/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "BlendingHelpers.hlslh" #include "BlendShaderConstants.h" typedef float4 rect; float4x4 mLayerTransform : register(vs, c0); float4x4 mProjection : register(vs, c4); float4 vRenderTargetOffset : register(vs, c8); rect vTextureCoords : register(vs, c9); rect vLayerQuad : register(vs, c10); float4x4 mMaskTransform : register(vs, c11); float4x4 mBackdropTransform : register(vs, c15); float4 fLayerColor : register(ps, c0); float fLayerOpacity : register(ps, c1); // x = layer type // y = mask type // z = blend op // w = is premultiplied uint4 iBlendConfig : register(ps, c2); float fCoefficient : register(ps, c3); row_major float3x3 mYuvColorMatrix : register(ps, c4); sampler sSampler : register(ps, s0); // The mix-blend mega shader uses all variables, so we have to make sure they // are assigned fixed slots. Texture2D tRGB : register(ps, t0); Texture2D tY : register(ps, t1); Texture2D tCb : register(ps, t2); Texture2D tCr : register(ps, t3); Texture2D tRGBWhite : register(ps, t4); Texture2D tMask : register(ps, t5); Texture2D tBackdrop : register(ps, t6); struct VS_INPUT { float2 vPosition : POSITION; }; struct VS_TEX_INPUT { float2 vPosition : POSITION; float2 vTexCoords : TEXCOORD0; }; struct VS_OUTPUT { float4 vPosition : SV_Position; float2 vTexCoords : TEXCOORD0; }; struct VS_MASK_OUTPUT { float4 vPosition : SV_Position; float2 vTexCoords : TEXCOORD0; float3 vMaskCoords : TEXCOORD1; }; // Combined struct for the mix-blend compatible vertex shaders. struct VS_BLEND_OUTPUT { float4 vPosition : SV_Position; float2 vTexCoords : TEXCOORD0; float3 vMaskCoords : TEXCOORD1; float2 vBackdropCoords : TEXCOORD2; }; struct PS_OUTPUT { float4 vSrc; float4 vAlpha; }; float2 TexCoords(const float2 aPosition) { float2 result; const float2 size = vTextureCoords.zw; result.x = vTextureCoords.x + aPosition.x * size.x; result.y = vTextureCoords.y + aPosition.y * size.y; return result; } SamplerState LayerTextureSamplerLinear { Filter = MIN_MAG_MIP_LINEAR; AddressU = Clamp; AddressV = Clamp; }; float4 TransformedPosition(float2 aInPosition) { // the current vertex's position on the quad // [x,y,0,1] is mandated by the CSS Transforms spec as the point value to transform float4 position = float4(0, 0, 0, 1); // We use 4 component floats to uniquely describe a rectangle, by the structure // of x, y, width, height. This allows us to easily generate the 4 corners // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the // stream source for our LayerQuad vertex shader. We do this by doing: // Xout = x + Xin * width // Yout = y + Yin * height float2 size = vLayerQuad.zw; position.x = vLayerQuad.x + aInPosition.x * size.x; position.y = vLayerQuad.y + aInPosition.y * size.y; position = mul(mLayerTransform, position); return position; } float4 VertexPosition(float4 aTransformedPosition) { float4 result; result.w = aTransformedPosition.w; result.xyz = aTransformedPosition.xyz / aTransformedPosition.w; result -= vRenderTargetOffset; result.xyz *= result.w; result = mul(mProjection, result); return result; } float2 BackdropPosition(float4 aPosition) { // Move the position from clip space (-1,1) into 0..1 space. float2 pos; pos.x = (aPosition.x + 1.0) / 2.0; pos.y = 1.0 - (aPosition.y + 1.0) / 2.0; return mul(mBackdropTransform, float4(pos.xy, 0, 1.0)).xy; } VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex) { VS_OUTPUT outp; float4 position = TransformedPosition(aVertex.vPosition); outp.vPosition = VertexPosition(position); outp.vTexCoords = TexCoords(aVertex.vPosition.xy); return outp; } float3 MaskCoords(float4 aPosition) { // We use the w coord to do non-perspective correct interpolation: // the quad might be transformed in 3D, in which case it will have some // perspective. The graphics card will do perspective-correct interpolation // of the texture, but our mask is already transformed and so we require // linear interpolation. Therefore, we must correct the interpolation // ourselves, we do this by multiplying all coords by w here, and dividing by // w in the pixel shader (post-interpolation), we pass w in outp.vMaskCoords.z. // See http://en.wikipedia.org/wiki/Texture_mapping#Perspective_correctness return float3(mul(mMaskTransform, (aPosition / aPosition.w)).xy, 1.0) * aPosition.w; } VS_MASK_OUTPUT LayerQuadMaskVS(const VS_INPUT aVertex) { float4 position = TransformedPosition(aVertex.vPosition); VS_MASK_OUTPUT outp; outp.vPosition = VertexPosition(position); outp.vMaskCoords = MaskCoords(position); outp.vTexCoords = TexCoords(aVertex.vPosition.xy); return outp; } VS_OUTPUT LayerDynamicVS(const VS_TEX_INPUT aVertex) { VS_OUTPUT outp; float4 position = float4(aVertex.vPosition, 0, 1); position = mul(mLayerTransform, position); outp.vPosition = VertexPosition(position); outp.vTexCoords = aVertex.vTexCoords; return outp; } VS_MASK_OUTPUT LayerDynamicMaskVS(const VS_TEX_INPUT aVertex) { VS_MASK_OUTPUT outp; float4 position = float4(aVertex.vPosition, 0, 1); position = mul(mLayerTransform, position); outp.vPosition = VertexPosition(position); // calculate the position on the mask texture outp.vMaskCoords = MaskCoords(position); outp.vTexCoords = aVertex.vTexCoords; return outp; } float4 RGBAShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target { float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tMask.Sample(sSampler, maskCoords).r; return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity * mask; } float4 RGBShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target { float4 result; result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity; result.a = fLayerOpacity; float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tMask.Sample(sSampler, maskCoords).r; return result * mask; } /* From Rec601: [R] [1.1643835616438356, 0.0, 1.5960267857142858] [ Y - 16] [G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708] x [Cb - 128] [B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [Cr - 128] For [0,1] instead of [0,255], and to 5 places: [R] [1.16438, 0.00000, 1.59603] [ Y - 0.06275] [G] = [1.16438, -0.39176, -0.81297] x [Cb - 0.50196] [B] [1.16438, 2.01723, 0.00000] [Cr - 0.50196] From Rec709: [R] [1.1643835616438356, 4.2781193979771426e-17, 1.7927410714285714] [ Y - 16] [G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444] x [Cb - 128] [B] [1.1643835616438356, 2.1124017857142854, 0.0] [Cr - 128] For [0,1] instead of [0,255], and to 5 places: [R] [1.16438, 0.00000, 1.79274] [ Y - 0.06275] [G] = [1.16438, -0.21325, -0.53291] x [Cb - 0.50196] [B] [1.16438, 2.11240, 0.00000] [Cr - 0.50196] */ float4 CalculateYCbCrColor(const float2 aTexCoords) { float3 yuv = float3( tY.Sample(sSampler, aTexCoords).r, tCb.Sample(sSampler, aTexCoords).r, tCr.Sample(sSampler, aTexCoords).r); yuv = yuv * fCoefficient - float3(0.06275, 0.50196, 0.50196); return float4(mul(mYuvColorMatrix, yuv), 1.0); } float4 