/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_Proxy_h #define js_Proxy_h #include "mozilla/Maybe.h" #include "jsfriendapi.h" #include "js/Array.h" // JS::IsArrayAnswer #include "js/CallNonGenericMethod.h" #include "js/Class.h" #include "js/Object.h" // JS::GetClass #include "js/shadow/Object.h" // JS::shadow::Object namespace js { class RegExpShared; class JS_FRIEND_API Wrapper; /* * [SMDOC] Proxy Objects * * A proxy is a JSObject with highly customizable behavior. ES6 specifies a * single kind of proxy, but the customization mechanisms we use to implement * ES6 Proxy objects are also useful wherever an object with weird behavior is * wanted. Proxies are used to implement: * * - the scope objects used by the Debugger's frame.eval() method * (see js::GetDebugEnvironment) * * - the khuey hack, whereby a whole compartment can be blown away * even if other compartments hold references to objects in it * (see js::NukeCrossCompartmentWrappers) * * - XPConnect security wrappers, which protect chrome from malicious content * (js/xpconnect/wrappers) * * - DOM objects with special property behavior, like named getters * (dom/bindings/Codegen.py generates these proxies from WebIDL) * * ### Proxies and internal methods * * ES2019 specifies 13 internal methods. The runtime semantics of just about * everything a script can do to an object is specified in terms of these * internal methods. For example: * * JS code ES6 internal method that gets called * --------------------------- -------------------------------- * obj.prop obj.[[Get]](obj, "prop") * "prop" in obj obj.[[HasProperty]]("prop") * new obj() obj.[[Construct]]() * * With regard to the implementation of these internal methods, there are three * very different kinds of object in SpiderMonkey. * * 1. Native objects cover most objects and contain both internal slots and * properties. JSClassOps and ObjectOps may be used to override certain * default behaviors. * * 2. Proxy objects are composed of internal slots and a ProxyHandler. The * handler contains C++ methods that can implement these standard (and * non-standard) internal methods. JSClassOps and ObjectOps for the base * ProxyObject invoke the handler methods as appropriate. * * 3. Objects with custom layouts like TypedObjects. These rely on JSClassOps * and ObjectOps to implement internal methods. * * Native objects with custom JSClassOps / ObjectOps are used when the object * behaves very similar to a normal object such as the ArrayObject and it's * length property. Most usages wrapping a C++ or other type should prefer * using a Proxy. Using the proxy approach makes it much easier to create an * ECMAScript and JIT compatible object, particularly if using an appropriate * base class. * * Just about anything you do to a proxy will end up going through a C++ * virtual method call. Possibly several. There's no reason the JITs and ICs * can't specialize for particular proxies, based on the handler; but currently * we don't do much of this, so the virtual method overhead typically is * actually incurred. * * ### The proxy handler hierarchy * * A major use case for proxies is to forward each internal method call to * another object, known as its target. The target can be an arbitrary JS * object. Not every proxy has the notion of a target, however. * * To minimize code duplication, a set of abstract proxy handler classes is * provided, from which other handlers may inherit. These abstract classes are * organized in the following hierarchy: * * BaseProxyHandler * | * ForwardingProxyHandler // has a target and forwards internal methods * | * Wrapper // can be unwrapped to reveal target * | // (see js::CheckedUnwrap) * | * CrossCompartmentWrapper // target is in another compartment; * // implements membrane between compartments * * Example: Some DOM objects (including all the arraylike DOM objects) are * implemented as proxies. Since these objects don't need to forward operations * to any underlying JS object, BaseDOMProxyHandler directly subclasses * BaseProxyHandler. * * Gecko's security wrappers are examples of cross-compartment wrappers. * * ### Proxy prototype chains * * While most ECMAScript internal methods are handled by simply calling the * handler method, the [[GetPrototypeOf]] / [[SetPrototypeOf]] behaviors may * follow one of two models: * * 1. A