// © 2017 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "uassert.h" #include "unicode/numberformatter.h" #include "number_decimalquantity.h" #include "number_formatimpl.h" #include "umutex.h" #include "number_asformat.h" #include "number_utils.h" #include "number_utypes.h" #include "util.h" #include "fphdlimp.h" using namespace icu; using namespace icu::number; using namespace icu::number::impl; #if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER) // Ignore MSVC warning 4661. This is generated for NumberFormatterSettings<>::toSkeleton() as this method // is defined elsewhere (in number_skeletons.cpp). The compiler is warning that the explicit template instantiation // inside this single translation unit (CPP file) is incomplete, and thus it isn't sure if the template class is // fully defined. However, since each translation unit explicitly instantiates all the necessary template classes, // they will all be passed to the linker, and the linker will still find and export all the class members. #pragma warning(push) #pragma warning(disable: 4661) #endif template Derived NumberFormatterSettings::notation(const Notation& notation) const& { Derived copy(*this); // NOTE: Slicing is OK. copy.fMacros.notation = notation; return copy; } template Derived NumberFormatterSettings::notation(const Notation& notation)&& { Derived move(std::move(*this)); // NOTE: Slicing is OK. move.fMacros.notation = notation; return move; } template Derived NumberFormatterSettings::unit(const icu::MeasureUnit& unit) const& { Derived copy(*this); // NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit. // TimeUnit may be affected, but TimeUnit is not as relevant to number formatting. copy.fMacros.unit = unit; return copy; } template Derived NumberFormatterSettings::unit(const icu::MeasureUnit& unit)&& { Derived move(std::move(*this)); // See comments above about slicing. move.fMacros.unit = unit; return move; } template Derived NumberFormatterSettings::adoptUnit(icu::MeasureUnit* unit) const& { Derived copy(*this); // Just move the unit into the MacroProps by value, and delete it since we have ownership. // NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit. // TimeUnit may be affected, but TimeUnit is not as relevant to number formatting. if (unit != nullptr) { // TODO: On nullptr, reset to default value? copy.fMacros.unit = std::move(*unit); delete unit; } return copy; } template Derived NumberFormatterSettings::adoptUnit(icu::MeasureUnit* unit)&& { Derived move(std::move(*this)); // See comments above about slicing and ownership. if (unit != nullptr) { // TODO: On nullptr, reset to default value? move.fMacros.unit = std::move(*unit); delete unit; } return move; } template Derived NumberFormatterSettings::perUnit(const icu::MeasureUnit& perUnit) const& { Derived copy(*this); // See comments above about slicing. copy.fMacros.perUnit = perUnit; return copy; } template Derived NumberFormatterSettings::perUnit(const icu::MeasureUnit& perUnit)&& { Derived move(std::move(*this)); // See comments above about slicing. move.fMacros.perUnit = perUnit; return move; } template Derived NumberFormatterSettings::adoptPerUnit(icu::MeasureUnit* perUnit) const& { Derived copy(*this); // See comments above about slicing and ownership. if (perUnit != nullptr) { // TODO: On nullptr, reset to default value? copy.fMacros.perUnit = std::move(*perUnit); delete perUnit; } return copy; } template Derived NumberFormatterSettings::adoptPerUnit(icu::MeasureUnit* perUnit)&& { Derived move(std::move(*this)); // See comments above about slicing and ownership. if (perUnit != nullptr) { // TODO: On nullptr, reset to default value? move.fMacros.perUnit = std::move(*perUnit); delete perUnit; } return move; } template Derived NumberFormatterSettings::precision(const Precision& precision) const& { Derived copy(*this); // NOTE: Slicing is OK. copy.fMacros.precision = precision; return