/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use crate::api::TileSize; use crate::api::units::*; use crate::segment::EdgeAaSegmentMask; use euclid::{point2, size2}; use std::i32; use std::ops::Range; /// If repetitions are far enough apart that only one is within /// the primitive rect, then we can simplify the parameters and /// treat the primitive as not repeated. /// This can let us avoid unnecessary work later to handle some /// of the parameters. pub fn simplify_repeated_primitive( stretch_size: &LayoutSize, tile_spacing: &mut LayoutSize, prim_rect: &mut LayoutRect, ) { let stride = *stretch_size + *tile_spacing; if stride.width >= prim_rect.size.width { tile_spacing.width = 0.0; prim_rect.size.width = f32::min(prim_rect.size.width, stretch_size.width); } if stride.height >= prim_rect.size.height { tile_spacing.height = 0.0; prim_rect.size.height = f32::min(prim_rect.size.height, stretch_size.height); } } pub struct Repetition { pub origin: LayoutPoint, pub edge_flags: EdgeAaSegmentMask, } pub struct RepetitionIterator { current_x: i32, x_count: i32, current_y: i32, y_count: i32, row_flags: EdgeAaSegmentMask, current_origin: LayoutPoint, initial_origin: LayoutPoint, stride: LayoutSize, } impl Iterator for RepetitionIterator { type Item = Repetition; fn next(&mut self) -> Option { if self.current_x == self.x_count { self.current_y += 1; if self.current_y >= self.y_count { return None; } self.current_x = 0; self.row_flags = EdgeAaSegmentMask::empty(); if self.current_y == self.y_count - 1 { self.row_flags |= EdgeAaSegmentMask::BOTTOM; } self.current_origin.x = self.initial_origin.x; self.current_origin.y += self.stride.height; } let mut edge_flags = self.row_flags; if self.current_x == 0 { edge_flags |= EdgeAaSegmentMask::LEFT; } if self.current_x == self.x_count - 1 { edge_flags |= EdgeAaSegmentMask::RIGHT; } let repetition = Repetition { origin: self.current_origin, edge_flags, }; self.current_origin.x += self.stride.width; self.current_x += 1; Some(repetition) } } pub fn repetitions( prim_rect: &LayoutRect, visible_rect: &LayoutRect, stride: LayoutSize, ) -> RepetitionIterator { assert!(stride.width > 0.0); assert!(stride.height > 0.0); let visible_rect = match prim_rect.intersection(&visible_rect) { Some(rect) => rect, None => { return RepetitionIterator { current_origin: LayoutPoint::zero(), initial_origin: LayoutPoint::zero(), current_x: 0, current_y: 0, x_count: 0, y_count: 0, stride, row_flags: EdgeAaSegmentMask::empty(), } } }; let nx = if visible_rect.origin.x > prim_rect.origin.x { f32::floor((visible_rect.origin.x - prim_rect.origin.x) / stride.width) } else { 0.0 }; let ny = if visible_rect.origin.y > prim_rect.origin.y { f32::floor((visible_rect.origin.y - prim_rect.origin.y) / stride.height) } else { 0.0 }; let x0 = prim_rect.origin.x + nx * stride.width; let y0 = prim_rect.origin.y + ny * stride.height; let x_most = visible_rect.max_x(); let y_most = visible_rect.max_y(); let x_count = f32::ceil((x_most - x0) / stride.width) as i32; let y_count = f32::ceil((y_most - y0) / stride.height) as i32; let mut row_flags = EdgeAaSegmentMask::TOP; if y_count == 1 { row_flags |= EdgeAaSegmentMask::BOTTOM; } RepetitionIterator { current_origin: LayoutPoint::new(x0, y0), initial_origin: LayoutPoint::new(x0, y0), current_x: 0, current_y: 0, x_count, y_count, row_flags, stride, } } #[derive(Debug)] pub struct Tile { pub rect: LayoutRect, pub offset: TileOffset, pub edge_flags: EdgeAaSegmentMask, } #[derive(Debug)] pub struct TileIteratorExtent { /// Range of visible tiles to iterate over in number of tiles. tile_range: Range, /// Range of tiles of the full image including tiles that are culled out. image_tiles: Range, /// Size of the first tile in layout space. first_tile_layout_size: f32, /// Size of the last tile in layout space. last_tile_layout_size: f32, /// Position of blob point (0, 0) in layout space. layout_tiling_origin: f32, /// Position of the top-left corner of the primitive rect in layout space. layout_prim_start: f32, } #[derive(Debug)] pub struct TileIterator { current_tile: TileOffset, x: TileIteratorExtent, y: TileIteratorExtent, regular_tile_size: LayoutSize, } impl Iterator for TileIterator { type Item = Tile; fn next(&mut self) -> Option { // If we reach the end of a row, reset to the beginning of the next row. if self.current_tile.x >= self.x.tile_range.end { self.current_tile.y += 1; self.current_tile.x = self.x.tile_range.start; } // Stop iterating if we reach the last tile. We may start here if there // were no tiles to iterate over. if self.current_tile.x >= self.x.tile_range.end || self.current_tile.y >= self.y.tile_range.end { return None; } let tile_offset = self.current_tile; let mut segment_rect = LayoutRect { origin: LayoutPoint::new( self.x.layout_tiling_origin + tile_offset.x as f32 * self.regular_tile_size.width, self.y.layout_tiling_origin + tile_offset.y as f32 * self.regular_tile_size.height, ), size: self.regular_tile_size, }; let mut edge_flags = EdgeAaSegmentMask::empty(); if tile_offset.x == self.x.image_tiles.start { edge_flags |= EdgeAaSegmentMask::LEFT; segment_rect.size.width = self.x.first_tile_layout_size; segment_rect.origin.x = self.x.layout_prim_start; } if tile_offset.x == self.x.image_tiles.end - 1 { edge_flags |= EdgeAaSegmentMask::RIGHT; segment_rect.size.width = self.x.last_tile_layout_size; } if tile_offset.y == self.y.image_tiles.start { segment_rect.size.height = self.y.first_tile_layout_size; segment_rect.origin.y = self.y.layout_prim_start; edge_flags |= EdgeAaSegmentMask::TOP; } if tile_offset.y == self.y.image_tiles.end - 1 { segment_rect.size.height = self.y.last_tile_layout_size; edge_flags |= EdgeAaSegmentMask::BOTTOM; } assert!(tile_offset.y < self.y.tile_range.end); let tile = Tile { rect: segment_rect, offset: tile_offset, edge_flags, }; self.current_tile.x += 1; Some(tile) } } pub fn tiles( prim_rect: &LayoutRect, visible_rect: &LayoutRect, image_rect: &DeviceIntRect, device_tile_size: i32, ) -> TileIterator { // The image resource is tiled. We have to generate an image primitive // for each tile. // We need to do this because the image is broken up into smaller tiles in the texture // cache and the image shader is not able to work with this type of sparse representation. // The tiling logic works as follows: // // +-#################-+ -+ // | #//| | |//# | | image size // | #//| | |//# | | // +-#--+----+----+--#-+ | -+ // | #//| | |//# | | | regular tile size // | #//| | |//# | | | // +-#--+----+----+--#-+ | -+-+ // | #//|////|////|//# | | | "leftover" height // | ################# | -+ ---+ // +----+----+----+----+ // // In the ascii diagram above, a large image is split into tiles of almost regular size. // The tiles on the edges (hatched in the diagram) can be smaller than the regular tiles // and are handled separately in the code (we'll call them boundary tiles). // // Each generated segment corresponds to a tile in the texture cache, with the // assumption that the boundary tiles are sized to fit their own irregular size in the // texture cache. // // Because we can have very large virtual images we iterate over the visible portion of // the image in layer space instead of iterating over all device tiles. let visible_rect = match prim_rect.intersection(&visible_rect) { Some(rect) => rect, None => { return TileIterator { current_tile: TileOffset::zero(), x: TileIteratorExtent { tile_range: 0..0, image_tiles: 0..0, first_tile_layout_size: 0.0, last_tile_layout_size: 0.0, layout_tiling_origin: 