concrete prototype object (or null) is passed to object construction * and ordinary prototype read and write applies. The prototype-related * handler hooks are never called in this case. The [[Prototype]] slot is * used to store the current prototype value. * * 2. TaggedProto::LazyProto is passed to NewProxyObject (or the * ProxyOptions::lazyProto flag is set). Each read or write of the * prototype will invoke the handler. This dynamic prototype behavior may * be useful for wrapper-like objects. If this mode is used the * getPrototype handler at a minimum must be implemented. * * NOTE: In this mode the [[Prototype]] internal slot is unavailable and * must be simulated if needed. This is non-standard, but an * appropriate handler can hide this implementation detail. * * One subtlety here is that ECMAScript has a notion of "ordinary" prototypes. * An object that doesn't override [[GetPrototypeOf]] is considered to have an * ordinary prototype. The getPrototypeIfOrdinary handler must be implemented * by you or your base class. Typically model 1 will be considered "ordinary" * and model 2 will not. */ /* * BaseProxyHandler is the most generic kind of proxy handler. It does not make * any assumptions about the target. Consequently, it does not provide any * default implementation for most methods. As a convenience, a few high-level * methods, like get() and set(), are given default implementations that work by * calling the low-level methods, like getOwnPropertyDescriptor(). * * Important: If you add a method here, you should probably also add a * Proxy::foo entry point with an AutoEnterPolicy. If you don't, you need an * explicit override for the method in SecurityWrapper. See bug 945826 comment * 0. */ class JS_FRIEND_API BaseProxyHandler { /* * Sometimes it's desirable to designate groups of proxy handlers as * "similar". For this, we use the notion of a "family": A consumer-provided * opaque pointer that designates the larger group to which this proxy * belongs. * * If it will never be important to differentiate this proxy from others as * part of a distinct group, nullptr may be used instead. */ const void* mFamily; /* * Proxy handlers can use mHasPrototype to request the following special * treatment from the JS engine: * * - When mHasPrototype is true, the engine never calls these methods: * has, set, enumerate, iterate. Instead, for these operations, * it calls the "own" methods like getOwnPropertyDescriptor, hasOwn, * defineProperty, getOwnEnumerablePropertyKeys, etc., * and consults the prototype chain if needed. * * - When mHasPrototype is true, the engine calls handler->get() only if * handler->hasOwn() says an own property exists on the proxy. If not, * it consults the prototype chain. * * This is useful because it frees the ProxyHandler from having to implement * any behavior having to do with the prototype chain. */ bool mHasPrototype; /* * All proxies indicate whether they have any sort of interesting security * policy that might prevent the caller from doing something it wants to * the object. In the case of wrappers, this distinction is used to * determine whether the caller may strip off the wrapper if it so desires. */ bool mHasSecurityPolicy; public: explicit constexpr BaseProxyHandler(const void* aFamily, bool aHasPrototype = false, bool aHasSecurityPolicy = false) : mFamily(aFamily), mHasPrototype(aHasPrototype), mHasSecurityPolicy(aHasSecurityPolicy) {} bool hasPrototype() const { return mHasPrototype; } bool hasSecurityPolicy() const { return mHasSecurityPolicy; } inline const void* family() const { return mFamily; } static size_t offsetOfFamily() { return offsetof(BaseProxyHandler, mFamily); } virtual bool finalizeInBackground(const JS::Value& priv) const { /* * Called on creation of a proxy to determine whether its finalize * method can be finalized on the background thread. */ return true; } virtual bool canNurseryAllocate() const { /* * Nursery allocation is allowed if and only if it is safe to not * run |finalize| when the ProxyObject dies. */ return false; } /* Policy enforcement methods. * * enter() allows the policy to specify whether the caller may perform |act| * on the proxy's |id| property. In the case when |act| is CALL, |id| is * generally JSID_VOID. The |mayThrow| parameter indicates whether a * handler that wants to