/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ template static inline void scale_row(P* dst, int dstWidth, const P* src, int srcWidth, int span, int frac) { for (P* end = dst + span; dst < end; dst++) { *dst = *src; // Step source according to width ratio. for (frac += srcWidth; frac >= dstWidth; frac -= dstWidth) { src++; } } } static NO_INLINE void scale_blit(Texture& srctex, const IntRect& srcReq, int srcZ, Texture& dsttex, const IntRect& dstReq, int dstZ, bool invertY, const IntRect& clipRect) { // Cache scaling ratios int srcWidth = srcReq.width(); int srcHeight = srcReq.height(); int dstWidth = dstReq.width(); int dstHeight = dstReq.height(); // Compute valid dest bounds IntRect dstBounds = dsttex.sample_bounds(dstReq); // Compute valid source bounds // Scale source to dest, rounding inward to avoid sampling outside source IntRect srcBounds = srctex.sample_bounds(srcReq, invertY).scale( srcWidth, srcHeight, dstWidth, dstHeight, true); // Limit dest sampling bounds to overlap source bounds dstBounds.intersect(srcBounds); // Compute the clipped bounds, relative to dstBounds. IntRect clippedDest = dstBounds.intersection(clipRect) - dstBounds.origin(); // Check if clipped sampling bounds are empty if (clippedDest.is_empty()) { return; } // Compute final source bounds from clamped dest sampling bounds srcBounds = IntRect(dstBounds).scale(dstWidth, dstHeight, srcWidth, srcHeight); // Calculate source and dest pointers from clamped offsets int bpp = srctex.bpp(); int srcStride = srctex.stride(); int destStride = dsttex.stride(); char* dest = dsttex.sample_ptr(dstReq, dstBounds, dstZ); char* src = srctex.sample_ptr(srcReq, srcBounds, srcZ, invertY); // Inverted Y must step downward along source rows if (invertY) { srcStride = -srcStride; } int span = clippedDest.width(); int fracX = srcWidth * clippedDest.x0; int fracY = srcHeight * clippedDest.y0; dest += destStride * clippedDest.y0; dest += bpp * clippedDest.x0; src += srcStride * (fracY / dstHeight); src += bpp * (fracX / dstWidth); fracY %= dstHeight; fracX %= dstWidth; for (int rows = clippedDest.height(); rows > 0; rows--) { if (srcWidth == dstWidth) { // No scaling, so just do a fast copy. memcpy(dest, src, span * bpp); } else { // Do scaling with different source and dest widths. switch (bpp) { case 1: scale_row((uint8_t*)dest, dstWidth, (uint8_t*)src, srcWidth, span, fracX); break; case 2: scale_row((uint16_t*)dest, dstWidth, (uint16_t*)src, srcWidth, span, fracX); break; case 4: scale_row((uint32_t*)dest, dstWidth, (uint32_t*)src, srcWidth, span, fracX); break; default: assert(false); break; } } dest += destStride; // Step source according to height ratio. for (fracY += srcHeight; fracY >= dstHeight; fracY -= dstHeight) { src += srcStride; } } } static void linear_row_blit(uint32_t* dest, int span, const vec2_scalar& srcUV, float srcDU, int srcZOffset, sampler2DArray sampler) { vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f)); for (; span >= 4; span -= 4) { auto srcpx = textureLinearPackedRGBA8(sampler, ivec2(uv), srcZOffset); unaligned_store(dest, srcpx); dest += 4; uv.x += 4 * srcDU; } if (span > 0) { auto srcpx = textureLinearPackedRGBA8(sampler, ivec2(uv), srcZOffset); partial_store_span(dest, srcpx, span); } } static void linear_row_blit(uint8_t* dest, int span, const vec2_scalar& srcUV, float srcDU, int srcZOffset, sampler2DArray sampler) { vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f)); for (; span >= 4; span -= 4) { auto srcpx = textureLinearPackedR8(sampler, ivec2(uv), srcZOffset); unaligned_store(dest, srcpx); dest += 4; uv.x += 4 * srcDU; } if (span > 0) { auto srcpx = textureLinearPackedR8(sampler, ivec2(uv), srcZOffset); partial_store_span(dest, srcpx, span); } } static void linear_row_blit(uint16_t* dest, int span, const vec2_scalar& srcUV, float srcDU, int srcZOffset, sampler2DArray