0.0, layout_prim_start: prim_rect.origin.x, }, y: TileIteratorExtent { tile_range: 0..0, image_tiles: 0..0, first_tile_layout_size: 0.0, last_tile_layout_size: 0.0, layout_tiling_origin: 0.0, layout_prim_start: prim_rect.origin.y, }, regular_tile_size: LayoutSize::zero(), } } }; // Size of regular tiles in layout space. let layout_tile_size = LayoutSize::new( device_tile_size as f32 / image_rect.size.width as f32 * prim_rect.size.width, device_tile_size as f32 / image_rect.size.height as f32 * prim_rect.size.height, ); // The decomposition logic is exactly the same on each axis so we reduce // this to a 1-dimensional problem in an attempt to make the code simpler. let x_extent = tiles_1d( layout_tile_size.width, visible_rect.x_range(), prim_rect.min_x(), image_rect.x_range(), device_tile_size, ); let y_extent = tiles_1d( layout_tile_size.height, visible_rect.y_range(), prim_rect.min_y(), image_rect.y_range(), device_tile_size, ); TileIterator { current_tile: point2( x_extent.tile_range.start, y_extent.tile_range.start, ), x: x_extent, y: y_extent, regular_tile_size: layout_tile_size, } } /// Decompose tiles along an arbitrary axis. /// /// This does most of the heavy lifting needed for `tiles` but in a single dimension for /// the sake of simplicity since the problem is independent on the x and y axes. fn tiles_1d( layout_tile_size: f32, layout_visible_range: Range, layout_prim_start: f32, device_image_range: Range, device_tile_size: i32, ) -> TileIteratorExtent { // A few sanity checks. debug_assert!(layout_tile_size > 0.0); debug_assert!(layout_visible_range.end >= layout_visible_range.start); debug_assert!(device_image_range.end > device_image_range.start); debug_assert!(device_tile_size > 0); // Sizes of the boundary tiles in pixels. let first_tile_device_size = first_tile_size_1d(&device_image_range, device_tile_size); let last_tile_device_size = last_tile_size_1d(&device_image_range, device_tile_size); // [start..end[ Range of tiles of this row/column (in number of tiles) without // taking culling into account. let image_tiles = tile_range_1d(&device_image_range, device_tile_size); // Layout offset of tile (0, 0) with respect to the top-left corner of the display item. let layout_offset = device_image_range.start as f32 * layout_tile_size / device_tile_size as f32; // Position in layout space of tile (0, 0). let layout_tiling_origin = layout_prim_start - layout_offset; // [start..end[ Range of the visible tiles (because of culling). let visible_tiles_start = f32::floor((layout_visible_range.start - layout_tiling_origin) / layout_tile_size) as i32; let visible_tiles_end = f32::ceil((layout_visible_range.end - layout_tiling_origin) / layout_tile_size) as i32; // Combine the above two to get the tiles in the image that are visible this frame. let mut tiles_start = i32::max(image_tiles.start, visible_tiles_start); let tiles_end = i32::min(image_tiles.end, visible_tiles_end); if tiles_start > tiles_end { tiles_start = tiles_end; } // The size in layout space of the boundary tiles. let first_tile_layout_size = if tiles_start == image_tiles.start { first_tile_device_size as f32 * layout_tile_size / device_tile_size as f32 } else { // boundary tile was culled out, so the new first tile is a regularly sized tile. layout_tile_size }; // Same here. let last_tile_layout_size = if tiles_end == image_tiles.end { last_tile_device_size as f32 * layout_tile_size / device_tile_size as f32 } else { layout_tile_size }; TileIteratorExtent { tile_range: tiles_start..tiles_end, image_tiles, first_tile_layout_size, last_tile_layout_size, layout_tiling_origin, layout_prim_start, } } /// Compute the range of tiles (in number of tiles) that intersect the provided /// image range (in pixels) in an arbitrary dimension. /// /// ```ignore /// /// 0 /// : /// #-+---+---+---+---+---+--# /// # | | | | | | # /// #-+---+---+---+---+---+--# /// ^ : ^ /// /// +------------------------+ image_range /// +---+ regular_tile_size /// /// ``` fn tile_range_1d( image_range: &Range, regular_tile_size: i32, ) -> Range { // Integer division truncates towards zero so with negative values if the first/last // tile isn't a full tile we can get offset by one which we account for here. let mut start = image_range.start / regular_tile_size; if image_range.start % regular_tile_size < 0 { start -= 1; } let mut end = image_range.end / regular_tile_size; if image_range.end % regular_tile_size > 0 { end += 1; } start..end } // Sizes of the first boundary tile in pixels. // // It can be smaller than the regular tile size if the image is not a multiple // of the regular tile size. fn first_tile_size_1d( image_range: &Range, regular_tile_size: i32, ) -> i32 { // We have to account for how the % operation behaves for negative values. let image_size = image_range.end - image_range.start; i32::min( match image_range.start % regular_tile_size { // . #------+------+ . // . #//////| | . 0 => regular_tile_size, // (zero) -> 0 . #--+------+ . // . . #//| | . // %(m): ~~> m if m > 0 => regular_tile_size - m, // . . #--+------+ 0 <- (zero) // . . #//| | . // %(m): <~~ m => -m, }, image_size ) } // Sizes of the last boundary tile in pixels. // // It can be smaller than the regular tile size if the image is not a multiple // of the regular tile size. fn last_tile_size_1d( image_range: &Range, regular_tile_size: i32, ) -> i32 { // We have to account for how the modulo operation behaves for negative values. let image_size = image_range.end - image_range.start; i32::min( match image_range.end % regular_tile_size { // +------+------# . // tiles: . | |//////# . 0 => regular_tile_size, // . +------+--# . 0 <- (zero) // . | |//# . . // modulo (m): <~~ m if m < 0 => regular_tile_size + m, // (zero) -> 0 +------+--# . . // . | |//# . . // modulo (m): ~~> m => m, }, image_size, ) } pub fn compute_tile_rect( image_rect: &DeviceIntRect, regular_tile_size: TileSize, tile: TileOffset, ) -> DeviceIntRect { let regular_tile_size = regular_tile_size as i32; DeviceIntRect { origin: point2( compute_tile_origin_1d(image_rect.x_range(), regular_tile_size, tile.x as i32), compute_tile_origin_1d(image_rect.y_range(), regular_tile_size, tile.y as i32), ), size: size2( compute_tile_size_1d(image_rect.x_range(), regular_tile_size, tile.x as i32), compute_tile_size_1d(image_rect.y_range(), regular_tile_size, tile.y as i32), ), } } fn compute_tile_origin_1d( img_range: Range, regular_tile_size: i32, tile_offset: i32, ) -> i32 { let tile_range = tile_range_1d(&img_range, regular_tile_size); if tile_offset == tile_range.start { img_range.start } else { tile_offset * regular_tile_size } } // Compute the width and height in pixels of a tile depending on its position in the image. pub fn compute_tile_size( image_rect: &DeviceIntRect, regular_tile_size: TileSize, tile: TileOffset, ) -> DeviceIntSize { let regular_tile_size = regular_tile_size as i32; size2( compute_tile_size_1d(image_rect.x_range(), regular_tile_size, tile.x as i32), compute_tile_size_1d(image_rect.y_range(), regular_tile_size, tile.y as i32), ) } fn compute_tile_size_1d( img_range: Range, regular_tile_size: i32, tile_offset: i32, ) -> i32 { let tile_range = tile_range_1d(&img_range, regular_tile_size); // Most tiles are going to have base_size as width and height, // except for tiles around the edges that are shrunk to fit the image data. let actual_size = if tile_offset == tile_range.start { first_tile_size_1d(&img_range, regular_tile_size) } else if tile_offset == tile_range.end - 1 { last_tile_size_1d(&img_range, regular_tile_size) } else { regular_tile_size }; assert!