throw custom exceptions when denying should do so * or not. * * The |act| parameter to enter() specifies the action being performed. * If |bp| is false, the method suggests that the caller throw (though it * may still decide to squelch the error). * * We make these OR-able so that assertEnteredPolicy can pass a union of them. * For example, get{,Own}PropertyDescriptor is invoked by calls to ::get() * ::set(), in addition to being invoked on its own, so there are several * valid Actions that could have been entered. */ typedef uint32_t Action; enum { NONE = 0x00, GET = 0x01, SET = 0x02, CALL = 0x04, ENUMERATE = 0x08, GET_PROPERTY_DESCRIPTOR = 0x10 }; virtual bool enter(JSContext* cx, JS::HandleObject wrapper, JS::HandleId id, Action act, bool mayThrow, bool* bp) const; /* Standard internal methods. */ virtual bool getOwnPropertyDescriptor( JSContext* cx, JS::HandleObject proxy, JS::HandleId id, JS::MutableHandle desc) const = 0; virtual bool defineProperty(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, JS::Handle desc, JS::ObjectOpResult& result) const = 0; virtual bool ownPropertyKeys(JSContext* cx, JS::HandleObject proxy, JS::MutableHandleIdVector props) const = 0; virtual bool delete_(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, JS::ObjectOpResult& result) const = 0; /* * These methods are standard, but the engine does not normally call them. * They're opt-in. See "Proxy prototype chains" above. * * getPrototype() crashes if called. setPrototype() throws a TypeError. */ virtual bool getPrototype(JSContext* cx, JS::HandleObject proxy, JS::MutableHandleObject protop) const; virtual bool setPrototype(JSContext* cx, JS::HandleObject proxy, JS::HandleObject proto, JS::ObjectOpResult& result) const; /* Non-standard but conceptual kin to {g,s}etPrototype, so these live here. */ virtual bool getPrototypeIfOrdinary(JSContext* cx, JS::HandleObject proxy, bool* isOrdinary, JS::MutableHandleObject protop) const = 0; virtual bool setImmutablePrototype(JSContext* cx, JS::HandleObject proxy, bool* succeeded) const; virtual bool preventExtensions(JSContext* cx, JS::HandleObject proxy, JS::ObjectOpResult& result) const = 0; virtual bool isExtensible(JSContext* cx, JS::HandleObject proxy, bool* extensible) const = 0; /* * These standard internal methods are implemented, as a convenience, so * that ProxyHandler subclasses don't have to provide every single method. * * The base-class implementations work by calling getOwnPropertyDescriptor() * and going up the [[Prototype]] chain if necessary. The algorithm for this * follows what is defined for Ordinary Objects in the ES spec. * They do not follow any standard. When in doubt, override them. */ virtual bool has(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, bool* bp) const; virtual bool get(JSContext* cx, JS::HandleObject proxy, JS::HandleValue receiver, JS::HandleId id, JS::MutableHandleValue vp) const; virtual bool set(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, JS::HandleValue v, JS::HandleValue receiver, JS::ObjectOpResult& result) const; // Use the ProxyExpando object for private fields, rather than taking the // normal get/set/defineField paths. virtual bool useProxyExpandoObjectForPrivateFields() const { return true; } /* * [[Call]] and [[Construct]] are standard internal methods but according * to the spec, they are not present on every object. * * SpiderMonkey never calls a proxy's call()/construct() internal method * unless isCallable()/isConstructor() returns true for that proxy. * * BaseProxyHandler::isCallable()/isConstructor() always return false, and * BaseProxyHandler::call()/construct() crash if called. So if you're * creating a kind of that is never callable, you don't have to override * anything, but otherwise you probably want to override all four. */ virtual bool call(JSContext* cx, JS::HandleObject proxy, const JS::CallArgs& args) const; virtual bool construct(JSContext* cx, JS::HandleObject proxy, const JS::CallArgs& args) const; /* SpiderMonkey extensions. */ virtual bool enumerate(JSContext* cx, JS::HandleObject proxy, JS::MutableHandleIdVector props) const; virtual bool hasOwn(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, bool* bp) const; virtual bool getOwnEnumerablePropertyKeys( JSContext* cx, JS::HandleObject proxy, JS::MutableHandleIdVector