/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Histogram is an object that aggregates statistics, and can summarize them in // various forms, including ASCII graphical, HTML, and numerically (as a // vector of numbers corresponding to each of the aggregating buckets). // See header file for details and examples. #include "base/histogram.h" #include #include #include #include "base/logging.h" #include "base/pickle.h" #include "base/string_util.h" #include "base/logging.h" namespace base { #define DVLOG(x) CHROMIUM_LOG(ERROR) #define CHECK_GT DCHECK_GT #define CHECK_LT DCHECK_LT // Static table of checksums for all possible 8 bit bytes. const uint32_t Histogram::kCrcTable[256] = { 0x0, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x76dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0xedb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x9b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x1db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x6b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0xf00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x86d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x3b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x4db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0xd6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0xa00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x26d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x5005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0xcb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0xbdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL, }; typedef Histogram::Count Count; // static const size_t Histogram::kBucketCount_MAX = 16384u; Histogram* Histogram::FactoryGet(Sample minimum, Sample maximum, size_t bucket_count, Flags flags, const int* buckets) { DCHECK(buckets); Histogram* histogram(NULL); // Defensive code. if (minimum < 1) minimum = 1; if (maximum > kSampleType_MAX - 1) maximum = kSampleType_MAX - 1; histogram = new Histogram(minimum, maximum, bucket_count); histogram->InitializeBucketRangeFromData(buckets); histogram->SetFlags(flags); DCHECK_EQ(HISTOGRAM, histogram->histogram_type()); DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count)); return histogram; } void Histogram::Add(int value) { if (value > kSampleType_MAX - 1) value = kSampleType_MAX - 1; if (value < 0) value = 0; size_t index = BucketIndex(value); DCHECK_GE(value, ranges(index)); DCHECK_LT(value, ranges(index + 1)); Accumulate(value, 1, index); } void Histogram::Subtract(int value) { if (value > kSampleType_MAX - 1) value = kSampleType_MAX - 1; if (value < 0) value = 0; size_t index = BucketIndex(value); DCHECK_GE(value, ranges(index)); DCHECK_LT(value, ranges(index + 1)); Accumulate(value, -1, index); } void Histogram::AddBoolean(bool value) { DCHECK(false); } void Histogram::AddSampleSet(const SampleSet& sample) { sample_.Add(sample); } void Histogram::Clear() { sample_.Clear(); } void Histogram::SetRangeDescriptions(const DescriptionPair descriptions[]) { DCHECK(false); } //------------------------------------------------------------------------------ // Methods for the validating a sample and a related histogram. //------------------------------------------------------------------------------ Histogram::Inconsistencies Histogram::FindCorruption( const SampleSet& snapshot) const { int inconsistencies = NO_INCONSISTENCIES; Sample previous_range = -1; // Bottom range is always 0. int64_t count = 0; for (size_t index = 0; index < bucket_count(); ++index) { count += snapshot.counts(index); int new_range = ranges(index); if (previous_range >= new_range) inconsistencies |= BUCKET_ORDER_ERROR; previous_range = new_range; } if (!HasValidRangeChecksum()) inconsistencies |= RANGE_CHECKSUM_ERROR; int64_t delta64 = snapshot.redundant_count() - count; if (delta64 != 0) { int delta = static_cast(delta64); if (delta != delta64) delta = INT_MAX; // Flag all giant errors as INT_MAX. // Since snapshots of histograms are taken asynchronously relative to // sampling (and snapped from different threads), it is pretty likely that // we'll catch a redundant count that doesn't match the sample count. We // allow for a certain amount of slop before flagging this as an // inconsistency. Even with an inconsistency, we'll snapshot it again (for // UMA in about a half hour, so we'll eventually get the data, if it was // not the result of a corruption. If histograms show that 1 is "too tight" // then we may try to use 2 or 3 for this slop value. const int kCommonRaceBasedCountMismatch = 1; if (delta > 0) { if (delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_HIGH_ERROR; } else { DCHECK_GT(0, delta); if (-delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_LOW_ERROR; } } return static_cast(inconsistencies); } Histogram::ClassType