sampler) { vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f)); for (; span >= 4; span -= 4) { auto srcpx = textureLinearPackedRG8(sampler, ivec2(uv), srcZOffset); unaligned_store(dest, srcpx); dest += 4; uv.x += 4 * srcDU; } if (span > 0) { auto srcpx = textureLinearPackedRG8(sampler, ivec2(uv), srcZOffset); partial_store_span(dest, srcpx, span); } } static NO_INLINE void linear_blit(Texture& srctex, const IntRect& srcReq, int srcZ, Texture& dsttex, const IntRect& dstReq, int dstZ, bool invertY, const IntRect& clipRect) { assert(srctex.internal_format == GL_RGBA8 || srctex.internal_format == GL_R8 || srctex.internal_format == GL_RG8); // Compute valid dest bounds IntRect dstBounds = dsttex.sample_bounds(dstReq); dstBounds.intersect(clipRect); // Check if sampling bounds are empty if (dstBounds.is_empty()) { return; } // Initialize sampler for source texture sampler2DArray_impl sampler; init_sampler(&sampler, srctex); init_depth(&sampler, srctex); sampler.filter = TextureFilter::LINEAR; // Compute source UVs int srcZOffset = srcZ * sampler.height_stride; vec2_scalar srcUV(srcReq.x0, srcReq.y0); vec2_scalar srcDUV(float(srcReq.width()) / dstReq.width(), float(srcReq.height()) / dstReq.height()); // Inverted Y must step downward along source rows if (invertY) { srcUV.y += srcReq.height(); srcDUV.y = -srcDUV.y; } // Skip to clamped source start srcUV += srcDUV * (vec2_scalar(dstBounds.x0, dstBounds.y0) + 0.5f); // Scale UVs by lerp precision srcUV = linearQuantize(srcUV, 128); srcDUV *= 128.0f; // Calculate dest pointer from clamped offsets int bpp = dsttex.bpp(); int destStride = dsttex.stride(); char* dest = dsttex.sample_ptr(dstReq, dstBounds, dstZ); int span = dstBounds.width(); for (int rows = dstBounds.height(); rows > 0; rows--) { switch (bpp) { case 1: linear_row_blit((uint8_t*)dest, span, srcUV, srcDUV.x, srcZOffset, &sampler); break; case 2: linear_row_blit((uint16_t*)dest, span, srcUV, srcDUV.x, srcZOffset, &sampler); break; case 4: linear_row_blit((uint32_t*)dest, span, srcUV, srcDUV.x, srcZOffset, &sampler); break; default: assert(false); break; } dest += destStride; srcUV.y += srcDUV.y; } } static void linear_row_composite(uint32_t* dest, int span, const vec2_scalar& srcUV, float srcDU, sampler2D sampler) { vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f)); for (; span >= 4; span -= 4) { WideRGBA8 srcpx = textureLinearUnpackedRGBA8(sampler, ivec2(uv), 0); WideRGBA8 dstpx = unpack(unaligned_load(dest)); PackedRGBA8 r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx))); unaligned_store(dest, r); dest += 4; uv.x += 4 * srcDU; } if (span > 0) { WideRGBA8 srcpx = textureLinearUnpackedRGBA8(sampler, ivec2(uv), 0); WideRGBA8 dstpx = unpack(partial_load_span(dest, span)); PackedRGBA8 r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx))); partial_store_span(dest, r, span); } } static NO_INLINE void linear_composite(Texture& srctex, const IntRect& srcReq, Texture& dsttex, const IntRect& dstReq, bool invertY, const IntRect& clipRect) { assert(srctex.bpp() == 4); assert(dsttex.bpp() == 4); // Compute valid dest bounds IntRect dstBounds = dsttex.sample_bounds(dstReq); dstBounds.intersect(clipRect); // Check if sampling bounds are empty if (dstBounds.is_empty()) { return; } // Initialize sampler for source texture sampler2D_impl sampler; init_sampler(&sampler, srctex); sampler.filter = TextureFilter::LINEAR; // Compute source UVs vec2_scalar srcUV(srcReq.x0, srcReq.y0); vec2_scalar srcDUV(float(srcReq.width()) / dstReq.width(), float(srcReq.height()) / dstReq.height()); // Inverted Y must step downward along source rows if (invertY) { srcUV.y += srcReq.height(); srcDUV.y = -srcDUV.y; } // Skip to clamped source start srcUV += srcDUV * (vec2_scalar(dstBounds.x0, dstBounds.y0) + 0.5f); // Scale UVs by lerp precision srcUV = linearQuantize(srcUV, 128); srcDUV *= 128.0f; // Calculate dest pointer from clamped offsets int destStride = dsttex.stride(); char* dest = dsttex.sample_ptr(dstReq, dstBounds, 0); int span = dstBounds.width(); for (int rows = dstBounds.height(); rows > 0; rows--) { linear_row_composite((uint32_t*)dest, span, srcUV, srcDUV.x, &sampler); dest += destStride; srcUV.y += srcDUV.y; } } extern "C" { void BlitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { assert(mask == GL_COLOR_BUFFER_BIT); Framebuffer* srcfb = get_framebuffer(GL_READ_FRAMEBUFFER); if (!srcfb || srcfb->layer < 0) return; Framebuffer* dstfb = get_framebuffer(GL_DRAW_FRAMEBUFFER); if (!dstfb || dstfb->layer < 0) return; Texture& srctex = ctx->textures[srcfb->color_attachment]; if (!srctex.buf || srcfb->layer >= max(srctex.depth, 1)) return; Texture& dsttex = ctx->textures[dstfb->color_attachment]; if (!dsttex.buf || dstfb->layer >= max(dsttex.depth, 1)) return; assert(!dsttex.locked); if (srctex.internal_format != dsttex.internal_format) { assert(false); return; } // Force flipped Y onto dest coordinates if (srcY1 < srcY0) { swap(srcY0, srcY1); swap(dstY0, dstY1); } bool invertY = dstY1 < dstY0; if (invertY) { swap(dstY0, dstY1); } IntRect srcReq = IntRect{srcX0, srcY0, srcX1, srcY1} - srctex.offset; IntRect dstReq = IntRect{dstX0, dstY0, dstX1, dstY1} - dsttex.offset; if (srcReq.is_empty() || dstReq.is_empty()) { return; } IntRect clipRect = {0, 0, dstReq.width(), dstReq.height()}; prepare_texture(srctex); prepare_texture(dsttex, &dstReq); if (!srcReq.same_size(dstReq) && srctex.width >= 2 && filter == GL_LINEAR && (srctex.internal_format == GL_RGBA8 || srctex.internal_format == GL_R8 || srctex.internal_format == GL_RG8)) { linear_blit(srctex, srcReq, srcfb->layer, dsttex, dstReq, dstfb->layer, invertY, dstReq); } else { scale_blit(srctex, srcReq, srcfb->layer, dsttex, dstReq, dstfb->layer, invertY, clipRect); } } typedef Texture LockedTexture; // Lock the given texture to prevent modification. LockedTexture* LockTexture(GLuint texId) { Texture& tex = ctx->textures[texId]; if (!tex.buf) { assert(tex.buf != nullptr); return nullptr; } if (__sync_fetch_and_add(&tex.locked, 1) == 0) { // If this is the first time locking the texture, flush any delayed clears. prepare_texture(tex); } return (LockedTexture*)&tex; } // Lock the given framebuffer's color attachment to prevent modification. LockedTexture* LockFramebuffer(GLuint fboId) { Framebuffer& fb = ctx->framebuffers[fboId]; // Only allow locking a framebuffer if it has a valid color attachment and // only if targeting the first layer. if (!fb.color_attachment || fb.layer > 0) { assert(fb.color_attachment != 0); assert(fb.layer == 0); return nullptr; } return LockTexture(fb.color_attachment); } // Reference an already locked resource void LockResource(LockedTexture* resource) { if (!resource) { return; } __sync_fetch_and_add(&resource->locked, 1); } // Remove a lock on a texture that has been previously locked void UnlockResource(LockedTexture* resource) { if (!resource) { return; } if (__sync_fetch_and_add(&resource->locked, -1) <= 0) { // The lock should always be non-zero before unlocking. assert(0); } } // Get the underlying buffer for a locked resource void* GetResourceBuffer(LockedTexture* resource, int32_t* width, int32_t* height, int32_t* stride) { *width = resource->width; *height = resource->height; *stride = resource->stride(); return resource->buf; } static void unscaled_row_composite(uint32_t* dest, const uint32_t* src, int span) { const uint32_t* end = src + span; while (src + 4 <= end) { WideRGBA8 srcpx = unpack(unaligned_load(src)); WideRGBA8 dstpx = unpack(unaligned_load(dest)); PackedRGBA8 r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx))); unaligned_store(dest, r); src += 4; dest += 4; } if (src < end) { WideRGBA8 srcpx = unpack(partial_load_span(src, end - src)); WideRGBA8 dstpx = unpack(partial_load_span(dest, end - src)); auto r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx))); partial_store_span(dest, r, end - src); } } static NO_INLINE void unscaled_composite(Texture& srctex, const IntRect& srcReq, Texture& dsttex, const IntRect& dstReq, bool invertY, const IntRect& clipRect) { IntRect bounds = dsttex.sample_bounds(dstReq); bounds.intersect(clipRect); bounds.intersect(srctex.sample_bounds(srcReq, invertY)); char* dest = dsttex.sample_ptr(dstReq, bounds, 0); char* src = srctex.sample_ptr(srcReq, bounds, 0, invertY); int srcStride = srctex.stride(); int destStride = dsttex.stride(); if (invertY) { srcStride = -srcStride; } for (int rows = bounds.height(); rows > 0; rows--) { unscaled_row_composite((uint32_t*)dest, (const uint32_t*)src, bounds.width()); dest += destStride; src += srcStride; } } // Extension for optimized compositing of textures or framebuffers that may be // safely used across threads. The source and destination must be locked to // ensure that they can be safely accessed while the SWGL context might be used // by another thread. Band extents along the Y axis may be used to clip the // destination rectangle without effecting the integer scaling ratios. void Composite(LockedTexture* lockedDst, LockedTexture* lockedSrc, GLint srcX, GLint srcY, GLsizei srcWidth, GLsizei srcHeight, GLint dstX, GLint dstY, GLsizei dstWidth, GLsizei dstHeight, GLboolean opaque, GLboolean flip, GLenum filter, GLint clipX, GLint clipY, GLsizei clipWidth, GLsizei clipHeight) { if (!lockedDst || !lockedSrc) { return; } Texture& srctex = *lockedSrc; Texture& dsttex = *lockedDst; assert(srctex.bpp() == 4); assert(dsttex.bpp() == 4); IntRect srcReq = IntRect{srcX, srcY, srcX + srcWidth, srcY + srcHeight} - srctex.offset; IntRect dstReq = IntRect{dstX, dstY, dstX + dstWidth, dstY + dstHeight} - dsttex.offset; // Compute clip rect as relative to the dstReq, as that's the same coords // as used for the sampling bounds. IntRect clipRect = {clipX - dstX, clipY - dstY, clipX - dstX + clipWidth, clipY - dstY + clipHeight}; if (opaque) { // Ensure we have rows of at least 2 pixels when using the linear filter // to avoid overreading the row. if (!srcReq.same_size(dstReq) && srctex.width >= 2 && filter == GL_LINEAR) { linear_blit(srctex, srcReq, 0, dsttex, dstReq, 0, flip, clipRect); } else { scale_blit(srctex, srcReq, 0, dsttex, dstReq, 0, flip, clipRect); } } else { if (!srcReq.same_size(dstReq) && srctex.width >= 2) { linear_composite(srctex, srcReq, dsttex, dstReq, flip, clipRect); } else { unscaled_composite(srctex, srcReq, dsttex, dstReq, flip, clipRect); } } } } // extern "C" // Saturated add helper for YUV conversion. Supported platforms have intrinsics // to do this natively, but support a slower generic fallback just in case. static inline V8 addsat(V8 x, V8 y) { #if USE_SSE2 return _mm_adds_epi16(x, y); #elif USE_NEON return vqaddq_s16(x, y); #else auto r = x + y; // An overflow occurred if the signs of both inputs x and y did not differ // but yet the sign of the result did differ. auto overflow = (~(x ^ y) & (r ^ x)) >> 15; // If there was an overflow, we need to choose the appropriate limit to clamp // to depending on whether or not the inputs are negative. auto limit = (x >> 15) ^ 0x7FFF; // If we didn't overflow, just use the result, and otherwise, use the limit. return (~overflow & r) | (overflow & limit); #endif } // Interleave and packing helper for YUV conversion. During transform by the // color matrix, the color components are de-interleaved as this format is // usually what comes out of the planar YUV textures. The components thus need // to be interleaved before finally getting packed to BGRA format. Alpha is // forced to be opaque. static inline PackedRGBA8 packYUV(V8 gg, V8 br) { return pack(bit_cast(zip(br, gg))) | PackedRGBA8{0, 0, 0, 255, 0, 0, 0, 255, 0, 0, 0, 255, 0, 0, 0, 255}; } enum YUVColorSpace { REC_601 = 0, REC_709, REC_2020, IDENTITY }; // clang-format off // Supports YUV