props) const; virtual bool nativeCall(JSContext* cx, JS::IsAcceptableThis test, JS::NativeImpl impl, const JS::CallArgs& args) const; virtual bool hasInstance(JSContext* cx, JS::HandleObject proxy, JS::MutableHandleValue v, bool* bp) const; virtual bool getBuiltinClass(JSContext* cx, JS::HandleObject proxy, ESClass* cls) const; virtual bool isArray(JSContext* cx, JS::HandleObject proxy, JS::IsArrayAnswer* answer) const; virtual const char* className(JSContext* cx, JS::HandleObject proxy) const; virtual JSString* fun_toString(JSContext* cx, JS::HandleObject proxy, bool isToSource) const; virtual RegExpShared* regexp_toShared(JSContext* cx, JS::HandleObject proxy) const; virtual bool boxedValue_unbox(JSContext* cx, JS::HandleObject proxy, JS::MutableHandleValue vp) const; virtual void trace(JSTracer* trc, JSObject* proxy) const; virtual void finalize(JSFreeOp* fop, JSObject* proxy) const; virtual size_t objectMoved(JSObject* proxy, JSObject* old) const; // Allow proxies, wrappers in particular, to specify callability at runtime. // Note: These do not take const JSObject*, but they do in spirit. // We are not prepared to do this, as there's little const correctness // in the external APIs that handle proxies. virtual bool isCallable(JSObject* obj) const; virtual bool isConstructor(JSObject* obj) const; virtual bool getElements(JSContext* cx, JS::HandleObject proxy, uint32_t begin, uint32_t end, ElementAdder* adder) const; virtual bool isScripted() const { return false; } }; extern JS_FRIEND_DATA const JSClass ProxyClass; inline bool IsProxy(const JSObject* obj) { return JS::GetClass(obj)->isProxy(); } namespace detail { // Proxy slot layout // ----------------- // // Every proxy has a ProxyValueArray that contains the following Values: // // - The expando slot. This is used to hold private fields should they be // stamped into a non-forwarding proxy type. // - The private slot. // - The reserved slots. The number of slots is determined by the proxy's Class. // // Proxy objects store a pointer to the reserved slots (ProxyReservedSlots*). // The ProxyValueArray and the private slot can be accessed using // ProxyValueArray::fromReservedSlots or ProxyDataLayout::values. // // Storing a pointer to ProxyReservedSlots instead of ProxyValueArray has a // number of advantages. In particular, it means JS::GetReservedSlot and // JS::SetReservedSlot can be used with both proxies and native objects. This // works because the ProxyReservedSlots* pointer is stored where native objects // store their dynamic slots pointer. struct ProxyReservedSlots { JS::Value slots[1]; static inline int offsetOfPrivateSlot(); static inline int offsetOfSlot(size_t slot) { return offsetof(ProxyReservedSlots, slots[0]) + slot * sizeof(JS::Value); } void init(size_t nreserved) { for (size_t i = 0; i < nreserved; i++) { slots[i] = JS::UndefinedValue(); } } ProxyReservedSlots(const ProxyReservedSlots&) = delete; void operator=(const ProxyReservedSlots&) = delete; }; struct ProxyValueArray { JS::Value expandoSlot; JS::Value privateSlot; ProxyReservedSlots reservedSlots; void init(size_t nreserved) { expandoSlot = JS::ObjectOrNullValue(nullptr); privateSlot = JS::UndefinedValue(); reservedSlots.init(nreserved); } static size_t sizeOf(size_t nreserved) { return offsetOfReservedSlots() + nreserved * sizeof(JS::Value); } static MOZ_ALWAYS_INLINE ProxyValueArray* fromReservedSlots( ProxyReservedSlots* slots) { uintptr_t p = reinterpret_cast(slots); return reinterpret_cast(p - offsetOfReservedSlots()); } static size_t offsetOfReservedSlots() { return offsetof(ProxyValueArray, reservedSlots); } ProxyValueArray(const ProxyValueArray&) = delete; void operator=(const ProxyValueArray&) = delete; }; /* static */ inline int ProxyReservedSlots::offsetOfPrivateSlot() { return -int(ProxyValueArray::offsetOfReservedSlots()) + offsetof(ProxyValueArray, privateSlot); } // All proxies share the same data layout. Following the object's shape and // type, the proxy has a ProxyDataLayout structure with a pointer to an array // of values and the proxy's handler. This is designed both so that proxies can // be easily swapped with other objects (via RemapWrapper) and to mimic the // layout of other objects (proxies and other objects have the same size) so // that common code can access either type of object. // // See