/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_HeapAPI_h #define js_HeapAPI_h #include "mozilla/Atomics.h" #include "mozilla/BitSet.h" #include #include #include "jspubtd.h" #include "js/GCAnnotations.h" #include "js/shadow/String.h" // JS::shadow::String #include "js/shadow/Symbol.h" // JS::shadow::Symbol #include "js/shadow/Zone.h" // JS::shadow::Zone #include "js/TraceKind.h" #include "js/Utility.h" #ifndef JS_BITS_PER_WORD # error \ "JS_BITS_PER_WORD must be defined. Did you forget to include js-config.h?" #endif struct JSExternalStringCallbacks; /* These values are private to the JS engine. */ namespace js { class NurseryDecommitTask; JS_FRIEND_API bool CurrentThreadCanAccessZone(JS::Zone* zone); namespace gc { class Arena; struct Cell; class TenuredChunk; class StoreBuffer; class TenuredCell; const size_t ArenaShift = 12; const size_t ArenaSize = size_t(1) << ArenaShift; const size_t ArenaMask = ArenaSize - 1; #ifdef JS_GC_SMALL_CHUNK_SIZE const size_t ChunkShift = 18; #else const size_t ChunkShift = 20; #endif const size_t ChunkSize = size_t(1) << ChunkShift; const size_t ChunkMask = ChunkSize - 1; const size_t CellAlignShift = 3; const size_t CellAlignBytes = size_t(1) << CellAlignShift; const size_t CellAlignMask = CellAlignBytes - 1; const size_t CellBytesPerMarkBit = CellAlignBytes; const size_t MarkBitsPerCell = 2; /* * The mark bitmap has one bit per each possible cell start position. This * wastes some space for larger GC things but allows us to avoid division by the * cell's size when accessing the bitmap. */ const size_t ArenaBitmapBits = ArenaSize / CellBytesPerMarkBit; const size_t ArenaBitmapBytes = HowMany(ArenaBitmapBits, 8); const size_t ArenaBitmapWords = HowMany(ArenaBitmapBits, JS_BITS_PER_WORD); // The base class for all GC chunks, either in the nursery or in the tenured // heap memory. This structure is locatable from any GC pointer by aligning to // the chunk size. class alignas(CellAlignBytes) ChunkBase { protected: ChunkBase(JSRuntime* rt, StoreBuffer* sb) : storeBuffer(sb), runtime(rt) { MOZ_ASSERT((uintptr_t(this) & ChunkMask) == 0); } public: // The store buffer for pointers from tenured things to things in this // chunk. Will be non-null if and only if this is a nursery chunk. StoreBuffer* storeBuffer; // Provide quick access to the runtime from absolutely anywhere. JSRuntime* runtime; }; // Information about tenured heap chunks. struct TenuredChunkInfo { private: friend class ChunkPool; TenuredChunk* next = nullptr; TenuredChunk* prev = nullptr; public: /* Free arenas are linked together with arena.next. */ Arena* freeArenasHead; /* * Decommitted arenas are tracked by a bitmap in the TenuredChunkBase. We use * this offset to start our search iteration close to a decommitted arena that * we can allocate. */ uint32_t lastDecommittedArenaOffset; /* Number of free arenas, either committed or decommitted. */ uint32_t numArenasFree; /* Number of free, committed arenas. */ uint32_t numArenasFreeCommitted; }; /* * Calculating ArenasPerChunk: * * To figure out how many Arenas will fit in a chunk we need to know how much * extra space is available after we allocate the header data. This is a problem * because the header size depends on the number of arenas in the chunk. * * The two dependent fields are bitmap and decommittedArenas. bitmap needs * ArenaBitmapBytes bytes per arena and decommittedArenas needs one bit per * arena. * * We can calculate an approximate value by dividing the number of bits of free * space in the chunk by the number of bits needed per arena. This is an * approximation because it doesn't take account of the fact that the variable * sized fields must be rounded up to a whole number of words, or any padding * the compiler adds between fields. * * Fortunately, for the chunk and arena size parameters we use this * approximation turns out to be correct. If it were not we might need to adjust * the arena count down by one to allow more space for the padding. */ const size_t BitsPerArenaWithHeaders = (ArenaSize + ArenaBitmapBytes) * CHAR_BIT + 1; const size_t ChunkBitsAvailable = (ChunkSize - sizeof(ChunkBase) - sizeof(TenuredChunkInfo)) * CHAR_BIT; const size_t ArenasPerChunk = ChunkBitsAvailable / BitsPerArenaWithHeaders; const size_t CalculatedChunkSizeRequired = sizeof(ChunkBase) + sizeof(TenuredChunkInfo) + RoundUp(ArenasPerChunk * ArenaBitmapBytes, sizeof(uintptr_t)) + RoundUp(ArenasPerChunk, sizeof(uint32_t) * CHAR_BIT) / CHAR_BIT + ArenasPerChunk * ArenaSize; static_assert(CalculatedChunkSizeRequired <= ChunkSize, "Calculated ArenasPerChunk is too large"); const size_t CalculatedChunkPadSize = ChunkSize - CalculatedChunkSizeRequired; static_assert(CalculatedChunkPadSize * CHAR_BIT < BitsPerArenaWithHeaders, "Calculated ArenasPerChunk is too small"); // Define a macro for the expected number of arenas so its value appears in the // error message if the assertion fails. #ifdef JS_GC_SMALL_CHUNK_SIZE # define EXPECTED_ARENA_COUNT 63 #else # define EXPECTED_ARENA_COUNT 252 #endif static_assert(ArenasPerChunk == EXPECTED_ARENA_COUNT, "Do not accidentally change our heap's density."); #undef EXPECTED_ARENA_COUNT // Mark bitmaps are atomic because they can be written by gray unmarking on the // main thread while read by sweeping on a background thread. The former does // not affect the result of the latter. using MarkBitmapWord = mozilla::Atomic; /* * Live objects are marked black or gray. Everything reachable from a JS root is * marked black. Objects marked gray are eligible for cycle collection. * * BlackBit: GrayOrBlackBit: Color: * 0 0 white * 0 1 gray * 1 0 black * 1 1 black */ enum class ColorBit : uint32_t { BlackBit = 0, GrayOrBlackBit = 1 }; // Mark colors. Order is important here: the greater value the 'more marked' a // cell is. enum class MarkColor : uint8_t { Gray = 1, Black = 2 }; // Mark bitmap for a tenured heap chunk. struct MarkBitmap { static constexpr size_t WordCount = ArenaBitmapWords * ArenasPerChunk; MarkBitmapWord bitmap[WordCount]; inline void getMarkWordAndMask(const TenuredCell* cell, ColorBit colorBit, MarkBitmapWord** wordp, uintptr_t* maskp); // The following are not exported and are defined in gc/Heap.h: inline bool markBit(const TenuredCell* cell, ColorBit colorBit); inline bool isMarkedAny(const TenuredCell* cell); inline bool isMarkedBlack(const TenuredCell* cell); inline bool isMarkedGray(const TenuredCell* cell); inline bool markIfUnmarked(const TenuredCell* cell, MarkColor color); inline void markBlack(const TenuredCell* cell); inline void copyMarkBit(TenuredCell* dst, const TenuredCell* src, ColorBit colorBit); inline void unmark(const TenuredCell* cell); inline void clear(); inline MarkBitmapWord* arenaBits(Arena* arena); }; static_assert(ArenaBitmapBytes * ArenasPerChunk == sizeof(MarkBitmap), "Ensure our MarkBitmap