Histogram::histogram_type() const { return HISTOGRAM; } Histogram::Sample Histogram::ranges(size_t i) const { return ranges_[i]; } size_t Histogram::bucket_count() const { return bucket_count_; } Histogram::SampleSet Histogram::SnapshotSample() const { return sample_.Clone(); } bool Histogram::HasConstructorArguments(Sample minimum, Sample maximum, size_t bucket_count) { return ((minimum == declared_min_) && (maximum == declared_max_) && (bucket_count == bucket_count_)); } bool Histogram::HasConstructorTimeDeltaArguments(TimeDelta minimum, TimeDelta maximum, size_t bucket_count) { return ((minimum.InMilliseconds() == declared_min_) && (maximum.InMilliseconds() == declared_max_) && (bucket_count == bucket_count_)); } bool Histogram::HasValidRangeChecksum() const { return CalculateRangeChecksum() == range_checksum_; } size_t Histogram::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) { size_t n = 0; n += aMallocSizeOf(this); n += sample_.SizeOfExcludingThis(aMallocSizeOf); return n; } size_t Histogram::SampleSet::SizeOfExcludingThis( mozilla::MallocSizeOf aMallocSizeOf) { return counts_.ShallowSizeOfExcludingThis(aMallocSizeOf); } Histogram::Histogram(Sample minimum, Sample maximum, size_t bucket_count) : sample_(), declared_min_(minimum), declared_max_(maximum), bucket_count_(bucket_count), flags_(kNoFlags), range_checksum_(0) { Initialize(); } Histogram::Histogram(TimeDelta minimum, TimeDelta maximum, size_t bucket_count) : sample_(), declared_min_(static_cast(minimum.InMilliseconds())), declared_max_(static_cast(maximum.InMilliseconds())), bucket_count_(bucket_count), flags_(kNoFlags), range_checksum_(0) { Initialize(); } Histogram::~Histogram() { // Just to make sure most derived class did this properly... DCHECK(ValidateBucketRanges()); } void Histogram::InitializeBucketRangeFromData(const int* buckets) { ranges_ = buckets; ResetRangeChecksum(); DCHECK(ValidateBucketRanges()); } bool Histogram::PrintEmptyBucket(size_t index) const { return true; } size_t Histogram::BucketIndex(Sample value) const { // Use simple binary search. This is very general, but there are better // approaches if we knew that the buckets were linearly distributed. DCHECK_LE(ranges(0), value); DCHECK_GT(ranges(bucket_count()), value); size_t under = 0; size_t over = bucket_count(); size_t mid; do { DCHECK_GE(over, under); mid = under + (over - under) / 2; if (mid == under) break; if (ranges(mid) <= value) under = mid; else over = mid; } while (true); DCHECK_LE(ranges(mid), value); CHECK_GT(ranges(mid + 1), value); return mid; } // Use the actual bucket widths (like a linear histogram) until the widths get // over some transition value, and then use that transition width. Exponentials // get so big so fast (and we don't expect to see a lot of entries in the large // buckets), so we need this to make it possible to see what is going on and // not have 0-graphical-height buckets. double Histogram::GetBucketSize(Count current, size_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); static const double kTransitionWidth = 5; double denominator = ranges(i + 1) - ranges(i); if (denominator > kTransitionWidth) denominator = kTransitionWidth; // Stop trying to normalize. return current / denominator; } void Histogram::ResetRangeChecksum() { range_checksum_ = CalculateRangeChecksum(); } const std::string Histogram::GetAsciiBucketRange(size_t i) const { std::string result; if (kHexRangePrintingFlag & flags_) StringAppendF(&result, "%#x", ranges(i)); else StringAppendF(&result, "%d", ranges(i)); return result; } // Update histogram data with new sample. void Histogram::Accumulate(Sample value, Count count, size_t index) { sample_.Accumulate(value, count, index); } bool Histogram::ValidateBucketRanges() const { // Standard assertions that all bucket ranges should satisfy. DCHECK_EQ(0, ranges_[bucket_count_ + 1]); DCHECK_EQ(0, ranges_[0]); DCHECK_EQ(declared_min(), ranges_[1]); DCHECK_EQ(declared_max(), ranges_[bucket_count_ - 1]); DCHECK_EQ(kSampleType_MAX, ranges_[bucket_count_]); return true; } uint32_t Histogram::CalculateRangeChecksum() const { DCHECK_EQ(0, ranges_[bucket_count_ + 1]); uint32_t checksum = static_cast(bucket_count_ + 1); // Seed checksum. for (size_t index = 0; index < bucket_count(); ++index) checksum = Crc32(checksum, ranges(index)); return checksum; } void Histogram::Initialize() { sample_.Resize(*this); if (declared_min_ < 1) declared_min_ = 1; if (declared_max_ > kSampleType_MAX - 1) declared_max_ = kSampleType_MAX - 1; DCHECK_LE(declared_min_, declared_max_); DCHECK_GT(bucket_count_, 1u); CHECK_LT(bucket_count_, kBucketCount_MAX); size_t maximal_bucket_count = declared_max_ - declared_min_ + 2; DCHECK_LE(bucket_count_, maximal_bucket_count); } // We generate the CRC-32 using the low order bits to select