color matrixes of the form: // [R] [1.1643835616438356, 0.0, rv ] [Y - 16] // [G] = [1.1643835616438358, -gu, -gv ] x [U - 128] // [B] [1.1643835616438356, bu, 0.0 ] [V - 128] // We must be able to multiply a YUV input by a matrix coefficient ranging as // high as ~2.2 in the U/V cases, where U/V can be signed values between -128 // and 127. The largest fixed-point representation we can thus support without // overflowing 16 bit integers leaves us 6 bits of fractional precision while // also supporting a sign bit. The closest representation of the Y coefficient // ~1.164 in this precision is 74.5/2^6 which is common to all color spaces // we support. Conversions can still sometimes overflow the precision and // require clamping back into range, so we use saturated additions to do this // efficiently at no extra cost. // clang-format on template struct YUVConverterImpl { static inline PackedRGBA8 convert(V8 yy, V8 uv) { // Convert matrix coefficients to fixed-point representation. constexpr int16_t mrv = int16_t(MATRIX[0] * 64.0 + 0.5); constexpr int16_t mgu = -int16_t(MATRIX[1] * -64.0 + 0.5); constexpr int16_t mgv = -int16_t(MATRIX[2] * -64.0 + 0.5); constexpr int16_t mbu = int16_t(MATRIX[3] * 64.0 + 0.5); // Bias Y values by -16 and multiply by 74.5. Add 2^5 offset to round to // nearest 2^6. yy = yy * 74 + (yy >> 1) + (int16_t(-16 * 74.5) + (1 << 5)); // Bias U/V values by -128. uv -= 128; // Compute (R, B) = (74.5*Y + rv*V, 74.5*Y + bu*U) auto br = V8{mbu, mrv, mbu, mrv, mbu, mrv, mbu, mrv} * uv; br = addsat(yy, br); br >>= 6; // Compute G = 74.5*Y + -gu*U + -gv*V auto gg = V8{mgu, mgv, mgu, mgv, mgu, mgv, mgu, mgv} * uv; gg = addsat( yy, addsat(gg, bit_cast>(bit_cast>(gg) >> 16))); gg >>= 6; // Interleave B/R and G values. Force alpha to opaque. return packYUV(gg, br); } }; template struct YUVConverter {}; // clang-format off // From Rec601: // [R] [1.1643835616438356, 0.0, 1.5960267857142858 ] [Y - 16] // [G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708 ] x [U - 128] // [B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [V - 128] // clang-format on constexpr double YUVMatrix601[4] = {1.5960267857142858, -0.3917622900949137, -0.8129676472377708, 2.017232142857143}; template <> struct YUVConverter : YUVConverterImpl {}; // clang-format off // From Rec709: // [R] [1.1643835616438356, 0.0, 1.7927410714285714] [Y - 16] // [G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444 ] x [U - 128] // [B] [1.1643835616438356, 2.1124017857142854, 0.0 ] [V - 128] // clang-format on static constexpr double YUVMatrix709[4] = { 1.7927410714285714, -0.21324861427372963, -0.532909328559444, 2.1124017857142854}; template <> struct YUVConverter : YUVConverterImpl {}; // clang-format off // From Re2020: // [R] [1.16438356164384, 0.0, 1.678674107142860 ] [Y - 16] // [G] = [1.16438356164384, -0.187326104219343, -0.650424318505057 ] x [U - 128] // [B] [1.16438356164384, 2.14177232142857, 0.0 ] [V - 128] // clang-format on static constexpr double YUVMatrix2020[4] = { 1.678674107142860, -0.187326104219343, -0.650424318505057, 2.14177232142857}; template <> struct YUVConverter : YUVConverterImpl {}; // clang-format off // [R] [V] // [G] = [Y] // [B] [U] // clang-format on template <> struct YUVConverter { static inline PackedRGBA8 convert(V8 y, V8 uv) { // Map U/V directly to B/R and map Y directly to G with opaque alpha. return packYUV(y, uv); } }; // Helper function for textureLinearRowR8 that samples horizontal taps and // combines them based on Y fraction with next row. template static ALWAYS_INLINE V8 linearRowTapsR8(S sampler, I32 ix, int32_t offsety, int32_t stridey, int16_t fracy) { uint8_t* buf = (uint8_t*)sampler->buf + offsety; auto a0 = unaligned_load>(&buf[ix.x]); auto b0 = unaligned_load>(&buf[ix.y]); auto c0 = unaligned_load>(&buf[ix.z]); auto d0 = unaligned_load>(&buf[ix.w]); auto abcd0 = CONVERT(combine(combine(a0, b0), combine(c0, d0)), V8); buf += stridey; auto a1 = unaligned_load>(&buf[ix.x]); auto b1 = unaligned_load>(&buf[ix.y]); auto c1 = unaligned_load>(&buf[ix.z]); auto d1 = unaligned_load>(&buf[ix.w]); auto abcd1 = CONVERT(combine(combine(a1, b1), combine(c1, d1)), V8); abcd0 += ((abcd1 - abcd0) * fracy) >> 7; return abcd0; } // Optimized version of textureLinearPackedR8 for Y R8 texture. This assumes // constant Y and returns a duplicate of the result interleaved with itself // to aid in later YUV transformation. template static inline V8 textureLinearRowR8(S sampler, I32 ix, int32_t offsety, int32_t stridey, int16_t fracy) { assert(sampler->format == TextureFormat::R8); // Calculate X fraction and clamp X offset into range. I32 fracx = ix; ix >>= 7; fracx = ((fracx & (ix >= 0)) | (ix > int32_t(sampler->width) - 2)) & 0x7F; ix = clampCoord(ix, sampler->width - 1); // Load the sample taps and combine rows. auto abcd = linearRowTapsR8(sampler, ix, offsety, stridey, fracy); // Unzip the result and do final horizontal multiply-add base on X fraction. auto abcdl = SHUFFLE(abcd, abcd, 0, 0, 2, 2, 4, 4, 6, 6); auto abcdh = SHUFFLE(abcd, abcd, 1, 1, 3, 3, 5, 5, 7, 7); abcdl += ((abcdh - abcdl) * CONVERT(fracx, I16).xxyyzzww) >> 7; // The final result is the packed values interleaved with a duplicate of // themselves. return abcdl; } // Optimized version of textureLinearPackedR8 for paired U/V R8 textures. // Since the two textures have the same dimensions and stride, the addressing // math can be shared between both samplers. This also allows a coalesced // multiply in the final stage by packing both U/V results into a single // operation. template static inline V8 textureLinearRowPairedR8(S sampler, S sampler2, I32 ix, int32_t offsety, int32_t stridey, int16_t fracy) { assert(sampler->format == TextureFormat::R8 && sampler2->format == TextureFormat::R8); assert(sampler->width == sampler2->width && sampler->height == sampler2->height); assert(sampler->stride == sampler2->stride); // Calculate X fraction and clamp X offset into range. I32 fracx = ix; ix >>= 7; fracx = ((fracx & (ix >= 0)) | (ix > int32_t(sampler->width) - 2)) & 0x7F; ix = clampCoord(ix, sampler->width - 1); // Load the sample taps for the first sampler and combine rows. auto abcd = linearRowTapsR8(sampler, ix, offsety, stridey, fracy); // Load the sample taps for the second sampler and combine rows. auto xyzw = linearRowTapsR8(sampler2, ix, offsety, stridey, fracy); // We are left with a result vector for each sampler with values for adjacent // pixels interleaved together in each. We need to unzip these values so that // we can do the final horizontal multiply-add based on the X fraction. auto abcdxyzwl = SHUFFLE(abcd, xyzw, 0, 8, 2, 10, 4, 12, 6, 14); auto abcdxyzwh = SHUFFLE(abcd, xyzw, 1, 9, 3, 11, 5, 13, 7, 15); abcdxyzwl += ((abcdxyzwh - abcdxyzwl) * CONVERT(fracx, I16).xxyyzzww) >> 7; // The final result is the packed values for the first sampler interleaved // with the packed values for the second sampler. return abcdxyzwl; } template static void linear_row_yuv(uint32_t* dest, int span, const vec2_scalar& srcUV, float srcDU, const vec2_scalar& chromaUV, float chromaDU, sampler2D_impl sampler[3], int colorDepth) { // Casting to int loses some precision while stepping that can offset the // image, so shift the values by some extra bits of precision to minimize // this. We support up to 16 bits of image size, 7 bits of quantization, // and 1 bit for sign, which leaves 8 bits left for extra precision. const int STEP_BITS = 8; // Calculate varying and constant interp data for Y plane. I32 yU = cast(init_interp(srcUV.x, srcDU) * (1 << STEP_BITS)); int32_t yV = int32_t(srcUV.y); // Calculate varying and constant interp data for chroma planes. I32 cU = cast(init_interp(chromaUV.x, chromaDU) * (1 << STEP_BITS)); int32_t cV = int32_t(chromaUV.y); // We