// © 2017 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "uassert.h" #include "unicode/numberformatter.h" #include "number_types.h" #include "number_decimalquantity.h" #include "double-conversion.h" #include "number_roundingutils.h" #include "putilimp.h" using namespace icu; using namespace icu::number; using namespace icu::number::impl; using double_conversion::DoubleToStringConverter; namespace { int32_t getRoundingMagnitudeFraction(int maxFrac) { if (maxFrac == -1) { return INT32_MIN; } return -maxFrac; } int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) { if (maxSig == -1) { return INT32_MIN; } int magnitude = value.isZeroish() ? 0 : value.getMagnitude(); return magnitude - maxSig + 1; } int32_t getDisplayMagnitudeFraction(int minFrac) { if (minFrac == 0) { return INT32_MAX; } return -minFrac; } int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) { int magnitude = value.isZeroish() ? 0 : value.getMagnitude(); return magnitude - minSig + 1; } } MultiplierProducer::~MultiplierProducer() = default; digits_t roundingutils::doubleFractionLength(double input, int8_t* singleDigit) { char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; bool sign; // unused; always positive int32_t length; int32_t point; DoubleToStringConverter::DoubleToAscii( input, DoubleToStringConverter::DtoaMode::SHORTEST, 0, buffer, sizeof(buffer), &sign, &length, &point ); if (singleDigit == nullptr) { // no-op } else if (length == 1) { *singleDigit = buffer[0] - '0'; } else { *singleDigit = -1; } return static_cast(length - point); } Precision Precision::unlimited() { return Precision(RND_NONE, {}, kDefaultMode); } FractionPrecision Precision::integer() { return constructFraction(0, 0); } FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) { if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) { return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } FractionPrecision Precision::minFraction(int32_t minFractionPlaces) { if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) { return constructFraction(minFractionPlaces, -1); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) { if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) { return constructFraction(0, maxFractionPlaces); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) { if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig && minFractionPlaces <= maxFractionPlaces) { return constructFraction(minFractionPlaces, maxFractionPlaces); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) { if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) { return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } Precision Precision::minSignificantDigits(int32_t minSignificantDigits) { if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { return constructSignificant(minSignificantDigits, -1); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) { if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { return constructSignificant(1, maxSignificantDigits); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) { if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig && minSignificantDigits <= maxSignificantDigits) { return constructSignificant(minSignificantDigits, maxSignificantDigits); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } IncrementPrecision Precision::increment(double roundingIncrement) { if (roundingIncrement > 0.0) { return constructIncrement(roundingIncrement, 0); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) { return constructCurrency(currencyUsage); } Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const { if (fType == RND_ERROR) { return *this; } // no-op in error state if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { return constructFractionSignificant(*this, minSignificantDigits, -1); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const { if (fType == RND_ERROR) { return *this; } // no-op in error state if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { return constructFractionSignificant(*this, -1, maxSignificantDigits); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } // Private method on base class Precision Precision::withCurrency(const CurrencyUnit ¤cy, UErrorCode &status) const { if (fType == RND_ERROR) { return *this; } // no-op in error state U_ASSERT(fType == RND_CURRENCY); const char16_t *isoCode = currency.getISOCurrency(); double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status); int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage( isoCode, fUnion.currencyUsage, &status); if (increment != 0.0) { return constructIncrement(increment, minMaxFrac); } else { return constructFraction(minMaxFrac, minMaxFrac); } } // Public method on CurrencyPrecision subclass Precision CurrencyPrecision::withCurrency(const CurrencyUnit ¤cy) const { UErrorCode localStatus = U_ZERO_ERROR; Precision result = Precision::withCurrency(currency, localStatus); if (U_FAILURE(localStatus)) { return {localStatus}; } return result; } Precision IncrementPrecision::withMinFraction(int32_t minFrac) const { if (fType == RND_ERROR) { return *this; } // no-op in error state if (minFrac >= 0 && minFrac <= kMaxIntFracSig) { return constructIncrement(fUnion.increment.fIncrement, minFrac); } else { return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; } } FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) { FractionSignificantSettings settings; settings.fMinFrac = static_cast(minFrac); settings.fMaxFrac = static_cast(maxFrac); settings.fMinSig = -1; settings.fMaxSig = -1; PrecisionUnion union_; union_.fracSig = settings; return {RND_FRACTION, union_, kDefaultMode}; } Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) { FractionSignificantSettings settings; settings.fMinFrac = -1; settings.fMaxFrac = -1; settings.fMinSig = static_cast(minSig); settings.fMaxSig = static_cast(maxSig); PrecisionUnion union_; union_.fracSig = settings; return {RND_SIGNIFICANT, union_, kDefaultMode}; } Precision