whether to XOR in // the reversed polynomial 0xedb88320L. This is nice and simple, and allows us // to keep the quotient in a uint32_t. Since we're not concerned about the // nature of corruptions (i.e., we don't care about bit sequencing, since we are // handling memory changes, which are more grotesque) so we don't bother to // get the CRC correct for big-endian vs little-ending calculations. All we // need is a nice hash, that tends to depend on all the bits of the sample, with // very little chance of changes in one place impacting changes in another // place. uint32_t Histogram::Crc32(uint32_t sum, Histogram::Sample range) { const bool kUseRealCrc = true; // TODO(jar): Switch to false and watch stats. if (kUseRealCrc) { union { Histogram::Sample range; unsigned char bytes[sizeof(Histogram::Sample)]; } converter; converter.range = range; for (size_t i = 0; i < sizeof(converter); ++i) sum = kCrcTable[(sum & 0xff) ^ converter.bytes[i]] ^ (sum >> 8); } else { // Use hash techniques provided in ReallyFastHash, except we don't care // about "avalanching" (which would worsten the hash, and add collisions), // and we don't care about edge cases since we have an even number of bytes. union { Histogram::Sample range; uint16_t ints[sizeof(Histogram::Sample) / 2]; } converter; DCHECK_EQ(sizeof(Histogram::Sample), sizeof(converter)); converter.range = range; sum += converter.ints[0]; sum = (sum << 16) ^ sum ^ (static_cast(converter.ints[1]) << 11); sum += sum >> 11; } return sum; } //------------------------------------------------------------------------------ // Private methods double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const { double max = 0; for (size_t i = 0; i < bucket_count(); ++i) { double current_size = GetBucketSize(snapshot.counts(i), i); if (current_size > max) max = current_size; } return max; } //------------------------------------------------------------------------------ // Methods for the Histogram::SampleSet class //------------------------------------------------------------------------------ Histogram::SampleSet::SampleSet() : counts_(), sum_(0), redundant_count_(0) {} Histogram::SampleSet::~SampleSet() {} void Histogram::SampleSet::Resize(const Histogram& histogram) { size_t oldSize = counts_.Length(); counts_.SetLength(histogram.bucket_count()); for (size_t i = oldSize; i < histogram.bucket_count(); ++i) counts_[i] = 0; } void Histogram::SampleSet::Accumulate(Sample value, Count count, size_t index) { DCHECK(count == 1 || count == -1); counts_[index] += count; redundant_count_ += count; sum_ += static_cast(count) * value; DCHECK_GE(counts_[index], 0); DCHECK_GE(sum_, 0); DCHECK_GE(redundant_count_, 0); } Count Histogram::SampleSet::TotalCount() const { Count total = 0; for (Counts::const_iterator it = counts_.begin(); it != counts_.end(); ++it) { total += *it; } return total; } void Histogram::SampleSet::Add(const SampleSet& other) { DCHECK_EQ(counts_.Length(), other.counts_.Length()); sum_ += other.sum_; redundant_count_ += other.redundant_count_; for (size_t index = 0; index < counts_.Length(); ++index) counts_[index] += other.counts_[index]; } //------------------------------------------------------------------------------ // LinearHistogram: This histogram uses a traditional set of evenly spaced // buckets. //------------------------------------------------------------------------------ LinearHistogram::~LinearHistogram() {} Histogram* LinearHistogram::FactoryGet(Sample minimum, Sample maximum, size_t bucket_count, Flags flags, const int* buckets) { Histogram* histogram(NULL); if (minimum < 1) minimum = 1; if (maximum > kSampleType_MAX - 1) maximum = kSampleType_MAX - 1; LinearHistogram* linear_histogram = new LinearHistogram(minimum, maximum, bucket_count); linear_histogram->InitializeBucketRangeFromData(buckets); linear_histogram->SetFlags(flags); histogram = linear_histogram; DCHECK_EQ(LINEAR_HISTOGRAM, histogram->histogram_type()); DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count)); return histogram; } Histogram::ClassType LinearHistogram::histogram_type() const { return LINEAR_HISTOGRAM; } void LinearHistogram::Accumulate(Sample value, Count count, size_t index) { sample_.Accumulate(value, count, index); } void LinearHistogram::SetRangeDescriptions( const DescriptionPair descriptions[]) { for (int i = 0; descriptions[i].description; ++i) { bucket_description_[descriptions[i].sample] = descriptions[i].description; } } LinearHistogram::LinearHistogram(Sample minimum, Sample maximum, size_t bucket_count) : Histogram(minimum >= 1 ? minimum : 1, maximum, bucket_count) {} LinearHistogram::LinearHistogram(TimeDelta minimum, TimeDelta maximum, size_t bucket_count) : Histogram(minimum >= TimeDelta::FromMilliseconds(1) ? minimum : TimeDelta::FromMilliseconds(1), maximum, bucket_count) {} double