need to skip 4 pixels per chunk. int32_t yDU = int32_t((4 << STEP_BITS) * srcDU); int32_t cDU = int32_t((4 << STEP_BITS) * chromaDU); if (sampler[0].width < 2 || sampler[1].width < 2) { // If the source row has less than 2 pixels, it's not safe to use a linear // filter because it may overread the row. Just convert the single pixel // with nearest filtering and fill the row with it. I16 yuv = CONVERT(round_pixel((Float){ texelFetch(&sampler[0], ivec2(srcUV), 0).x.x, texelFetch(&sampler[1], ivec2(chromaUV), 0).x.x, texelFetch(&sampler[2], ivec2(chromaUV), 0).x.x, 1.0f}), I16); auto rgb = YUVConverter::convert(zip(I16(yuv.x), I16(yuv.x)), zip(I16(yuv.y), I16(yuv.z))); for (; span >= 4; span -= 4) { unaligned_store(dest, rgb); dest += 4; } if (span > 0) { partial_store_span(dest, rgb, span); } } else if (sampler[0].format == TextureFormat::R16) { // Sample each YUV plane, rescale it to fit in low 8 bits of word, and then // transform them by the appropriate color space. assert(colorDepth > 8); // Need to right shift the sample by the amount of bits over 8 it occupies. // On output from textureLinearUnpackedR16, we have lost 1 bit of precision // at the low end already, hence 1 is subtracted from the color depth. int rescaleBits = (colorDepth - 1) - 8; for (; span >= 4; span -= 4) { auto yPx = textureLinearUnpackedR16(&sampler[0], ivec2(yU >> STEP_BITS, yV)) >> rescaleBits; auto uPx = textureLinearUnpackedR16(&sampler[1], ivec2(cU >> STEP_BITS, cV)) >> rescaleBits; auto vPx = textureLinearUnpackedR16(&sampler[2], ivec2(cU >> STEP_BITS, cV)) >> rescaleBits; unaligned_store(dest, YUVConverter::convert(zip(yPx, yPx), zip(uPx, vPx))); dest += 4; yU += yDU; cU += cDU; } if (span > 0) { // Handle any remaining pixels... auto yPx = textureLinearUnpackedR16(&sampler[0], ivec2(yU >> STEP_BITS, yV)) >> rescaleBits; auto uPx = textureLinearUnpackedR16(&sampler[1], ivec2(cU >> STEP_BITS, cV)) >> rescaleBits; auto vPx = textureLinearUnpackedR16(&sampler[2], ivec2(cU >> STEP_BITS, cV)) >> rescaleBits; partial_store_span( dest, YUVConverter::convert(zip(yPx, yPx), zip(uPx, vPx)), span); } } else { assert(sampler[0].format == TextureFormat::R8); assert(colorDepth == 8); // Calculate varying and constant interp data for Y plane. int16_t yFracV = yV & 0x7F; yV >>= 7; int32_t yOffsetV = clampCoord(yV, sampler[0].height) * sampler[0].stride; int32_t yStrideV = yV >= 0 && yV < int32_t(sampler[0].height) - 1 ? sampler[0].stride : 0; // Calculate varying and constant interp data for chroma planes. int16_t cFracV = cV & 0x7F; cV >>= 7; int32_t cOffsetV = clampCoord(cV, sampler[1].height) * sampler[1].stride; int32_t cStrideV = cV >= 0 && cV < int32_t(sampler[1].height) - 1 ? sampler[1].stride : 0; for (; span >= 4; span -= 4) { // Sample each YUV plane and then transform them by the appropriate color // space. auto yPx = textureLinearRowR8(&sampler[0], yU >> STEP_BITS, yOffsetV, yStrideV, yFracV); auto uvPx = textureLinearRowPairedR8(&sampler[1], &sampler[2], cU >> STEP_BITS, cOffsetV, cStrideV, cFracV); unaligned_store(dest, YUVConverter::convert(yPx, uvPx)); dest += 4; yU += yDU; cU += cDU; } if (span > 0) { // Handle any remaining pixels... auto yPx = textureLinearRowR8(&sampler[0], yU >> STEP_BITS, yOffsetV, yStrideV, yFracV); auto uvPx = textureLinearRowPairedR8(&sampler[1], &sampler[2], cU >> STEP_BITS, cOffsetV, cStrideV, cFracV); partial_store_span(dest, YUVConverter::convert(yPx, uvPx), span); } } } static void linear_convert_yuv(Texture& ytex, Texture& utex, Texture& vtex, YUVColorSpace colorSpace, int colorDepth, const IntRect& srcReq, Texture& dsttex, const IntRect& dstReq, bool invertY, const IntRect& clipRect) { // Compute valid dest bounds IntRect dstBounds = dsttex.sample_bounds(dstReq, invertY); dstBounds.intersect(clipRect); // Check if sampling bounds are empty if (dstBounds.is_empty()) { return; } // Initialize samplers for