Precision::constructFractionSignificant(const FractionPrecision &base, int32_t minSig, int32_t maxSig) { FractionSignificantSettings settings = base.fUnion.fracSig; settings.fMinSig = static_cast(minSig); settings.fMaxSig = static_cast(maxSig); PrecisionUnion union_; union_.fracSig = settings; return {RND_FRACTION_SIGNIFICANT, union_, kDefaultMode}; } IncrementPrecision Precision::constructIncrement(double increment, int32_t minFrac) { IncrementSettings settings; // Note: For number formatting, fIncrement is used for RND_INCREMENT but not // RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all // three when constructing a skeleton. settings.fIncrement = increment; settings.fMinFrac = static_cast(minFrac); // One of the few pre-computed quantities: // Note: it is possible for minFrac to be more than maxFrac... (misleading) int8_t singleDigit; settings.fMaxFrac = roundingutils::doubleFractionLength(increment, &singleDigit); PrecisionUnion union_; union_.increment = settings; if (singleDigit == 1) { // NOTE: In C++, we must return the correct value type with the correct union. // It would be invalid to return a RND_FRACTION here because the methods on the // IncrementPrecision type assume that the union is backed by increment data. return {RND_INCREMENT_ONE, union_, kDefaultMode}; } else if (singleDigit == 5) { return {RND_INCREMENT_FIVE, union_, kDefaultMode}; } else { return {RND_INCREMENT, union_, kDefaultMode}; } } CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) { PrecisionUnion union_; union_.currencyUsage = usage; return {RND_CURRENCY, union_, kDefaultMode}; } RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode, const CurrencyUnit& currency, UErrorCode& status) : fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) { if (precision.fType == Precision::RND_CURRENCY) { fPrecision = precision.withCurrency(currency, status); } } RoundingImpl RoundingImpl::passThrough() { return {}; } bool RoundingImpl::isSignificantDigits() const { return fPrecision.fType == Precision::RND_SIGNIFICANT; } int32_t RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer, UErrorCode &status) { // Do not call this method with zero, NaN, or infinity. U_ASSERT(!input.isZeroish()); // Perform the first attempt at rounding. int magnitude = input.getMagnitude(); int multiplier = producer.getMultiplier(magnitude); input.adjustMagnitude(multiplier); apply(input, status); // If the number rounded to zero, exit. if (input.isZeroish() || U_FAILURE(status)) { return multiplier; } // If the new magnitude after rounding is the same as it was before rounding, then we are done. // This case applies to most numbers. if (input.getMagnitude() == magnitude + multiplier) { return multiplier; } // If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000: // The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't, // we do not need to make any more adjustments. int _multiplier = producer.getMultiplier(magnitude + 1); if (multiplier == _multiplier) { return multiplier; } // We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000". // Fix the magnitude and re-apply the rounding strategy. input.adjustMagnitude(_multiplier - multiplier); apply(input, status); return _multiplier; } /** This is the method that contains the actual rounding logic. */ void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const { if (fPassThrough) { return; } switch (fPrecision.fType) { case Precision::RND_BOGUS: case Precision::RND_ERROR: // Errors should be caught before the apply() method is called status = U_INTERNAL_PROGRAM_ERROR; break; case Precision::RND_NONE: value.roundToInfinity(); break; case Precision::RND_FRACTION: value.roundToMagnitude( getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac), fRoundingMode, status); value.setMinFraction( uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac))); break; case Precision::RND_SIGNIFICANT: value.roundToMagnitude( getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig), fRoundingMode, status); value.setMinFraction( uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig))); // Make sure that digits are displayed on zero. if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) { value.setMinInteger(1); } break; case Precision::RND_FRACTION_SIGNIFICANT: { int32_t displayMag = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac); int32_t roundingMag = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac); if (fPrecision.fUnion.fracSig.fMinSig == -1) { // Max Sig override int32_t candidate = getRoundingMagnitudeSignificant( value, fPrecision.fUnion.fracSig.fMaxSig); roundingMag = uprv_max(roundingMag, candidate); } else { // Min Sig override int32_t candidate = getDisplayMagnitudeSignificant( value, fPrecision.fUnion.fracSig.fMinSig); roundingMag = uprv_min(roundingMag, candidate); } value.roundToMagnitude(roundingMag, fRoundingMode, status); value.setMinFraction(uprv_max(0, -displayMag)); break; } case Precision::RND_INCREMENT: value.roundToIncrement( fPrecision.fUnion.increment.fIncrement, fRoundingMode, status); value.setMinFraction(fPrecision.fUnion.increment.fMinFrac); break; case Precision::RND_INCREMENT_ONE: value.roundToMagnitude( -fPrecision.fUnion.increment.fMaxFrac, fRoundingMode, status); value.setMinFraction(fPrecision.fUnion.increment.fMinFrac); break; case Precision::RND_INCREMENT_FIVE: value.roundToNickel( -fPrecision.fUnion.increment.fMaxFrac, fRoundingMode, status); value.setMinFraction(fPrecision.fUnion.increment.fMinFrac); break; case Precision::RND_CURRENCY: // Call .withCurrency() before .apply()! UPRV_UNREACHABLE; default: UPRV_UNREACHABLE; } } void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) { // This method is intended for the one specific purpose of helping print "00.000E0". U_ASSERT(isSignificantDigits()); U_ASSERT(value.isZeroish()); value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt); } #endif /* #if !UCONFIG_NO_FORMATTING */