copy; } template Derived NumberFormatterSettings::precision(const Precision& precision)&& { Derived move(std::move(*this)); // NOTE: Slicing is OK. move.fMacros.precision = precision; return move; } template Derived NumberFormatterSettings::roundingMode(UNumberFormatRoundingMode roundingMode) const& { Derived copy(*this); copy.fMacros.roundingMode = roundingMode; return copy; } template Derived NumberFormatterSettings::roundingMode(UNumberFormatRoundingMode roundingMode)&& { Derived move(std::move(*this)); move.fMacros.roundingMode = roundingMode; return move; } template Derived NumberFormatterSettings::grouping(UNumberGroupingStrategy strategy) const& { Derived copy(*this); // NOTE: This is slightly different than how the setting is stored in Java // because we want to put it on the stack. copy.fMacros.grouper = Grouper::forStrategy(strategy); return copy; } template Derived NumberFormatterSettings::grouping(UNumberGroupingStrategy strategy)&& { Derived move(std::move(*this)); move.fMacros.grouper = Grouper::forStrategy(strategy); return move; } template Derived NumberFormatterSettings::integerWidth(const IntegerWidth& style) const& { Derived copy(*this); copy.fMacros.integerWidth = style; return copy; } template Derived NumberFormatterSettings::integerWidth(const IntegerWidth& style)&& { Derived move(std::move(*this)); move.fMacros.integerWidth = style; return move; } template Derived NumberFormatterSettings::symbols(const DecimalFormatSymbols& symbols) const& { Derived copy(*this); copy.fMacros.symbols.setTo(symbols); return copy; } template Derived NumberFormatterSettings::symbols(const DecimalFormatSymbols& symbols)&& { Derived move(std::move(*this)); move.fMacros.symbols.setTo(symbols); return move; } template Derived NumberFormatterSettings::adoptSymbols(NumberingSystem* ns) const& { Derived copy(*this); copy.fMacros.symbols.setTo(ns); return copy; } template Derived NumberFormatterSettings::adoptSymbols(NumberingSystem* ns)&& { Derived move(std::move(*this)); move.fMacros.symbols.setTo(ns); return move; } template Derived NumberFormatterSettings::unitWidth(UNumberUnitWidth width) const& { Derived copy(*this); copy.fMacros.unitWidth = width; return copy; } template Derived NumberFormatterSettings::unitWidth(UNumberUnitWidth width)&& { Derived move(std::move(*this)); move.fMacros.unitWidth = width; return move; } template Derived NumberFormatterSettings::sign(UNumberSignDisplay style) const& { Derived copy(*this); copy.fMacros.sign = style; return copy; } template Derived NumberFormatterSettings::sign(UNumberSignDisplay style)&& { Derived move(std::move(*this)); move.fMacros.sign = style; return move; } template Derived NumberFormatterSettings::decimal(UNumberDecimalSeparatorDisplay style) const& { Derived copy(*this); copy.fMacros.decimal = style; return copy; } template Derived NumberFormatterSettings::decimal(UNumberDecimalSeparatorDisplay style)&& { Derived move(std::move(*this)); move.fMacros.decimal = style; return move; } template Derived NumberFormatterSettings::scale(const Scale& scale) const& { Derived copy(*this); copy.fMacros.scale = scale; return copy; } template Derived NumberFormatterSettings::scale(const Scale& scale)&& { Derived move(std::move(*this)); move.fMacros.scale = scale; return move; } template Derived NumberFormatterSettings::padding(const Padder& padder) const& { Derived copy(*this); copy.fMacros.padder = padder; return copy; } template Derived NumberFormatterSettings::padding(const Padder& padder)&& { Derived move(std::move(*this)); move.fMacros.padder = padder; return move; } template Derived NumberFormatterSettings::threshold(int32_t threshold) const& { Derived copy(*this); copy.fMacros.threshold = threshold; return copy; } template Derived NumberFormatterSettings::threshold(int32_t threshold)&& { Derived move(std::move(*this)); move.fMacros.threshold = threshold; return move; } template Derived NumberFormatterSettings::macros(const