainer::ClearCachedResources() { RecursiveMutexAutoLock lock(mRecursiveMutex); if (mImageClient && mImageClient->AsImageClientSingle()) { if (!mImageClient->HasTextureClientRecycler()) { return; } mImageClient->GetTextureClientRecycler()->ShrinkToMinimumSize(); return; } return mRecycleBin->ClearRecycledBuffers(); } void ImageContainer::SetCurrentImageInTransaction(Image* aImage) { AutoTArray images; images.AppendElement(NonOwningImage(aImage)); SetCurrentImagesInTransaction(images); } void ImageContainer::SetCurrentImagesInTransaction( const nsTArray& aImages) { NS_ASSERTION(NS_IsMainThread(), "Should be on main thread."); NS_ASSERTION(!mImageClient, "Should use async image transfer with ImageBridge."); SetCurrentImageInternal(aImages); } bool ImageContainer::IsAsync() const { return mIsAsync; } CompositableHandle ImageContainer::GetAsyncContainerHandle() { NS_ASSERTION(IsAsync(), "Shared image ID is only relevant to async ImageContainers"); NS_ASSERTION(mAsyncContainerHandle, "Should have a shared image ID"); RecursiveMutexAutoLock mon(mRecursiveMutex); EnsureImageClient(); return mAsyncContainerHandle; } bool ImageContainer::HasCurrentImage() { RecursiveMutexAutoLock lock(mRecursiveMutex); return !mCurrentImages.IsEmpty(); } void ImageContainer::GetCurrentImages(nsTArray* aImages, uint32_t* aGenerationCounter) { RecursiveMutexAutoLock lock(mRecursiveMutex); *aImages = mCurrentImages.Clone(); if (aGenerationCounter) { *aGenerationCounter = mGenerationCounter; } } gfx::IntSize ImageContainer::GetCurrentSize() { RecursiveMutexAutoLock lock(mRecursiveMutex); if (mCurrentImages.IsEmpty()) { return gfx::IntSize(0, 0); } return mCurrentImages[0].mImage->GetSize(); } void ImageContainer::NotifyComposite( const ImageCompositeNotification& aNotification) { RecursiveMutexAutoLock lock(mRecursiveMutex); // An image composition notification is sent the first time a particular // image is composited by an ImageHost. Thus, every time we receive such // a notification, a new image has been painted. ++mPaintCount; if (aNotification.producerID() == mCurrentProducerID) { for (auto& img : mCurrentImages) { if (img.mFrameID == aNotification.frameID()) { img.mComposited = true; } } } if (!aNotification.imageTimeStamp().IsNull()) { mPaintDelay = aNotification.firstCompositeTimeStamp() - aNotification.imageTimeStamp(); } } void ImageContainer::NotifyDropped(uint32_t aDropped) { mDroppedImageCount += aDropped; } void ImageContainer::EnsureRecycleAllocatorForRDD( KnowsCompositor* aKnowsCompositor) { MOZ_ASSERT(!mIsAsync); MOZ_ASSERT(!mImageClient); MOZ_ASSERT(XRE_IsRDDProcess()); if (mRecycleAllocator && aKnowsCompositor == mRecycleAllocator->GetKnowsCompositor()) { return; } if (!StaticPrefs::layers_recycle_allocator_rdd_AtStartup()) { return; } static const uint32_t MAX_POOLED_VIDEO_COUNT = 5; mRecycleAllocator = new layers::TextureClientRecycleAllocator(aKnowsCompositor); mRecycleAllocator->SetMaxPoolSize(MAX_POOLED_VIDEO_COUNT); } #ifdef XP_WIN D3D11YCbCrRecycleAllocator* ImageContainer::GetD3D11YCbCrRecycleAllocator( KnowsCompositor* aKnowsCompositor) { if (mD3D11YCbCrRecycleAllocator && aKnowsCompositor == mD3D11YCbCrRecycleAllocator->GetKnowsCompositor()) { return mD3D11YCbCrRecycleAllocator; } if (!aKnowsCompositor->SupportsD3D11() || !gfx::DeviceManagerDx::Get()->GetImageDevice()) { return nullptr; } mD3D11YCbCrRecycleAllocator = new D3D11YCbCrRecycleAllocator(aKnowsCompositor); return mD3D11YCbCrRecycleAllocator; } #endif #ifdef XP_MACOSX MacIOSurfaceRecycleAllocator* ImageContainer::GetMacIOSurfaceRecycleAllocator() { if (!mMacIOSurfaceRecycleAllocator) { mMacIOSurfaceRecycleAllocator = new MacIOSurfaceRecycleAllocator(); } return mMacIOSurfaceRecycleAllocator; } #endif PlanarYCbCrImage::PlanarYCbCrImage() : Image(nullptr, ImageFormat::PLANAR_YCBCR), mOffscreenFormat(SurfaceFormat::UNKNOWN), mBufferSize(0) {} nsresult PlanarYCbCrImage::BuildSurfaceDescriptorBuffer( SurfaceDescriptorBuffer& aSdBuffer) { const PlanarYCbCrData* pdata = GetData(); MOZ_ASSERT(pdata, "must have PlanarYCbCrData"); MOZ_ASSERT(pdata->mYSkip == 0 && pdata->mCbSkip == 0 && pdata->mCrSkip == 0, "YCbCrDescriptor doesn't hold skip values"); uint32_t yOffset; uint32_t cbOffset; uint32_t crOffset; ImageDataSerializer::ComputeYCbCrOffsets( pdata->mYStride, pdata->mYSize.height, pdata->mCbCrStride, pdata->mCbCrSize.height, yOffset, cbOffset, crOffset); aSdBuffer.desc() = YCbCrDescriptor( pdata->GetPictureRect(), pdata->mYSize, pdata->mYStride, pdata->mCbCrSize, pdata->mCbCrStride, yOffset, cbOffset, crOffset, pdata->mStereoMode, pdata->mColorDepth, pdata->mYUVColorSpace, pdata->mColorRange, /*hasIntermediateBuffer*/ false); uint8_t* buffer = nullptr; const MemoryOrShmem& memOrShmem = aSdBuffer.data(); switch (memOrShmem.type()) { case MemoryOrShmem::Tuintptr_t: buffer = reinterpret_cast(memOrShmem.get_uintptr_t()); break; case MemoryOrShmem::TShmem: buffer = memOrShmem.get_Shmem().get(); break; default: MOZ_ASSERT(false, "Unknown MemoryOrShmem type"); } MOZ_ASSERT(buffer, "no valid buffer available to copy image data"); if (!buffer) { return NS_ERROR_INVALID_ARG; } CopyPlane(buffer + yOffset, pdata->mYChannel, pdata->mYSize, pdata->mYStride, pdata->mYSkip); CopyPlane(buffer + cbOffset, pdata->mCbChannel, pdata->mCbCrSize, pdata->mCbCrStride, pdata->mCbSkip); CopyPlane(buffer + crOffset, pdata->mCrChannel, pdata->mCbCrSize, pdata->mCbCrStride, pdata->mCrSkip); return NS_OK; } RecyclingPlanarYCbCrImage::~RecyclingPlanarYCbCrImage() { if (mBuffer) { mRecycleBin->RecycleBuffer(std::move(mBuffer), mBufferSize); } } size_t RecyclingPlanarYCbCrImage::SizeOfExcludingThis( MallocSizeOf aMallocSizeOf) const { // Ignoring: // - mData - just wraps mBuffer // - Surfaces should be reported under gfx-surfaces-*: // - mSourceSurface // - Base class: // - mImplData is not used // Not owned: // - mRecycleBin size_t size = aMallocSizeOf(mBuffer.get()); // Could add in the future: // - mBackendData (from base class) return size; } UniquePtr RecyclingPlanarYCbCrImage::AllocateBuffer(uint32_t aSize) { return mRecycleBin->GetBuffer(aSize); } static void CopyPlane(uint8_t* aDst, const uint8_t* aSrc, const gfx::IntSize& aSize, int32_t aStride, int32_t aSkip) { int32_t height = aSize.height; int32_t width = aSize.width; MOZ_RELEASE_ASSERT(width <= aStride); if (!aSkip) { // Fast path: planar input. memcpy(aDst, aSrc, height * aStride); } else { for (int y = 0; y < height; ++y) { const uint8_t* src = aSrc; uint8_t* dst = aDst; // Slow path for (int x = 0; x < width; ++x) { *dst++ = *src++; src += aSkip; } aSrc += aStride; aDst += aStride; } } } bool RecyclingPlanarYCbCrImage::CopyData(const Data& aData) { // update buffer size // Use uint32_t throughout to match AllocateBuffer's param and mBufferSize const auto checkedSize = CheckedInt(aData.mCbCrStride) * aData.mCbCrSize.height * 2 + CheckedInt(aData.mYStride) * aData.mYSize.height; if (!checkedSize.isValid()) return false; const auto size = checkedSize.value(); // get new buffer mBuffer = AllocateBuffer(size); if (!mBuffer) return false; // update buffer size mBufferSize = size; mData = aData; mData.mYChannel = mBuffer.get(); mData.mCbChannel = mData.mYChannel + mData.mYStride * mData.mYSize.height; mData.mCrChannel = mData.mCbChannel + mData.mCbCrStride * mData.mCbCrSize.height; mData.mYSkip = mData.mCbSkip = mData.mCrSkip = 0; CopyPlane(mData.mYChannel, aData.mYChannel, aData.mYSize, aData.mYStride, aData.mYSkip); CopyPlane(mData.mCbChannel, aData.mCbChannel, aData.mCbCrSize, aData.mCbCrStride, aData.mCbSkip); CopyPlane(mData.mCrChannel, aData.mCrChannel, aData.mCbCrSize, aData.mCbCrStride, aData.mCrSkip); mSize = aData.mPicSize; mOrigin = gfx::IntPoint(aData.mPicX, aData.mPicY); return true; } gfxImageFormat PlanarYCbCrImage::GetOffscreenFormat() const { return mOffscreenFormat == SurfaceFormat::UNKNOWN ? gfxVars::OffscreenFormat() : mOffscreenFormat; } bool PlanarYCbCrImage::AdoptData(const Data& aData) { mData = aData; mSize = aData.mPicSize; mOrigin = gfx::IntPoint(aData.mPicX, aData.mPicY); return true; } already_AddRefed PlanarYCbCrImage::GetAsSourceSurface() { if (mSourceSurface) { RefPtr surface(mSourceSurface); return surface.forget(); } gfx::IntSize size(mSize); gfx::SurfaceFormat format = gfx::ImageFormatToSurfaceFormat(GetOffscreenFormat()); gfx::GetYCbCrToRGBDestFormatAndSize(mData, format, size); if (mSize.width > PlanarYCbCrImage::MAX_DIMENSION || mSize.height > PlanarYCbCrImage::MAX_DIMENSION) { NS_ERROR("Illegal image dest width or height"); return nullptr; } RefPtr surface = gfx::Factory::CreateDataSourceSurface(size, format); if (NS_WARN_IF(!surface)) { return nullptr; } DataSourceSurface::ScopedMap mapping(surface, DataSourceSurface::WRITE); if (NS_WARN_IF(!mapping.IsMapped())) { return nullptr; } gfx::ConvertYCbCrToRGB(mData, format, size, mapping.GetData(), mapping.GetStride()); mSourceSurface = surface; return surface.forget(); } PlanarYCbCrImage::~PlanarYCbCrImage() { NS_ReleaseOnMainThread("PlanarYCbCrImage::mSourceSurface", mSourceSurface.forget()); } NVImage::NVImage() : Image(nullptr, ImageFormat::NV_IMAGE), mBufferSize(0) {} NVImage::~NVImage() { NS_ReleaseOnMainThread("NVImage::mSourceSurface", mSourceSurface.forget()); } IntSize NVImage::GetSize() const { return mSize; } IntRect NVImage::GetPictureRect() const { return mData.GetPictureRect(); } already_AddRefed NVImage::GetAsSourceSurface() { if (mSourceSurface) { RefPtr surface(mSourceSurface); return surface.forget(); } // Convert the current NV12 or NV21 data to YUV420P so that we can follow the // logics in PlanarYCbCrImage::GetAsSourceSurface(). const int bufferLength = mData.mYSize.height * mData.mYStride + mData.mCbCrSize.height * mData.mCbCrSize.width * 2; UniquePtr buffer(new uint8_t[bufferLength]); Data aData = mData; aData.mCbCrStride = aData.mCbCrSize.width; aData.mCbSkip = 0; aData.mCrSkip = 0; aData.mYChannel = buffer.get(); aData.mCbChannel = aData.mYChannel + aData.mYSize.height * aData.mYStride; aData.mCrChannel = aData.mCbChannel + aData.mCbCrSize.height * aData.mCbCrStride; if (mData.mCbChannel < mData.mCrChannel) { // NV12 libyuv::NV12ToI420(mData.mYChannel, mData.mYStride, mData.mCbChannel, mData.mCbCrStride, aData.mYChannel, aData.mYStride, aData.mCbChannel, aData.mCbCrStride, aData.mCrChannel, aData.mCbCrStride, aData.mYSize.width, aData.mYSize.height); } else { // NV21 libyuv::NV21ToI420(mData.mYChannel, mData.mYStride, mData.mCrChannel, mData.mCbCrStride, aData.mYChannel, aData.mYStride, aData.mCbChannel, aData.mCbCrStride, aData.mCrChannel, aData.mCbCrStride, aData.mYSize.width, aData.mYSize.height); } // The logics in PlanarYCbCrImage::GetAsSourceSurface(). gfx::IntSize size(mSize); gfx::SurfaceFormat format = gfx::ImageFormatToSurfaceFormat( gfxPlatform::GetPlatform()->GetOffscreenFormat()); gfx::GetYCbCrToRGBDestFormatAndSize(aData, format, size); if (mSize.width > PlanarYCbCrImage::MAX_DIMENSION || mSize.height > PlanarYCbCrImage::MAX_DIMENSION) { NS_ERROR("Illegal image dest width or height"); return nullptr; } RefPtr surface = gfx::Factory::CreateDataSourceSurface(size, format); if (NS_WARN_IF(!surface)) { return nullptr; } DataSourceSurface::ScopedMap mapping(surface, DataSourceSurface::WRITE); if (NS_WARN_IF(!mapping.IsMapped())) { return nullptr; } gfx::ConvertYCbCrToRGB(aData, format, size, mapping.GetData(), mapping.GetStride()); mSourceSurface = surface; return surface.forget(); } bool NVImage::IsValid() const { return !!mBufferSize; } uint32_t NVImage::GetBufferSize() const { return mBufferSize; } NVImage* NVImage::AsNVImage() { return this; }; bool NVImage::SetData(const Data& aData) { MOZ_ASSERT(aData.mCbSkip == 1 && aData.mCrSkip == 1); MOZ_ASSERT((int)std::abs(aData.mCbChannel - aData.mCrChannel) == 1); // Calculate buffer size // Use uint32_t throughout to match AllocateBuffer's param and mBufferSize const auto checkedSize = CheckedInt(aData.mYSize.height) * aData.mYStride + CheckedInt(aData.mCbCrSize.height) * aData.mCbCrStride; if (!checkedSize.isValid()) return false; const auto size = checkedSize.value(); // Allocate a new buffer. mBuffer = AllocateBuffer(size); if (!mBuffer) { return false; } // Update mBufferSize. mBufferSize = size; // Update mData. mData = aData; mData.mYChannel = mBuffer.get(); mData.mCbChannel = mData.mYChannel + (aData.mCbChannel - aData.mYChannel); mData.mCrChannel = mData.mYChannel + (aData.mCrChannel - aData.mYChannel); // Update mSize. mSize = aData.mPicSize; // Copy the input data into mBuffer. // This copies the y-channel and the interleaving CbCr-channel. memcpy(mData.mYChannel, aData.mYChannel, mBufferSize); return true; } const NVImage::Data* NVImage::GetData() const { return &mData; } UniquePtr NVImage::AllocateBuffer(uint32_t aSize) { UniquePtr buffer(new uint8_t[aSize]); return buffer; } SourceSurfaceImage::SourceSurfaceImage(const gfx::IntSize& aSize, gfx::SourceSurface* aSourceSurface) : Image(nullptr, ImageFormat::CAIRO_SURFACE), mSize(aSize), mSourceSurface(aSourceSurface), mTextureFlags(TextureFlags::DEFAULT) {} SourceSurfaceImage::SourceSurfaceImage(gfx::SourceSurface* aSourceSurface) : Image(nullptr, ImageFormat::CAIRO_SURFACE), mSize(aSourceSurface->GetSize()), mSourceSurface(aSourceSurface), mTextureFlags(TextureFlags::DEFAULT) {} SourceSurfaceImage::~SourceSurfaceImage() { NS_ReleaseOnMainThread("SourceSurfaceImage::mSourceSurface", mSourceSurface.forget()); } TextureClient* SourceSurfaceImage::GetTextureClient( KnowsCompositor* aKnowsCompositor) { if (!aKnowsCompositor) { return nullptr; } auto entry = mTextureClients.LookupForAdd(aKnowsCompositor->GetSerial()); if (entry) { return entry.Data(); } RefPtr textureClient; RefPtr surface = GetAsSourceSurface(); MOZ_ASSERT(surface); if (surface) { // gfx::BackendType::NONE means default to content backend textureClient = TextureClient::CreateFromSurface( aKnowsCompositor, surface, BackendSelector::Content, mTextureFlags, ALLOC_DEFAULT); } if (textureClient) { textureClient->SyncWithObject(aKnowsCompositor->GetSyncObject()); entry.OrInsert([&textureClient]() { return textureClient; }); return textureClient; } // Remove the speculatively added entry. entry.OrRemove(); return nullptr; } ImageContainer::ProducerID ImageContainer::AllocateProducerID() { // Callable on all threads. static Atomic sProducerID(0u); return ++sProducerID; } } // namespace mozilla::layers