GetReservedOrProxyPrivateSlot below. struct ProxyDataLayout { ProxyReservedSlots* reservedSlots; const BaseProxyHandler* handler; MOZ_ALWAYS_INLINE ProxyValueArray* values() const { return ProxyValueArray::fromReservedSlots(reservedSlots); } }; const uint32_t ProxyDataOffset = 2 * sizeof(void*); inline ProxyDataLayout* GetProxyDataLayout(JSObject* obj) { MOZ_ASSERT(IsProxy(obj)); return reinterpret_cast(reinterpret_cast(obj) + ProxyDataOffset); } inline const ProxyDataLayout* GetProxyDataLayout(const JSObject* obj) { MOZ_ASSERT(IsProxy(obj)); return reinterpret_cast( reinterpret_cast(obj) + ProxyDataOffset); } JS_FRIEND_API void SetValueInProxy(JS::Value* slot, const JS::Value& value); inline void SetProxyReservedSlotUnchecked(JSObject* obj, size_t n, const JS::Value& extra) { MOZ_ASSERT(n < JSCLASS_RESERVED_SLOTS(JS::GetClass(obj))); JS::Value* vp = &GetProxyDataLayout(obj)->reservedSlots->slots[n]; // Trigger a barrier before writing the slot. if (vp->isGCThing() || extra.isGCThing()) { SetValueInProxy(vp, extra); } else { *vp = extra; } } } // namespace detail inline const BaseProxyHandler* GetProxyHandler(const JSObject* obj) { return detail::GetProxyDataLayout(obj)->handler; } inline const JS::Value& GetProxyPrivate(const JSObject* obj) { return detail::GetProxyDataLayout(obj)->values()->privateSlot; } inline const JS::Value& GetProxyExpando(const JSObject* obj) { return detail::GetProxyDataLayout(obj)->values()->expandoSlot; } inline JSObject* GetProxyTargetObject(JSObject* obj) { return GetProxyPrivate(obj).toObjectOrNull(); } inline const JS::Value& GetProxyReservedSlot(const JSObject* obj, size_t n) { MOZ_ASSERT(n < JSCLASS_RESERVED_SLOTS(JS::GetClass(obj))); return detail::GetProxyDataLayout(obj)->reservedSlots->slots[n]; } inline void SetProxyHandler(JSObject* obj, const BaseProxyHandler* handler) { detail::GetProxyDataLayout(obj)->handler = handler; } inline void SetProxyReservedSlot(JSObject* obj, size_t n, const JS::Value& extra) { #ifdef DEBUG if (gc::detail::ObjectIsMarkedBlack(obj)) { JS::AssertValueIsNotGray(extra); } #endif detail::SetProxyReservedSlotUnchecked(obj, n, extra); } inline void SetProxyPrivate(JSObject* obj, const JS::Value& value) { #ifdef DEBUG if (gc::detail::ObjectIsMarkedBlack(obj)) { JS::AssertValueIsNotGray(value); } #endif JS::Value* vp = &detail::GetProxyDataLayout(obj)->values()->privateSlot; // Trigger a barrier before writing the slot. if (vp->isGCThing() || value.isGCThing()) { detail::SetValueInProxy(vp, value); } else { *vp = value; } } inline bool IsScriptedProxy(const JSObject* obj) { return IsProxy(obj) && GetProxyHandler(obj)->isScripted(); } class MOZ_STACK_CLASS ProxyOptions { protected: /* protected constructor for subclass */ explicit ProxyOptions(bool lazyProtoArg) : lazyProto_(lazyProtoArg), clasp_(&ProxyClass) {} public: ProxyOptions() : ProxyOptions(false) {} bool lazyProto() const { return lazyProto_; } ProxyOptions& setLazyProto(bool flag) { lazyProto_ = flag; return *this; } const JSClass* clasp() const { return clasp_; } ProxyOptions& setClass(const JSClass* claspArg) { clasp_ = claspArg; return *this; } private: bool lazyProto_; const JSClass* clasp_; }; JS_FRIEND_API JSObject* NewProxyObject( JSContext* cx, const BaseProxyHandler* handler, JS::HandleValue priv, JSObject* proto, const ProxyOptions& options = ProxyOptions()); JSObject* RenewProxyObject(JSContext* cx, JSObject* obj, BaseProxyHandler* handler, const JS::Value& priv); class JS_FRIEND_API AutoEnterPolicy { public: typedef BaseProxyHandler::Action Action; AutoEnterPolicy(JSContext* cx, const BaseProxyHandler* handler, JS::HandleObject wrapper, JS::HandleId id, Action act, bool mayThrow) #ifdef JS_DEBUG : context(nullptr) #endif { allow = handler->hasSecurityPolicy() ? handler->enter(cx, wrapper, id, act, mayThrow, &rv) : true; recordEnter(cx, wrapper, id, act); // We want to throw an exception if all of the following are true: // * The policy disallowed access. // * The policy set rv to false, indicating that we should throw. // * The caller did not instruct us to ignore exceptions. // * The policy did not throw itself. if (!allow && !rv && mayThrow) { reportErrorIfExceptionIsNotPending(cx, id); } } virtual ~AutoEnterPolicy() { recordLeave(); } inline bool allowed() { return allow; } inline bool returnValue() { MOZ_ASSERT(!allowed()); return