impl::MacroProps& macros) const& { Derived copy(*this); copy.fMacros = macros; return copy; } template Derived NumberFormatterSettings::macros(const impl::MacroProps& macros)&& { Derived move(std::move(*this)); move.fMacros = macros; return move; } template Derived NumberFormatterSettings::macros(impl::MacroProps&& macros) const& { Derived copy(*this); copy.fMacros = std::move(macros); return copy; } template Derived NumberFormatterSettings::macros(impl::MacroProps&& macros)&& { Derived move(std::move(*this)); move.fMacros = std::move(macros); return move; } // Note: toSkeleton defined in number_skeletons.cpp template LocalPointer NumberFormatterSettings::clone() const & { return LocalPointer(new Derived(*this)); } template LocalPointer NumberFormatterSettings::clone() && { return LocalPointer(new Derived(std::move(*this))); } // Declare all classes that implement NumberFormatterSettings // See https://stackoverflow.com/a/495056/1407170 template class icu::number::NumberFormatterSettings; template class icu::number::NumberFormatterSettings; UnlocalizedNumberFormatter NumberFormatter::with() { UnlocalizedNumberFormatter result; return result; } LocalizedNumberFormatter NumberFormatter::withLocale(const Locale& locale) { return with().locale(locale); } // Note: forSkeleton defined in number_skeletons.cpp template using NFS = NumberFormatterSettings; using LNF = LocalizedNumberFormatter; using UNF = UnlocalizedNumberFormatter; UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const UNF& other) : UNF(static_cast&>(other)) {} UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const NFS& other) : NFS(other) { // No additional fields to assign } // Make default copy constructor call the NumberFormatterSettings copy constructor. UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(UNF&& src) U_NOEXCEPT : UNF(static_cast&&>(src)) {} UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(NFS&& src) U_NOEXCEPT : NFS(std::move(src)) { // No additional fields to assign } UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(const UNF& other) { NFS::operator=(static_cast&>(other)); // No additional fields to assign return *this; } UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(UNF&& src) U_NOEXCEPT { NFS::operator=(static_cast&&>(src)); // No additional fields to assign return *this; } // Make default copy constructor call the NumberFormatterSettings copy constructor. LocalizedNumberFormatter::LocalizedNumberFormatter(const LNF& other) : LNF(static_cast&>(other)) {} LocalizedNumberFormatter::LocalizedNumberFormatter(const NFS& other) : NFS(other) { // No additional fields to assign (let call count and compiled formatter reset to defaults) } LocalizedNumberFormatter::LocalizedNumberFormatter(LocalizedNumberFormatter&& src) U_NOEXCEPT : LNF(static_cast&&>(src)) {} LocalizedNumberFormatter::LocalizedNumberFormatter(NFS&& src) U_NOEXCEPT : NFS(std::move(src)) { // For the move operators, copy over the compiled formatter. // Note: if the formatter is not compiled, call count information is lost. if (static_cast(src).fCompiled != nullptr) { lnfMoveHelper(static_cast(src)); } } LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(const LNF& other) { NFS::operator=(static_cast&>(other)); // Reset to default values. clear(); return *this; } LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(LNF&& src) U_NOEXCEPT { NFS::operator=(static_cast&&>(src)); // For the move operators, copy over the compiled formatter. // Note: if the formatter is not compiled, call count information is lost. if (static_cast(src).fCompiled != nullptr) { // Formatter is compiled lnfMoveHelper(static_cast(src)); } else { clear(); } return *this; } void LocalizedNumberFormatter::clear() { // Reset to default values. auto* callCount = reinterpret_cast(fUnsafeCallCount); umtx_storeRelease(*callCount, 0); delete fCompiled; fCompiled = nullptr; } void