/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ flat varying HIGHP_FS_ADDRESS int v_gradient_address; // Size of the gradient pattern's rectangle, used to compute horizontal and vertical // repetitions. Not to be confused with another kind of repetition of the pattern // which happens along the gradient stops. flat varying vec2 v_repeated_size; // Repetition along the gradient stops. flat varying float v_gradient_repeat; varying vec2 v_pos; #ifdef WR_FEATURE_ALPHA_PASS varying vec2 v_local_pos; flat varying vec2 v_tile_repeat; #endif #ifdef WR_VERTEX_SHADER void write_gradient_vertex( VertexInfo vi, RectWithSize local_rect, RectWithSize segment_rect, ivec4 prim_user_data, int brush_flags, vec4 texel_rect, int extend_mode, vec2 stretch_size ) { if ((brush_flags & BRUSH_FLAG_SEGMENT_RELATIVE) != 0) { v_pos = (vi.local_pos - segment_rect.p0) / segment_rect.size; v_pos = v_pos * (texel_rect.zw - texel_rect.xy) + texel_rect.xy; v_pos = v_pos * local_rect.size; } else { v_pos = vi.local_pos - local_rect.p0; } vec2 tile_repeat = local_rect.size / stretch_size; v_repeated_size = stretch_size; // Normalize UV to 0..1 scale. v_pos /= v_repeated_size; v_gradient_address = prim_user_data.x; // Whether to repeat the gradient along the line instead of clamping. v_gradient_repeat = float(extend_mode != EXTEND_MODE_CLAMP); #ifdef WR_FEATURE_ALPHA_PASS v_tile_repeat = tile_repeat; v_local_pos = vi.local_pos; #endif } #endif //WR_VERTEX_SHADER #ifdef WR_FRAGMENT_SHADER vec2 compute_gradient_pos() { #ifdef WR_FEATURE_ALPHA_PASS // Handle top and left inflated edges (see brush_image). vec2 local_pos = max(v_pos, vec2(0.0)); // Apply potential horizontal and vertical repetitions. vec2 pos = fract(local_pos); // Handle bottom and right inflated edges (see brush_image). if (local_pos.x >= v_tile_repeat.x) { pos.x = 1.0; } if (local_pos.y >= v_tile_repeat.y) { pos.y = 1.0; } return pos; #else // Apply potential horizontal and vertical repetitions. return fract(v_pos); #endif } #ifdef WR_FEATURE_DITHERING vec4 dither(vec4 color) { const int matrix_mask = 7; ivec2 pos = ivec2(gl_FragCoord.xy) & ivec2(matrix_mask); float noise_normalized = (texelFetch(sDither, pos, 0).r * 255.0 + 0.5) / 64.0; float noise = (noise_normalized - 0.5) / 256.0; // scale down to the unit length return color + vec4(noise, noise, noise, 0); } #else vec4 dither(vec4 color) { return color; } #endif //WR_FEATURE_DITHERING vec4 sample_gradient(float offset) { // Modulo the offset if the gradient repeats. float x = offset - floor(offset) * v_gradient_repeat; // Calculate the color entry index to use for this offset: // offsets < 0 use the first color entry, 0 // offsets from [0, 1) use the color entries in the range of [1, N-1) // offsets >= 1 use the last color entry, N-1 // so transform the range [0, 1) -> [1, N-1) // TODO(gw): In the future we might consider making the size of the // LUT vary based on number / distribution of stops in the gradient. // Ensure we don't fetch outside the valid range of the LUT. const float GRADIENT_ENTRIES = 128.0; x = clamp(1.0 + x * GRADIENT_ENTRIES, 0.0, 1.0 + GRADIENT_ENTRIES); // Calculate the texel to index into the gradient color entries: // floor(x) is the gradient color entry index // fract(x) is the linear filtering factor between start and end float entry_index = floor(x); float entry_fract = x - entry_index; // Fetch the start and end color. There is a [start, end] color per entry. vec4 texels[2] = fetch_from_gpu_cache_2(v_gradient_address + 2 * int(entry_index)); // Finally interpolate and apply dithering return dither(mix(texels[0], texels[1], entry_fract)); } #endif //WR_FRAGMENT_SHADER