actually covers all arenas."); // Decommit bitmap for a heap chunk. using DecommitBitmap = mozilla::BitSet; // Base class containing data members for a tenured heap chunk. class TenuredChunkBase : public ChunkBase { public: TenuredChunkInfo info; MarkBitmap markBits; DecommitBitmap decommittedArenas; protected: explicit TenuredChunkBase(JSRuntime* runtime) : ChunkBase(runtime, nullptr) {} }; /* * We sometimes use an index to refer to a cell in an arena. The index for a * cell is found by dividing by the cell alignment so not all indices refer to * valid cells. */ const size_t ArenaCellIndexBytes = CellAlignBytes; const size_t MaxArenaCellIndex = ArenaSize / CellAlignBytes; const size_t MarkBitmapWordBits = sizeof(MarkBitmapWord) * CHAR_BIT; constexpr size_t FirstArenaAdjustmentBits = RoundUp(sizeof(gc::TenuredChunkBase), ArenaSize) / gc::CellBytesPerMarkBit; static_assert((FirstArenaAdjustmentBits % MarkBitmapWordBits) == 0); constexpr size_t FirstArenaAdjustmentWords = FirstArenaAdjustmentBits / MarkBitmapWordBits; const size_t ChunkRuntimeOffset = offsetof(ChunkBase, runtime); const size_t ChunkStoreBufferOffset = offsetof(ChunkBase, storeBuffer); const size_t ChunkMarkBitmapOffset = offsetof(TenuredChunkBase, markBits); // Hardcoded offsets into Arena class. const size_t ArenaZoneOffset = sizeof(size_t); const size_t ArenaHeaderSize = sizeof(size_t) + 2 * sizeof(uintptr_t) + sizeof(size_t) + sizeof(uintptr_t); // The first word of a GC thing has certain requirements from the GC and is used // to store flags in the low bits. const size_t CellFlagBitsReservedForGC = 3; // The first word can be used to store JSClass pointers for some thing kinds, so // these must be suitably aligned. const size_t JSClassAlignBytes = size_t(1) << CellFlagBitsReservedForGC; #ifdef JS_DEBUG /* When downcasting, ensure we are actually the right type. */ extern JS_FRIEND_API void AssertGCThingHasType(js::gc::Cell* cell, JS::TraceKind kind); #else inline void AssertGCThingHasType(js::gc::Cell* cell, JS::TraceKind kind) {} #endif MOZ_ALWAYS_INLINE bool IsInsideNursery(const js::gc::Cell* cell); MOZ_ALWAYS_INLINE bool IsInsideNursery(const js::gc::TenuredCell* cell); } /* namespace gc */ } /* namespace js */ namespace JS { enum class HeapState { Idle, // doing nothing with the GC heap Tracing, // tracing the GC heap without collecting, e.g. // IterateCompartments() MajorCollecting, // doing a GC of the major heap MinorCollecting, // doing a GC of the minor heap (nursery) CycleCollecting // in the "Unlink" phase of cycle collection }; JS_PUBLIC_API HeapState RuntimeHeapState(); static inline bool RuntimeHeapIsBusy() { return RuntimeHeapState() != HeapState::Idle; } static inline bool RuntimeHeapIsTracing() { return RuntimeHeapState() == HeapState::Tracing; } static inline bool RuntimeHeapIsMajorCollecting() { return RuntimeHeapState() == HeapState::MajorCollecting; } static inline bool RuntimeHeapIsMinorCollecting() { return RuntimeHeapState() == HeapState::MinorCollecting; } static inline bool RuntimeHeapIsCollecting(HeapState state) { return state == HeapState::MajorCollecting || state == HeapState::MinorCollecting; } static inline bool RuntimeHeapIsCollecting() { return RuntimeHeapIsCollecting(RuntimeHeapState()); } static inline bool RuntimeHeapIsCycleCollecting() { return RuntimeHeapState() == HeapState::CycleCollecting; } /* * This list enumerates the different types of