LocalizedNumberFormatter::lnfMoveHelper(LNF&& src) { // Copy over the compiled formatter and set call count to INT32_MIN as in computeCompiled(). // Don't copy the call count directly because doing so requires a loadAcquire/storeRelease. // The bits themselves appear to be platform-dependent, so copying them might not be safe. auto* callCount = reinterpret_cast(fUnsafeCallCount); umtx_storeRelease(*callCount, INT32_MIN); delete fCompiled; fCompiled = src.fCompiled; // Reset the source object to leave it in a safe state. auto* srcCallCount = reinterpret_cast(src.fUnsafeCallCount); umtx_storeRelease(*srcCallCount, 0); src.fCompiled = nullptr; } LocalizedNumberFormatter::~LocalizedNumberFormatter() { delete fCompiled; } LocalizedNumberFormatter::LocalizedNumberFormatter(const MacroProps& macros, const Locale& locale) { fMacros = macros; fMacros.locale = locale; } LocalizedNumberFormatter::LocalizedNumberFormatter(MacroProps&& macros, const Locale& locale) { fMacros = std::move(macros); fMacros.locale = locale; } LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale) const& { return LocalizedNumberFormatter(fMacros, locale); } LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale)&& { return LocalizedNumberFormatter(std::move(fMacros), locale); } SymbolsWrapper::SymbolsWrapper(const SymbolsWrapper& other) { doCopyFrom(other); } SymbolsWrapper::SymbolsWrapper(SymbolsWrapper&& src) U_NOEXCEPT { doMoveFrom(std::move(src)); } SymbolsWrapper& SymbolsWrapper::operator=(const SymbolsWrapper& other) { if (this == &other) { return *this; } doCleanup(); doCopyFrom(other); return *this; } SymbolsWrapper& SymbolsWrapper::operator=(SymbolsWrapper&& src) U_NOEXCEPT { if (this == &src) { return *this; } doCleanup(); doMoveFrom(std::move(src)); return *this; } SymbolsWrapper::~SymbolsWrapper() { doCleanup(); } void SymbolsWrapper::setTo(const DecimalFormatSymbols& dfs) { doCleanup(); fType = SYMPTR_DFS; fPtr.dfs = new DecimalFormatSymbols(dfs); } void SymbolsWrapper::setTo(const NumberingSystem* ns) { doCleanup(); fType = SYMPTR_NS; fPtr.ns = ns; } void SymbolsWrapper::doCopyFrom(const SymbolsWrapper& other) { fType = other.fType; switch (fType) { case SYMPTR_NONE: // No action necessary break; case SYMPTR_DFS: // Memory allocation failures are exposed in copyErrorTo() if (other.fPtr.dfs != nullptr) { fPtr.dfs = new DecimalFormatSymbols(*other.fPtr.dfs); } else { fPtr.dfs = nullptr; } break; case SYMPTR_NS: // Memory allocation failures are exposed in copyErrorTo() if (other.fPtr.ns != nullptr) { fPtr.ns = new NumberingSystem(*other.fPtr.ns); } else { fPtr.ns = nullptr; } break; } } void SymbolsWrapper::doMoveFrom(SymbolsWrapper&& src) { fType = src.fType; switch (fType) { case SYMPTR_NONE: // No action necessary break; case SYMPTR_DFS: fPtr.dfs = src.fPtr.dfs; src.fPtr.dfs = nullptr; break; case SYMPTR_NS: fPtr.ns = src.fPtr.ns; src.fPtr.ns = nullptr; break; } } void SymbolsWrapper::doCleanup() { switch (fType) { case SYMPTR_NONE: // No action necessary break; case SYMPTR_DFS: delete fPtr.dfs; break; case SYMPTR_NS: delete fPtr.ns; break; } } bool SymbolsWrapper::isDecimalFormatSymbols() const { return fType == SYMPTR_DFS; } bool SymbolsWrapper::isNumberingSystem() const { return fType == SYMPTR_NS; } const DecimalFormatSymbols* SymbolsWrapper::getDecimalFormatSymbols() const { U_ASSERT(fType == SYMPTR_DFS); return fPtr.dfs; } const NumberingSystem* SymbolsWrapper::getNumberingSystem() const { U_ASSERT(fType == SYMPTR_NS); return fPtr.ns; } FormattedNumber LocalizedNumberFormatter::formatInt(int64_t value, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity.setToLong(value); formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } FormattedNumber LocalizedNumberFormatter::formatDouble(double value, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity.setToDouble(value); formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } FormattedNumber