CalculateNV12Color(const float2 aTexCoords) { float3 yuv = float3( tY.Sample(sSampler, aTexCoords).r, tCb.Sample(sSampler, aTexCoords).r, tCb.Sample(sSampler, aTexCoords).g); yuv = yuv * fCoefficient - float3(0.06275, 0.50196, 0.50196); return float4(mul(mYuvColorMatrix, yuv), 1.0); } float4 YCbCrShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target { float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tMask.Sample(sSampler, maskCoords).r; return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity * mask; } float4 NV12ShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target { float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tMask.Sample(sSampler, maskCoords).r; return CalculateNV12Color(aVertex.vTexCoords) * fLayerOpacity * mask; } PS_OUTPUT ComponentAlphaShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target { PS_OUTPUT result; result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords); result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc; result.vSrc.a = result.vAlpha.g; float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tMask.Sample(sSampler, maskCoords).r; result.vSrc *= fLayerOpacity * mask; result.vAlpha *= fLayerOpacity * mask; return result; } float4 SolidColorShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target { float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tMask.Sample(sSampler, maskCoords).r; return fLayerColor * mask; } /* * Un-masked versions ************************************************************* */ float4 RGBAShader(const VS_OUTPUT aVertex) : SV_Target { return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity; } float4 RGBShader(const VS_OUTPUT aVertex) : SV_Target { float4 result; result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity; result.a = fLayerOpacity; return result; } float4 YCbCrShader(const VS_OUTPUT aVertex) : SV_Target { return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity; } float4 NV12Shader(const VS_OUTPUT aVertex) : SV_Target { return CalculateNV12Color(aVertex.vTexCoords) * fLayerOpacity; } PS_OUTPUT ComponentAlphaShader(const VS_OUTPUT aVertex) : SV_Target { PS_OUTPUT result; result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords); result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc; result.vSrc.a = result.vAlpha.g; result.vSrc *= fLayerOpacity; result.vAlpha *= fLayerOpacity; return result; } float4 SolidColorShader(const VS_OUTPUT aVertex) : SV_Target { return fLayerColor; } // Mix-blend compatible vertex shaders. VS_BLEND_OUTPUT LayerQuadBlendVS(const VS_INPUT aVertex) { VS_OUTPUT v = LayerQuadVS(aVertex); VS_BLEND_OUTPUT o; o.vPosition = v.vPosition; o.vTexCoords = v.vTexCoords; o.vMaskCoords = float3(0, 0, 0); o.vBackdropCoords = BackdropPosition(v.vPosition); return o; } VS_BLEND_OUTPUT LayerQuadBlendMaskVS(const VS_INPUT aVertex) { VS_MASK_OUTPUT v = LayerQuadMaskVS(aVertex); VS_BLEND_OUTPUT o; o.vPosition = v.vPosition; o.vTexCoords = v.vTexCoords; o.vMaskCoords = v.vMaskCoords; o.vBackdropCoords = BackdropPosition(v.vPosition); return o; } VS_BLEND_OUTPUT LayerDynamicBlendVS(const VS_TEX_INPUT aVertex) { VS_OUTPUT v = LayerDynamicVS(aVertex); VS_BLEND_OUTPUT o; o.vPosition = v.vPosition; o.vTexCoords = v.vTexCoords; o.vMaskCoords = float3(0, 0, 0); o.vBackdropCoords = BackdropPosition(v.vPosition); return o; } VS_BLEND_OUTPUT LayerDynamicBlendMaskVS(const VS_TEX_INPUT aVertex) { VS_MASK_OUTPUT v = LayerDynamicMaskVS(aVertex); VS_BLEND_OUTPUT o; o.vPosition = v.vPosition; o.vTexCoords = v.vTexCoords; o.vMaskCoords = v.vMaskCoords; o.vBackdropCoords = BackdropPosition(v.vPosition); return o; } // The layer type and mask type are specified as constants. We use these to // call the correct pixel shader to determine the source color for blending. // Unfortunately this also requires some boilerplate to convert VS_BLEND_OUTPUT // to a compatible pixel shader input. float4 ComputeBlendSourceColor(const VS_BLEND_OUTPUT aVertex) { if (iBlendConfig.y == PS_MASK_NONE) { VS_OUTPUT tmp; tmp.vPosition = aVertex.vPosition; tmp.vTexCoords = aVertex.vTexCoords; if (iBlendConfig.x == PS_LAYER_RGB) { return RGBShader(tmp); } else if (iBlendConfig.x == PS_LAYER_RGBA) { return RGBAShader(tmp); } else if (iBlendConfig.x == PS_LAYER_YCBCR) { return YCbCrShader(tmp); } else if (iBlendConfig.x == PS_LAYER_NV12) { return NV12Shader(tmp); } else { return SolidColorShader(tmp); } } else if (iBlendConfig.y == PS_MASK) { VS_MASK_OUTPUT tmp; tmp.vPosition = aVertex.vPosition; tmp.vTexCoords = aVertex.vTexCoords; tmp.vMaskCoords = aVertex.vMaskCoords; if (iBlendConfig.x == PS_LAYER_RGB) { return RGBShaderMask(tmp); } else if (iBlendConfig.x == PS_LAYER_RGBA) { return RGBAShaderMask(tmp); } else if (iBlendConfig.x == PS_LAYER_YCBCR) { return YCbCrShaderMask(tmp); } else if (iBlendConfig.x == PS_LAYER_NV12) { return NV12ShaderMask(tmp); } else { return SolidColorShaderMask(tmp); } } else { return float4(0.0, 0.0, 0.0, 1.0); } } float3 ChooseBlendFunc(float3 dest, float3 src) { [flatten] switch (iBlendConfig.z) { case PS_BLEND_MULTIPLY: return BlendMultiply(dest, src); case PS_BLEND_SCREEN: return BlendScreen(dest, src); case PS_BLEND_OVERLAY: return BlendOverlay(dest, src); case PS_BLEND_DARKEN: return BlendDarken(dest, src); case PS_BLEND_LIGHTEN: return BlendLighten(dest, src); case PS_BLEND_COLOR_DODGE: return BlendColorDodge(dest, src); case PS_BLEND_COLOR_BURN: return BlendColorBurn(dest, src); case PS_BLEND_HARD_LIGHT: return BlendHardLight(dest, src); case PS_BLEND_SOFT_LIGHT: return BlendSoftLight(dest, src); case PS_BLEND_DIFFERENCE: return BlendDifference(dest, src); case PS_BLEND_EXCLUSION: return BlendExclusion(dest, src); case PS_BLEND_HUE: return BlendHue(dest, src); case PS_BLEND_SATURATION: return BlendSaturation(dest, src); case PS_BLEND_COLOR: return BlendColor(dest, src); case PS_BLEND_LUMINOSITY: return BlendLuminosity(dest, src); default: return float3(0, 0, 0); } } float4 BlendShader(const VS_BLEND_OUTPUT aVertex) : SV_Target { float4 backdrop = tBackdrop.Sample(sSampler, aVertex.vBackdropCoords.xy); float4 source = ComputeBlendSourceColor(aVertex); // Shortcut when the backdrop or source alpha is 0, otherwise we may leak // infinity into the blend function and return incorrect results. if (backdrop.a == 0.0) { return source; } if (source.a == 0.0) { return float4(0, 0, 0, 0); } // The spec assumes there is no premultiplied alpha. The backdrop is always // premultiplied, so undo the premultiply. If the source is premultiplied we // must fix that as well. backdrop.rgb /= backdrop.a; if (iBlendConfig.w) { source.rgb /= source.a; } float4 result; result.rgb = ChooseBlendFunc(backdrop.rgb, source.rgb); result.a = source.a; // Factor backdrop alpha, then premultiply for the final OP_OVER. result.rgb = (1.0 - backdrop.a) * source.rgb + backdrop.a * result.rgb; result.rgb *= result.a; return result; }