conceptual stacks we have in * SpiderMonkey. In reality, they all share the C stack, but we allow different * stack limits depending on the type of code running. */ enum StackKind { StackForSystemCode, // C++, such as the GC, running on behalf of the VM. StackForTrustedScript, // Script running with trusted principals. StackForUntrustedScript, // Script running with untrusted principals. StackKindCount }; /* * Default maximum size for the generational nursery in bytes. This is the * initial value. In the browser this configured by the * javascript.options.mem.nursery.max_kb pref. */ const uint32_t DefaultNurseryMaxBytes = 16 * js::gc::ChunkSize; /* Default maximum heap size in bytes to pass to JS_NewContext(). */ const uint32_t DefaultHeapMaxBytes = 32 * 1024 * 1024; /** * A GC pointer, tagged with the trace kind. * * In general, a GC pointer should be stored with an exact type. This class * is for use when that is not possible because a single pointer must point * to several kinds of GC thing. */ class JS_FRIEND_API GCCellPtr { public: GCCellPtr() : GCCellPtr(nullptr) {} // Construction from a void* and trace kind. GCCellPtr(void* gcthing, JS::TraceKind traceKind) : ptr(checkedCast(gcthing, traceKind)) {} // Automatically construct a null GCCellPtr from nullptr. MOZ_IMPLICIT GCCellPtr(decltype(nullptr)) : ptr(checkedCast(nullptr, JS::TraceKind::Null)) {} // Construction from an explicit type. template explicit GCCellPtr(T* p) : ptr(checkedCast(p, JS::MapTypeToTraceKind::kind)) {} explicit GCCellPtr(JSFunction* p) : ptr(checkedCast(p, JS::TraceKind::Object)) {} explicit GCCellPtr(JSScript* p) : ptr(checkedCast(p, JS::TraceKind::Script)) {} explicit GCCellPtr(const Value& v); JS::TraceKind kind() const { JS::TraceKind traceKind = JS::TraceKind(ptr & OutOfLineTraceKindMask); if (uintptr_t(traceKind) != OutOfLineTraceKindMask) { return traceKind; } return outOfLineKind(); } // Allow GCCellPtr to be used in a boolean context. explicit operator bool() const { MOZ_ASSERT(bool(asCell()) == (kind() != JS::TraceKind::Null)); return asCell(); } // Simplify checks to the kind. template >> bool is() const { return kind() == JS::MapTypeToTraceKind::kind; } // Conversions to more specific types must match the kind. Access to // further refined types is not allowed directly from a GCCellPtr. template >> T& as() const { MOZ_ASSERT(kind() == JS::MapTypeToTraceKind::kind); // We can't use static_cast here, because the fact that JSObject // inherits from js::gc::Cell is not part of the public API. return *reinterpret_cast(asCell()); } // Return a pointer to the cell this |GCCellPtr| refers to, or |nullptr|. // (It would be more symmetrical with |to| for this to return a |Cell&|, but // the result can be |nullptr|, and null references are undefined behavior.) js::gc::Cell* asCell() const { return reinterpret_cast(ptr & ~OutOfLineTraceKindMask); } // The CC's trace logger needs an identity that is XPIDL serializable. uint64_t unsafeAsInteger() const { return static_cast(unsafeAsUIntPtr()); } // Inline mark bitmap access requires direct pointer arithmetic. uintptr_t unsafeAsUIntPtr() const { MOZ_ASSERT(asCell()); MOZ_ASSERT(!js::gc::IsInsideNursery(asCell())); return reinterpret_cast(asCell()); } MOZ_ALWAYS_INLINE bool mayBeOwnedByOtherRuntime() const { if (!is() && !is()) { return false; } if (is()) { return JS::shadow::String::isPermanentAtom(asCell()); } MOZ_ASSERT(is()); return