source textures sampler2D_impl sampler[3]; init_sampler(&sampler[0], ytex); init_sampler(&sampler[1], utex); init_sampler(&sampler[2], vtex); // Compute source UVs vec2_scalar srcUV(srcReq.x0, srcReq.y0); vec2_scalar srcDUV(float(srcReq.width()) / dstReq.width(), float(srcReq.height()) / dstReq.height()); // Inverted Y must step downward along source rows if (invertY) { srcUV.y += srcReq.height(); srcDUV.y = -srcDUV.y; } // Skip to clamped source start srcUV += srcDUV * (vec2_scalar(dstBounds.x0, dstBounds.y0) + 0.5f); // Calculate separate chroma UVs for chroma planes with different scale vec2_scalar chromaScale(float(utex.width) / ytex.width, float(utex.height) / ytex.height); vec2_scalar chromaUV = srcUV * chromaScale; vec2_scalar chromaDUV = srcDUV * chromaScale; // Scale UVs by lerp precision. If the row has only 1 pixel, then don't // quantize so that we can use nearest filtering instead to avoid overreads. if (ytex.width >= 2 && utex.width >= 2) { srcUV = linearQuantize(srcUV, 128); srcDUV *= 128.0f; chromaUV = linearQuantize(chromaUV, 128); chromaDUV *= 128.0f; } // Calculate dest pointer from clamped offsets int destStride = dsttex.stride(); char* dest = dsttex.sample_ptr(dstReq, dstBounds, 0); int span = dstBounds.width(); for (int rows = dstBounds.height(); rows > 0; rows--) { switch (colorSpace) { case REC_601: linear_row_yuv((uint32_t*)dest, span, srcUV, srcDUV.x, chromaUV, chromaDUV.x, sampler, colorDepth); break; case REC_709: linear_row_yuv((uint32_t*)dest, span, srcUV, srcDUV.x, chromaUV, chromaDUV.x, sampler, colorDepth); break; case REC_2020: linear_row_yuv((uint32_t*)dest, span, srcUV, srcDUV.x, chromaUV, chromaDUV.x, sampler, colorDepth); break; case IDENTITY: linear_row_yuv((uint32_t*)dest, span, srcUV, srcDUV.x, chromaUV, chromaDUV.x, sampler, colorDepth); break; default: debugf("unknown YUV color space %d\n", colorSpace); assert(false); break; } dest += destStride; srcUV.y += srcDUV.y; chromaUV.y += chromaDUV.y; } } extern "C" { // Extension for compositing a YUV surface represented by separate YUV planes // to a BGRA destination. The supplied color space is used to determine the // transform from YUV to BGRA after sampling. void CompositeYUV(LockedTexture* lockedDst, LockedTexture* lockedY, LockedTexture* lockedU, LockedTexture* lockedV, YUVColorSpace colorSpace, GLuint colorDepth, GLint srcX, GLint srcY, GLsizei srcWidth, GLsizei srcHeight, GLint dstX, GLint dstY, GLsizei dstWidth, GLsizei dstHeight, GLboolean flip, GLint clipX, GLint clipY, GLsizei clipWidth, GLsizei clipHeight) { if (!lockedDst || !lockedY || !lockedU || !lockedV) { return; } Texture& ytex = *lockedY; Texture& utex = *lockedU; Texture& vtex = *lockedV; Texture& dsttex = *lockedDst; // All YUV planes must currently be represented by R8 or R16 textures. // The chroma (U/V) planes must have matching dimensions. assert(ytex.bpp() == utex.bpp() && ytex.bpp() == vtex.bpp()); assert((ytex.bpp() == 1 && colorDepth == 8) || (ytex.bpp() == 2 && colorDepth > 8)); // assert(ytex.width == utex.width && ytex.height == utex.height); assert(utex.width == vtex.width && utex.height == vtex.height); assert(ytex.offset == utex.offset && ytex.offset == vtex.offset); assert(dsttex.bpp() == 4); IntRect srcReq = IntRect{srcX, srcY, srcX + srcWidth, srcY + srcHeight} - ytex.offset; IntRect dstReq = IntRect{dstX, dstY, dstX + dstWidth, dstY + dstHeight} - dsttex.offset; // Compute clip rect as relative to the dstReq, as that's the same coords // as used for the sampling bounds. IntRect clipRect = {clipX - dstX, clipY - dstY, clipX - dstX + clipWidth, clipY - dstY + clipHeight}; // For now, always use a linear filter path that would be required for // scaling. Further fast-paths for non-scaled video might be desirable in the // future. linear_convert_yuv(ytex, utex, vtex, colorSpace, colorDepth, srcReq, dsttex, dstReq, flip, clipRect); } } // extern "C"