(actual_size > 0); actual_size } pub fn compute_tile_range( visible_area: &DeviceIntRect, tile_size: u16, ) -> TileRange { let tile_size = tile_size as i32; let x_range = tile_range_1d(&visible_area.x_range(), tile_size); let y_range = tile_range_1d(&visible_area.y_range(), tile_size); TileRange { origin: point2(x_range.start, y_range.start), size: size2(x_range.end - x_range.start, y_range.end - y_range.start), } } pub fn for_each_tile_in_range( range: &TileRange, mut callback: impl FnMut(TileOffset), ) { for y in range.y_range() { for x in range.x_range() { callback(point2(x, y)); } } } pub fn compute_valid_tiles_if_bounds_change( prev_rect: &DeviceIntRect, new_rect: &DeviceIntRect, tile_size: u16, ) -> Option { let intersection = match prev_rect.intersection(new_rect) { Some(rect) => rect, None => { return Some(TileRange::zero()); } }; let left = prev_rect.min_x() != new_rect.min_x(); let right = prev_rect.max_x() != new_rect.max_x(); let top = prev_rect.min_y() != new_rect.min_y(); let bottom = prev_rect.max_y() != new_rect.max_y(); if !left && !right && !top && !bottom { // Bounds have not changed. return None; } let tw = 1.0 / (tile_size as f32); let th = 1.0 / (tile_size as f32); let tiles = intersection .cast::() .scale(tw, th); let min_x = if left { f32::ceil(tiles.min_x()) } else { f32::floor(tiles.min_x()) }; let min_y = if top { f32::ceil(tiles.min_y()) } else { f32::floor(tiles.min_y()) }; let max_x = if right { f32::floor(tiles.max_x()) } else { f32::ceil(tiles.max_x()) }; let max_y = if bottom { f32::floor(tiles.max_y()) } else { f32::ceil(tiles.max_y()) }; Some(TileRange { origin: point2(min_x as i32, min_y as i32), size: size2((max_x - min_x) as i32, (max_y - min_y) as i32), }) } #[cfg(test)] mod tests { use super::*; use std::collections::HashSet; use euclid::rect; // this checks some additional invariants fn checked_for_each_tile( prim_rect: &LayoutRect, visible_rect: &LayoutRect, device_image_rect: &DeviceIntRect, device_tile_size: i32, callback: &mut dyn FnMut(&LayoutRect, TileOffset, EdgeAaSegmentMask), ) { let mut coverage = LayoutRect::zero(); let mut seen_tiles = HashSet::new(); for tile in tiles( prim_rect, visible_rect, device_image_rect, device_tile_size, ) { // make sure we don't get sent duplicate tiles assert!(!seen_tiles.contains(&tile.offset)); seen_tiles.insert(tile.offset); coverage = coverage.union(&tile.rect); assert!(prim_rect.contains_rect(&tile.rect)); callback(&tile.rect, tile.offset, tile.edge_flags); } assert!(prim_rect.contains_rect(&coverage)); assert!(coverage.contains_rect(&visible_rect.intersection(&prim_rect).unwrap_or(LayoutRect::zero()))); } #[test] fn basic() { let mut count = 0; checked_for_each_tile(&rect(0., 0., 1000., 1000.), &rect(75., 75., 400., 400.), &rect(0, 0, 400, 400), 36, &mut |_tile_rect, _tile_offset, _tile_flags| { count += 1; }, ); assert_eq!(count, 36); } #[test] fn empty() { let mut count = 0; checked_for_each_tile(&rect(0., 0., 74., 74.), &rect(75., 75., 400., 400.), &rect(0, 0, 400, 400), 36, &mut |_tile_rect, _tile_offset, _tile_flags| { count += 1; }, ); assert_eq!(count, 0); } #[test] fn test_tiles_1d() { // Exactly one full tile at positive offset. let result = tiles_1d(64.0, -10000.0..10000.0, 0.0, 0..64, 64); assert_eq!(result.tile_range.start, 0); assert_eq!(result.tile_range.end, 1); assert_eq!(result.first_tile_layout_size, 64.0); assert_eq!(result.last_tile_layout_size, 64.0); // Exactly one full tile at negative offset. let result = tiles_1d(64.0, -10000.0..10000.0, -64.0, -64..0, 64); assert_eq!(result.tile_range.start, -1); assert_eq!(result.tile_range.end, 0); assert_eq!(result.first_tile_layout_size, 64.0); assert_eq!