JS::shadow::Symbol::isWellKnownSymbol(asCell()); } private: static uintptr_t checkedCast(void* p, JS::TraceKind traceKind) { auto* cell = static_cast(p); MOZ_ASSERT((uintptr_t(p) & OutOfLineTraceKindMask) == 0); AssertGCThingHasType(cell, traceKind); // Note: the OutOfLineTraceKindMask bits are set on all out-of-line kinds // so that we can mask instead of branching. MOZ_ASSERT_IF(uintptr_t(traceKind) >= OutOfLineTraceKindMask, (uintptr_t(traceKind) & OutOfLineTraceKindMask) == OutOfLineTraceKindMask); return uintptr_t(p) | (uintptr_t(traceKind) & OutOfLineTraceKindMask); } JS::TraceKind outOfLineKind() const; uintptr_t ptr; } JS_HAZ_GC_POINTER; // Unwraps the given GCCellPtr, calls the functor |f| with a template argument // of the actual type of the pointer, and returns the result. template auto MapGCThingTyped(GCCellPtr thing, F&& f) { switch (thing.kind()) { #define JS_EXPAND_DEF(name, type, _, _1) \ case JS::TraceKind::name: \ return f(&thing.as()); JS_FOR_EACH_TRACEKIND(JS_EXPAND_DEF); #undef JS_EXPAND_DEF default: MOZ_CRASH("Invalid trace kind in MapGCThingTyped for GCCellPtr."); } } // Unwraps the given GCCellPtr and calls the functor |f| with a template // argument of the actual type of the pointer. Doesn't return anything. template void ApplyGCThingTyped(GCCellPtr thing, F&& f) { // This function doesn't do anything but is supplied for symmetry with other // MapGCThingTyped/ApplyGCThingTyped implementations that have to wrap the // functor to return a dummy value that is ignored. MapGCThingTyped(thing, f); } } /* namespace JS */ // These are defined in the toplevel namespace instead of within JS so that // they won't shadow other operator== overloads (see bug 1456512.) inline bool operator==(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) { return ptr1.asCell() == ptr2.asCell(); } inline bool operator!=(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) { return !(ptr1 == ptr2); } namespace js { namespace gc { /* static */ MOZ_ALWAYS_INLINE void MarkBitmap::getMarkWordAndMask(const TenuredCell* cell, ColorBit colorBit, MarkBitmapWord** wordp, uintptr_t* maskp) { // Note: the JIT pre-barrier trampolines inline this code. Update // MacroAssembler::emitPreBarrierFastPath code too when making changes here! MOZ_ASSERT(size_t(colorBit) < MarkBitsPerCell); size_t offset = uintptr_t(cell) & ChunkMask; const size_t bit = offset / CellBytesPerMarkBit + size_t(colorBit); size_t word = bit / MarkBitmapWordBits - FirstArenaAdjustmentWords; MOZ_ASSERT(word < WordCount); *wordp = &bitmap[word]; *maskp = uintptr_t(1) << (bit % MarkBitmapWordBits); } namespace detail { static MOZ_ALWAYS_INLINE ChunkBase* GetCellChunkBase(const Cell* cell) { MOZ_ASSERT(cell); return reinterpret_cast(uintptr_t(cell) & ~ChunkMask); } static MOZ_ALWAYS_INLINE TenuredChunkBase* GetCellChunkBase( const TenuredCell* cell) { MOZ_ASSERT(cell); return reinterpret_cast(uintptr_t(cell) & ~ChunkMask); } static MOZ_ALWAYS_INLINE JS::Zone* GetTenuredGCThingZone(const uintptr_t addr) { MOZ_ASSERT(addr); const uintptr_t zone_addr = (addr & ~ArenaMask) | ArenaZoneOffset; return *reinterpret_cast(zone_addr); } static MOZ_ALWAYS_INLINE bool TenuredCellIsMarkedGray(const TenuredCell* cell) { // Return true if GrayOrBlackBit is set and BlackBit is not set. MOZ_ASSERT(cell); MOZ_ASSERT(!js::gc::IsInsideNursery(cell)); MarkBitmapWord* grayWord; uintptr_t grayMask; TenuredChunkBase* chunk = GetCellChunkBase(cell); chunk->markBits.getMarkWordAndMask(cell, js::gc::ColorBit::GrayOrBlackBit, &grayWord, &grayMask); if (!