rv; } protected: // no-op constructor for subclass AutoEnterPolicy() #ifdef JS_DEBUG : context(nullptr), enteredAction(BaseProxyHandler::NONE) #endif { } void reportErrorIfExceptionIsNotPending(JSContext* cx, JS::HandleId id); bool allow; bool rv; #ifdef JS_DEBUG JSContext* context; mozilla::Maybe enteredProxy; mozilla::Maybe enteredId; Action enteredAction; // NB: We explicitly don't track the entered action here, because sometimes // set() methods do an implicit get() during their implementation, leading // to spurious assertions. AutoEnterPolicy* prev; void recordEnter(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, Action act); void recordLeave(); friend JS_FRIEND_API void assertEnteredPolicy(JSContext* cx, JSObject* proxy, jsid id, Action act); #else inline void recordEnter(JSContext* cx, JSObject* proxy, jsid id, Action act) { } inline void recordLeave() {} #endif private: // This operator needs to be deleted explicitly, otherwise Visual C++ will // create it automatically when it is part of the export JS API. In that // case, compile would fail because HandleId is not allowed to be assigned // and consequently instantiation of assign operator of mozilla::Maybe // would fail. See bug 1325351 comment 16. Copy constructor is removed at // the same time for consistency. AutoEnterPolicy(const AutoEnterPolicy&) = delete; AutoEnterPolicy& operator=(const AutoEnterPolicy&) = delete; }; #ifdef JS_DEBUG class JS_FRIEND_API AutoWaivePolicy : public AutoEnterPolicy { public: AutoWaivePolicy(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, BaseProxyHandler::Action act) { allow = true; recordEnter(cx, proxy, id, act); } }; #else class JS_FRIEND_API AutoWaivePolicy { public: AutoWaivePolicy(JSContext* cx, JS::HandleObject proxy, JS::HandleId id, BaseProxyHandler::Action act) {} }; #endif #ifdef JS_DEBUG extern JS_FRIEND_API void assertEnteredPolicy(JSContext* cx, JSObject* obj, jsid id, BaseProxyHandler::Action act); #else inline void assertEnteredPolicy(JSContext* cx, JSObject* obj, jsid id, BaseProxyHandler::Action act) {} #endif extern JS_FRIEND_DATA const JSClassOps ProxyClassOps; extern JS_FRIEND_DATA const js::ClassExtension ProxyClassExtension; extern JS_FRIEND_DATA const js::ObjectOps ProxyObjectOps; template constexpr unsigned CheckProxyFlags() { constexpr size_t reservedSlots = (Flags >> JSCLASS_RESERVED_SLOTS_SHIFT) & JSCLASS_RESERVED_SLOTS_MASK; // For now assert each Proxy Class has at least 1 reserved slot. This is // not a hard requirement, but helps catch Classes that need an explicit // JSCLASS_HAS_RESERVED_SLOTS since bug 1360523. static_assert(reservedSlots > 0, "Proxy Classes must have at least 1 reserved slot"); constexpr size_t numSlots = offsetof(js::detail::ProxyValueArray, reservedSlots) / sizeof(JS::Value); // ProxyValueArray must fit inline in the object, so assert the number of // slots does not exceed MAX_FIXED_SLOTS. static_assert(numSlots + reservedSlots <= JS::shadow::Object::MAX_FIXED_SLOTS, "ProxyValueArray size must not exceed max JSObject size"); // Proxies must not have the JSCLASS_SKIP_NURSERY_FINALIZE flag set: they // always have finalizers, and whether they can be nursery allocated is // controlled by the canNurseryAllocate() method on the proxy handler. static_assert(!(Flags & JSCLASS_SKIP_NURSERY_FINALIZE), "Proxies must not use JSCLASS_SKIP_NURSERY_FINALIZE; use " "the canNurseryAllocate() proxy handler method instead."); return Flags; } #define PROXY_CLASS_DEF_WITH_CLASS_SPEC(name, flags, classSpec) \ { \ name, \ JSClass::NON_NATIVE | JSCLASS_IS_PROXY | \ JSCLASS_DELAY_METADATA_BUILDER | js::CheckProxyFlags(), \ &js::ProxyClassOps, classSpec, &js::ProxyClassExtension, \ &js::ProxyObjectOps \ } #define PROXY_CLASS_DEF(name, flags) \ PROXY_CLASS_DEF_WITH_CLASS_SPEC(name, flags, JS_NULL_CLASS_SPEC) // Converts a proxy into a DeadObjectProxy that will throw exceptions on all // access. This will run the proxy's finalizer to perform clean-up before the // conversion happens. JS_FRIEND_API void NukeNonCCWProxy(JSContext* cx, JS::HandleObject proxy); // This is a variant of js::NukeNonCCWProxy() for CCWs. It should only be called // on CCWs that have been removed from CCW tables. JS_FRIEND_API void NukeRemovedCrossCompartmentWrapper(JSContext* cx, JSObject* wrapper); } /* namespace js */ #endif /* js_Proxy_h */