(result.last_tile_layout_size, 64.0); // Two full tiles at negative and positive offsets. let result = tiles_1d(64.0, -10000.0..10000.0, -64.0, -64..64, 64); assert_eq!(result.tile_range.start, -1); assert_eq!(result.tile_range.end, 1); assert_eq!(result.first_tile_layout_size, 64.0); assert_eq!(result.last_tile_layout_size, 64.0); // One partial tile at positive offset, non-zero origin, culled out. let result = tiles_1d(64.0, -100.0..10.0, 64.0, 64..310, 64); assert_eq!(result.tile_range.start, result.tile_range.end); // Two tiles at negative and positive offsets, one of which is culled out. // The remaining tile is partially culled but it should still generate a full tile. let result = tiles_1d(64.0, 10.0..10000.0, -64.0, -64..64, 64); assert_eq!(result.tile_range.start, 0); assert_eq!(result.tile_range.end, 1); assert_eq!(result.first_tile_layout_size, 64.0); assert_eq!(result.last_tile_layout_size, 64.0); let result = tiles_1d(64.0, -10000.0..-10.0, -64.0, -64..64, 64); assert_eq!(result.tile_range.start, -1); assert_eq!(result.tile_range.end, 0); assert_eq!(result.first_tile_layout_size, 64.0); assert_eq!(result.last_tile_layout_size, 64.0); // Stretched tile in layout space device tile size is 64 and layout tile size is 128. // So the resulting tile sizes in layout space should be multiplied by two. let result = tiles_1d(128.0, -10000.0..10000.0, -64.0, -64..32, 64); assert_eq!(result.tile_range.start, -1); assert_eq!(result.tile_range.end, 1); assert_eq!(result.first_tile_layout_size, 128.0); assert_eq!(result.last_tile_layout_size, 64.0); // Two visible tiles (the rest is culled out). let result = tiles_1d(10.0, 0.0..20.0, 0.0, 0..64, 64); assert_eq!(result.tile_range.start, 0); assert_eq!(result.tile_range.end, 1); assert_eq!(result.first_tile_layout_size, 10.0); assert_eq!(result.last_tile_layout_size, 10.0); // Two visible tiles at negative layout offsets (the rest is culled out). let result = tiles_1d(10.0, -20.0..0.0, -20.0, 0..64, 64); assert_eq!(result.tile_range.start, 0); assert_eq!(result.tile_range.end, 1); assert_eq!(result.first_tile_layout_size, 10.0); assert_eq!(result.last_tile_layout_size, 10.0); } #[test] fn test_tile_range_1d() { assert_eq!(tile_range_1d(&(0..256), 256), 0..1); assert_eq!(tile_range_1d(&(0..257), 256), 0..2); assert_eq!(tile_range_1d(&(-1..257), 256), -1..2); assert_eq!(tile_range_1d(&(-256..256), 256), -1..1); assert_eq!(tile_range_1d(&(-20..-10), 6), -4..-1); assert_eq!(tile_range_1d(&(20..100), 256), 0..1); } #[test] fn test_first_last_tile_size_1d() { assert_eq!(first_tile_size_1d(&(0..10), 64), 10); assert_eq!(first_tile_size_1d(&(-20..0), 64), 20); assert_eq!(last_tile_size_1d(&(0..10), 64), 10); assert_eq!(last_tile_size_1d(&(-20..0), 64), 20); } #[test] fn doubly_partial_tiles() { // In the following tests the image is a single tile and none of the sides of the tile // align with the tile grid. // This can only happen when we have a single non-aligned partial tile and no regular // tiles. assert_eq!(first_tile_size_1d(&(300..310), 64), 10); assert_eq!(first_tile_size_1d(&(-20..-10), 64), 10); assert_eq!(last_tile_size_1d(&(300..310), 64), 10); assert_eq!(last_tile_size_1d(&(-20..-10), 64), 10); // One partial tile at positve offset, non-zero origin. let result = tiles_1d(64.0, -10000.0..10000.0, 0.0, 300..310, 64); assert_eq!(result.tile_range.start, 4); assert_eq!(result.tile_range.end, 5); assert_eq!(result.first_tile_layout_size, 10.0); assert_eq!(result.last_tile_layout_size, 10.0); } #[test] fn smaller_than_tile_size_at_origin() { let r = compute_tile_rect( &rect(0, 0, 80, 80), 256, point2(0, 0), ); assert_eq!(r, rect(0, 0, 80, 80)); } #[test] fn smaller_than_tile_size_with_offset() { let r = compute_tile_rect( &rect(20, 20, 80, 80), 256, point2(0, 0), ); assert_eq!(r, rect(20, 20, 80, 80)); } }