(*grayWord & grayMask)) { return false; } MarkBitmapWord* blackWord; uintptr_t blackMask; chunk->markBits.getMarkWordAndMask(cell, js::gc::ColorBit::BlackBit, &blackWord, &blackMask); return !(*blackWord & blackMask); } static MOZ_ALWAYS_INLINE bool CellIsMarkedGray(const Cell* cell) { MOZ_ASSERT(cell); if (js::gc::IsInsideNursery(cell)) { return false; } return TenuredCellIsMarkedGray(reinterpret_cast(cell)); } extern JS_PUBLIC_API bool CellIsMarkedGrayIfKnown(const Cell* cell); #ifdef DEBUG extern JS_PUBLIC_API void AssertCellIsNotGray(const Cell* cell); extern JS_PUBLIC_API bool ObjectIsMarkedBlack(const JSObject* obj); #endif MOZ_ALWAYS_INLINE bool CellHasStoreBuffer(const Cell* cell) { return GetCellChunkBase(cell)->storeBuffer; } } /* namespace detail */ MOZ_ALWAYS_INLINE bool IsInsideNursery(const Cell* cell) { if (!cell) { return false; } return detail::CellHasStoreBuffer(cell); } MOZ_ALWAYS_INLINE bool IsInsideNursery(const TenuredCell* cell) { MOZ_ASSERT_IF( cell, !detail::CellHasStoreBuffer(reinterpret_cast(cell))); return false; } // Allow use before the compiler knows the derivation of JSObject, JSString, and // JS::BigInt. MOZ_ALWAYS_INLINE bool IsInsideNursery(const JSObject* obj) { return IsInsideNursery(reinterpret_cast(obj)); } MOZ_ALWAYS_INLINE bool IsInsideNursery(const JSString* str) { return IsInsideNursery(reinterpret_cast(str)); } MOZ_ALWAYS_INLINE bool IsInsideNursery(const JS::BigInt* bi) { return IsInsideNursery(reinterpret_cast(bi)); } MOZ_ALWAYS_INLINE bool IsCellPointerValid(const void* ptr) { auto addr = uintptr_t(ptr); if (addr < ChunkSize || addr % CellAlignBytes != 0) { return false; } auto* cell = reinterpret_cast(ptr); if (!IsInsideNursery(cell)) { return detail::GetTenuredGCThingZone(addr) != nullptr; } return true; } MOZ_ALWAYS_INLINE bool IsCellPointerValidOrNull(const void* cell) { if (!cell) { return true; } return IsCellPointerValid(cell); } } /* namespace gc */ } /* namespace js */ namespace JS { static MOZ_ALWAYS_INLINE Zone* GetTenuredGCThingZone(GCCellPtr thing) { MOZ_ASSERT(!js::gc::IsInsideNursery(thing.asCell())); return js::gc::detail::GetTenuredGCThingZone(thing.unsafeAsUIntPtr()); } extern JS_PUBLIC_API Zone* GetNurseryCellZone(js::gc::Cell* cell); static MOZ_ALWAYS_INLINE Zone* GetGCThingZone(GCCellPtr thing) { if (!js::gc::IsInsideNursery(thing.asCell())) { return js::gc::detail::GetTenuredGCThingZone(thing.unsafeAsUIntPtr()); } return GetNurseryCellZone(thing.asCell()); } static MOZ_ALWAYS_INLINE Zone* GetStringZone(JSString* str) { if (!js::gc::IsInsideNursery(str)) { return js::gc::detail::GetTenuredGCThingZone( reinterpret_cast(str)); } return GetNurseryCellZone(reinterpret_cast(str)); } extern JS_PUBLIC_API Zone* GetObjectZone(JSObject* obj); static MOZ_ALWAYS_INLINE bool GCThingIsMarkedGray(GCCellPtr thing) { if (thing.mayBeOwnedByOtherRuntime()) { return false; } return js::gc::detail::CellIsMarkedGrayIfKnown(thing.asCell()); } extern JS_PUBLIC_API JS::TraceKind GCThingTraceKind(void* thing); extern JS_PUBLIC_API void EnableNurseryStrings(JSContext* cx); extern JS_PUBLIC_API void DisableNurseryStrings(JSContext* cx); extern JS_PUBLIC_API void EnableNurseryBigInts(JSContext* cx); extern JS_PUBLIC_API void DisableNurseryBigInts(JSContext* cx); /* * Returns true when