LinearHistogram::GetBucketSize(Count current, size_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); // Adjacent buckets with different widths would have "surprisingly" many (few) // samples in a histogram if we didn't normalize this way. double denominator = ranges(i + 1) - ranges(i); return current / denominator; } const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const { int range = ranges(i); BucketDescriptionMap::const_iterator it = bucket_description_.find(range); if (it == bucket_description_.end()) return Histogram::GetAsciiBucketRange(i); return it->second; } bool LinearHistogram::PrintEmptyBucket(size_t index) const { return bucket_description_.find(ranges(index)) == bucket_description_.end(); } //------------------------------------------------------------------------------ // This section provides implementation for BooleanHistogram. //------------------------------------------------------------------------------ Histogram* BooleanHistogram::FactoryGet(Flags flags, const int* buckets) { Histogram* histogram(NULL); BooleanHistogram* tentative_histogram = new BooleanHistogram(); tentative_histogram->InitializeBucketRangeFromData(buckets); tentative_histogram->SetFlags(flags); histogram = tentative_histogram; DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->histogram_type()); return histogram; } Histogram::ClassType BooleanHistogram::histogram_type() const { return BOOLEAN_HISTOGRAM; } void BooleanHistogram::AddBoolean(bool value) { Add(value ? 1 : 0); } BooleanHistogram::BooleanHistogram() : LinearHistogram(1, 2, 3) {} void BooleanHistogram::Accumulate(Sample value, Count count, size_t index) { // Callers will have computed index based on the non-booleanified value. // So we need to adjust the index manually. LinearHistogram::Accumulate(!!value, count, value ? 1 : 0); } //------------------------------------------------------------------------------ // FlagHistogram: //------------------------------------------------------------------------------ Histogram* FlagHistogram::FactoryGet(Flags flags, const int* buckets) { Histogram* h(nullptr); FlagHistogram* fh = new FlagHistogram(); fh->InitializeBucketRangeFromData(buckets); fh->SetFlags(flags); size_t zero_index = fh->BucketIndex(0); fh->LinearHistogram::Accumulate(0, 1, zero_index); h = fh; return h; } FlagHistogram::FlagHistogram() : BooleanHistogram(), mSwitched(false) {} Histogram::ClassType FlagHistogram::histogram_type() const { return FLAG_HISTOGRAM; } void FlagHistogram::Accumulate(Sample value, Count count, size_t index) { if (mSwitched) { return; } mSwitched = true; DCHECK_EQ(value, 1); LinearHistogram::Accumulate(value, 1, index); size_t zero_index = BucketIndex(0); LinearHistogram::Accumulate(0, -1, zero_index); } void FlagHistogram::AddSampleSet(const SampleSet& sample) { DCHECK_EQ(bucket_count(), sample.size()); // We can't be sure the SampleSet provided came from another FlagHistogram, // so we take the following steps: // - If our flag has already been set do nothing. // - Set our flag if the following hold: // - The sum of the counts in the provided SampleSet is 1. // - The bucket index for that single value is the same as the index // where we // would place our set flag. // - Otherwise, take no action. if (mSwitched) { return; } if (sample.sum() != 1) { return; } size_t one_index = BucketIndex(1); if (sample.counts(one_index) == 1) { Accumulate(1, 1, one_index); } } void FlagHistogram::Clear() { Histogram::Clear(); mSwitched = false; size_t zero_index = BucketIndex(0); LinearHistogram::Accumulate(0, 1, zero_index); } //------------------------------------------------------------------------------ // CountHistogram: //------------------------------------------------------------------------------ Histogram* CountHistogram::FactoryGet(Flags flags, const int* buckets) { Histogram* h(nullptr); CountHistogram* fh = new CountHistogram(); fh->InitializeBucketRangeFromData(buckets); fh->SetFlags(flags); h = fh; return h; } CountHistogram::CountHistogram() : LinearHistogram(1, 2, 3) {} Histogram::ClassType CountHistogram::histogram_type() const { return COUNT_HISTOGRAM; } void CountHistogram::Accumulate(Sample value, Count count, size_t index) { size_t zero_index = BucketIndex(0); LinearHistogram::Accumulate(value, 1, zero_index); } void CountHistogram::AddSampleSet(const SampleSet& sample) { DCHECK_EQ(bucket_count(), sample.size()); // We can't be sure the SampleSet provided came from another CountHistogram, // so we at least check that the unused buckets are empty. const size_t indices[] = {BucketIndex(0), BucketIndex(1), BucketIndex(2)}; if (sample.counts(indices[1]) != 0 || sample.counts(indices[2]) != 0) { return; } if (sample.counts(indices[0]) != 0) { Histogram::AddSampleSet(sample); } } } // namespace base