LocalizedNumberFormatter::formatDecimal(StringPiece value, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity.setToDecNumber(value, status); formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } FormattedNumber LocalizedNumberFormatter::formatDecimalQuantity(const DecimalQuantity& dq, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity = dq; formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } void LocalizedNumberFormatter::formatImpl(impl::UFormattedNumberData* results, UErrorCode& status) const { if (computeCompiled(status)) { fCompiled->format(results->quantity, results->getStringRef(), status); } else { NumberFormatterImpl::formatStatic(fMacros, results->quantity, results->getStringRef(), status); } if (U_FAILURE(status)) { return; } results->getStringRef().writeTerminator(status); } void LocalizedNumberFormatter::getAffixImpl(bool isPrefix, bool isNegative, UnicodeString& result, UErrorCode& status) const { FormattedStringBuilder string; auto signum = static_cast(isNegative ? SIGNUM_NEG : SIGNUM_POS); // Always return affixes for plural form OTHER. static const StandardPlural::Form plural = StandardPlural::OTHER; int32_t prefixLength; if (computeCompiled(status)) { prefixLength = fCompiled->getPrefixSuffix(signum, plural, string, status); } else { prefixLength = NumberFormatterImpl::getPrefixSuffixStatic(fMacros, signum, plural, string, status); } result.remove(); if (isPrefix) { result.append(string.toTempUnicodeString().tempSubStringBetween(0, prefixLength)); } else { result.append(string.toTempUnicodeString().tempSubStringBetween(prefixLength, string.length())); } } bool LocalizedNumberFormatter::computeCompiled(UErrorCode& status) const { // fUnsafeCallCount contains memory to be interpreted as an atomic int, most commonly // std::atomic. Since the type of atomic int is platform-dependent, we cast the // bytes in fUnsafeCallCount to u_atomic_int32_t, a typedef for the platform-dependent // atomic int type defined in umutex.h. static_assert( sizeof(u_atomic_int32_t) <= sizeof(fUnsafeCallCount), "Atomic integer size on this platform exceeds the size allocated by fUnsafeCallCount"); auto* callCount = reinterpret_cast( const_cast(this)->fUnsafeCallCount); // A positive value in the atomic int indicates that the data structure is not yet ready; // a negative value indicates that it is ready. If, after the increment, the atomic int // is exactly threshold, then it is the current thread's job to build the data structure. // Note: We set the callCount to INT32_MIN so that if another thread proceeds to increment // the atomic int, the value remains below zero. int32_t currentCount = umtx_loadAcquire(*callCount); if (0 <= currentCount && currentCount <= fMacros.threshold && fMacros.threshold > 0) { currentCount = umtx_atomic_inc(callCount); } if (currentCount == fMacros.threshold && fMacros.threshold > 0) { // Build the data structure and then use it (slow to fast path). const NumberFormatterImpl* compiled = new NumberFormatterImpl(fMacros, status); if (compiled == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return false; } U_ASSERT(fCompiled == nullptr); const_cast(this)->fCompiled = compiled; umtx_storeRelease(*callCount, INT32_MIN); return true; } else if (currentCount < 0) { // The data structure is already built; use it (fast path). U_ASSERT(fCompiled != nullptr); return true; } else { // Format the number without building the data structure (slow path). return false; } } const impl::NumberFormatterImpl* LocalizedNumberFormatter::getCompiled() const { return fCompiled; } int32_t LocalizedNumberFormatter::getCallCount() const { auto* callCount = reinterpret_cast( const_cast(this)->fUnsafeCallCount); return umtx_loadAcquire(*callCount); } // Note: toFormat defined in number_asformat.cpp #if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER) // Warning 4661. #pragma warning(pop) #endif #endif /* #if !UCONFIG_NO_FORMATTING */