writes to GC thing pointers (and reads from weak pointers) * must call an incremental barrier. This is generally only true when running * mutator code in-between GC slices. At other times, the barrier may be elided * for performance. */ extern JS_PUBLIC_API bool IsIncrementalBarrierNeeded(JSContext* cx); /* * Notify the GC that a reference to a JSObject is about to be overwritten. * This method must be called if IsIncrementalBarrierNeeded. */ extern JS_PUBLIC_API void IncrementalPreWriteBarrier(JSObject* obj); /* * Notify the GC that a reference to a tenured GC cell is about to be * overwritten. This method must be called if IsIncrementalBarrierNeeded. */ extern JS_PUBLIC_API void IncrementalPreWriteBarrier(GCCellPtr thing); /** * Unsets the gray bit for anything reachable from |thing|. |kind| should not be * JS::TraceKind::Shape. |thing| should be non-null. The return value indicates * if anything was unmarked. */ extern JS_FRIEND_API bool UnmarkGrayGCThingRecursively(GCCellPtr thing); } // namespace JS namespace js { namespace gc { extern JS_PUBLIC_API void PerformIncrementalReadBarrier(JS::GCCellPtr thing); static MOZ_ALWAYS_INLINE void ExposeGCThingToActiveJS(JS::GCCellPtr thing) { // TODO: I'd like to assert !RuntimeHeapIsBusy() here but this gets // called while we are tracing the heap, e.g. during memory reporting // (see bug 1313318). MOZ_ASSERT(!JS::RuntimeHeapIsCollecting()); // GC things residing in the nursery cannot be gray: they have no mark bits. // All live objects in the nursery are moved to tenured at the beginning of // each GC slice, so the gray marker never sees nursery things. if (IsInsideNursery(thing.asCell())) { return; } auto* cell = reinterpret_cast(thing.asCell()); // There's nothing to do for permanent GC things that might be owned by // another runtime. if (thing.mayBeOwnedByOtherRuntime()) { return; } auto* zone = JS::shadow::Zone::from(JS::GetTenuredGCThingZone(thing)); if (zone->needsIncrementalBarrier()) { PerformIncrementalReadBarrier(thing); } else if (!zone->isGCPreparing() && detail::TenuredCellIsMarkedGray(cell)) { MOZ_ALWAYS_TRUE(JS::UnmarkGrayGCThingRecursively(thing)); } MOZ_ASSERT_IF(!zone->isGCPreparing(), !detail::TenuredCellIsMarkedGray(cell)); } template extern JS_PUBLIC_API bool EdgeNeedsSweepUnbarrieredSlow(T* thingp); static MOZ_ALWAYS_INLINE bool EdgeNeedsSweepUnbarriered(JSObject** objp) { // This function does not handle updating nursery pointers. Raw JSObject // pointers should be updated separately or replaced with // JS::Heap which handles this automatically. MOZ_ASSERT(!JS::RuntimeHeapIsMinorCollecting()); if (IsInsideNursery(*objp)) { return false; } auto zone = JS::shadow::Zone::from(detail::GetTenuredGCThingZone(uintptr_t(*objp))); if (!zone->isGCSweepingOrCompacting()) { return false; } return EdgeNeedsSweepUnbarrieredSlow(objp); } } // namespace gc } // namespace js namespace JS { /* * This should be called when an object that is marked gray is exposed to the JS * engine (by handing it to running JS code or writing it into live JS * data). During incremental GC, since the gray bits haven't been computed yet, * we conservatively mark the object black. */ static MOZ_ALWAYS_INLINE void ExposeObjectToActiveJS(JSObject* obj) { MOZ_ASSERT(obj); MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&obj)); js::gc::ExposeGCThingToActiveJS(GCCellPtr(obj)); } } /* namespace JS */ #endif /* js_HeapAPI_h */