/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_UbiNodeDominatorTree_h #define js_UbiNodeDominatorTree_h #include "mozilla/Attributes.h" #include "mozilla/DebugOnly.h" #include "mozilla/Maybe.h" #include "mozilla/UniquePtr.h" #include #include "js/AllocPolicy.h" #include "js/UbiNode.h" #include "js/UbiNodePostOrder.h" #include "js/Utility.h" #include "js/Vector.h" namespace JS { namespace ubi { /** * In a directed graph with a root node `R`, a node `A` is said to "dominate" a * node `B` iff every path from `R` to `B` contains `A`. A node `A` is said to * be the "immediate dominator" of a node `B` iff it dominates `B`, is not `B` * itself, and does not dominate any other nodes which also dominate `B` in * turn. * * If we take every node from a graph `G` and create a new graph `T` with edges * to each node from its immediate dominator, then `T` is a tree (each node has * only one immediate dominator, or none if it is the root). This tree is called * a "dominator tree". * * This class represents a dominator tree constructed from a `JS::ubi::Node` * heap graph. The domination relationship and dominator trees are useful tools * for analyzing heap graphs because they tell you: * * - Exactly what could be reclaimed by the GC if some node `A` became * unreachable: those nodes which are dominated by `A`, * * - The "retained size" of a node in the heap graph, in contrast to its * "shallow size". The "shallow size" is the space taken by a node itself, * not counting anything it references. The "retained size" of a node is its * shallow size plus the size of all the things that would be collected if * the original node wasn't (directly or indirectly) referencing them. In * other words, the retained size is the shallow size of a node plus the * shallow sizes of every other node it dominates. For example, the root * node in a binary tree might have a small shallow size that does not take * up much space itself, but it dominates the rest of the binary tree and * its retained size is therefore significant (assuming no external * references into the tree). * * The simple, engineered algorithm presented in "A Simple, Fast Dominance * Algorithm" by Cooper el al[0] is used to find dominators and construct the * dominator tree. This algorithm runs in O(n^2) time, but is faster in practice * than alternative algorithms with better theoretical running times, such as * Lengauer-Tarjan which runs in O(e * log(n)). The big caveat to that statement * is that Cooper et al found it is faster in practice *on control flow graphs* * and I'm not convinced that this property also holds on *heap* graphs. That * said, the implementation of this algorithm is *much* simpler than * Lengauer-Tarjan and has been found to be fast enough at least for the time * being. * * [0]: http://www.cs.rice.edu/~keith/EMBED/dom.pdf */ class JS_PUBLIC_API DominatorTree { private: // Types. using PredecessorSets = js::HashMap, js::SystemAllocPolicy>; using NodeToIndexMap = js::HashMap, js::SystemAllocPolicy>; class DominatedSets; public: class DominatedSetRange; /** * A pointer to an immediately dominated node. * * Don't use this type directly; it is no safer than regular pointers. This * is only for use indirectly with range-based for loops and * `DominatedSetRange`. * * @see JS::ubi::DominatorTree::getDominatedSet */ class DominatedNodePtr { friend class DominatedSetRange; const JS::ubi::Vector& postOrder; const uint32_t* ptr; DominatedNodePtr(const JS::ubi::Vector& postOrder, const uint32_t* ptr) : postOrder(postOrder), ptr(ptr) {} public: bool operator!=(const DominatedNodePtr& rhs) const { return ptr != rhs.ptr; } void operator++() { ptr++; } const Node& operator*() const { return postOrder[*ptr]; } }; /** * A range of immediately dominated `JS::ubi::Node`s for use with * range-based for loops. * * @see JS::ubi::DominatorTree::getDominatedSet */ class DominatedSetRange { friend class DominatedSets; const JS::ubi::Vector& postOrder; const uint32_t* beginPtr; const uint32_t* endPtr; DominatedSetRange(JS::ubi::Vector& postOrder, const uint32_t* begin, const uint32_t* end) : postOrder(postOrder), beginPtr(begin), endPtr(end) { MOZ_ASSERT(begin <= end); } public: DominatedNodePtr begin() const { MOZ_ASSERT(beginPtr <= endPtr); return DominatedNodePtr(postOrder, beginPtr); } DominatedNodePtr end() const { return DominatedNodePtr(postOrder, endPtr); } size_t length() const { MOZ_ASSERT(beginPtr <= endPtr); return endPtr - beginPtr; } /** * Safely skip ahead `n` dominators in the range, in O(1) time. * * Example usage: * * mozilla::Maybe range = * myDominatorTree.getDominatedSet(myNode); * if (range.isNothing()) { * // Handle unknown nodes however you see fit... * return false; * } * * // Don't care about the first ten, for whatever reason. * range->skip(10); * for (const JS::ubi::Node& dominatedNode : *range) { * // ... * } */ void skip(size_t n) { beginPtr += n; if (beginPtr > endPtr) { beginPtr = endPtr; } } }; private: /** * The set of all dominated sets in a dominator tree. * * Internally stores the sets in a contiguous array, with a side table of * indices into that contiguous array to denote the start index of each * individual set. */ class DominatedSets { JS::ubi::Vector dominated; JS::ubi::Vector indices; DominatedSets(JS::ubi::Vector&& dominated, JS::ubi::Vector&& indices) : dominated(std::move(dominated)), indices(std::move(indices)) {} public: // DominatedSets is not copy-able. DominatedSets(const DominatedSets& rhs) = delete; DominatedSets& operator=(const DominatedSets& rhs) = delete; // DominatedSets is move-able. DominatedSets(DominatedSets&& rhs) : dominated(std::move(rhs.dominated)), indices(std::move(rhs.indices)) { MOZ_ASSERT(this != &rhs, "self-move not allowed"); } DominatedSets& operator=(DominatedSets&& rhs) { this->~DominatedSets(); new (this) DominatedSets(std::move(rhs)); return *this; } /** * Create the DominatedSets given the mapping of a node index to its * immediate dominator. Returns `Some` on success, `Nothing` on OOM * failure. */ static mozilla::Maybe Create( const JS::ubi::Vector& doms) { auto length = doms.length(); MOZ_ASSERT(length < UINT32_MAX); // Create a vector `dominated` holding a flattened set of buckets of // immediately dominated children nodes, with a lookup table // `indices` mapping from each node to the beginning of its bucket. // // This has three phases: // // 1. Iterate over the full set of nodes and count up the size of // each bucket. These bucket sizes are temporarily stored in the // `indices` vector. // // 2. Convert the `indices` vector to store the cumulative sum of // the sizes of all buckets before each index, resulting in a // mapping from node index to one past the end of that node's // bucket. // // 3. Iterate over the full set of nodes again, filling in bucket // entries from the end of the bucket's range to its // beginning. This decrements each index as a bucket entry is // filled in. After having filled in all of a bucket's entries, // the index points to the start of the bucket. JS::ubi::Vector dominated; JS::ubi::Vector indices; if (!dominated.growBy(length) || !indices.growBy(length)) { return mozilla::Nothing(); } // 1 memset(indices.begin(), 0, length * sizeof(uint32_t)); for (uint32_t i = 0; i < length; i++) { indices[doms[i]]++; } // 2 uint32_t sumOfSizes = 0; for (uint32_t i = 0; i < length; i++) { sumOfSizes += indices[i]; MOZ_ASSERT(sumOfSizes <= length); indices[i] = sumOfSizes; } // 3 for (uint32_t i = 0; i < length; i++) { auto idxOfDom = doms[i]; indices[idxOfDom]--; dominated[indices[idxOfDom]] = i; } #ifdef DEBUG // Assert that our buckets are non-overlapping and don't run off the // end of the vector. uint32_t lastIndex = 0; for (uint32_t i = 0; i < length; i++) { MOZ_ASSERT(indices[i] >= lastIndex); MOZ_ASSERT(indices[i] < length); lastIndex = indices[i]; } #endif return mozilla::Some( DominatedSets(std::move(dominated), std::move(indices))); } /** * Get the set of nodes immediately dominated by the node at * `postOrder[nodeIndex]`. */ DominatedSetRange dominatedSet(JS::ubi::Vector& postOrder, uint32_t nodeIndex) const { MOZ_ASSERT(postOrder.length() == indices.length()); MOZ_ASSERT(nodeIndex < indices.length()); auto end = nodeIndex == indices.length() - 1 ? dominated.end() : &dominated[indices[nodeIndex + 1]]; return DominatedSetRange(postOrder, &dominated[indices[nodeIndex]], end); } }; private: // Data members. JS::ubi::Vector postOrder; NodeToIndexMap nodeToPostOrderIndex; JS::ubi::Vector doms; DominatedSets dominatedSets; mozilla::Maybe> retainedSizes; private: // We use `UNDEFINED` as a sentinel value in the `doms` vector to signal // that we haven't found any dominators for the node at the corresponding // index in `postOrder` yet. static const uint32_t UNDEFINED = UINT32_MAX; DominatorTree(JS::ubi::Vector&& postOrder, NodeToIndexMap&& nodeToPostOrderIndex, JS::ubi::Vector&& doms, DominatedSets&& dominatedSets) : postOrder(std::move(postOrder)), nodeToPostOrderIndex(std::move(nodeToPostOrderIndex)), doms(std::move(doms)), dominatedSets(std::move(dominatedSets)), retainedSizes(mozilla::Nothing()) {} static uint32_t intersect(JS::ubi::Vector& doms, uint32_t finger1, uint32_t finger2) { while (finger1 != finger2) { if (finger1 < finger2) { finger1 = doms[finger1]; } else if (finger2 < finger1) { finger2 = doms[finger2]; } } return finger1; } // Do the post order traversal of the heap graph and populate our // predecessor sets. static MOZ_MUST_USE bool doTraversal(JSContext* cx, AutoCheckCannotGC& noGC, const Node& root, JS::ubi::Vector& postOrder, PredecessorSets& predecessorSets) { uint32_t nodeCount = 0; auto onNode = [&](const Node& node) { nodeCount++; if (MOZ_UNLIKELY(nodeCount == UINT32_MAX)) { return false; } return postOrder.append(node); }; auto onEdge = [&](const Node& origin, const Edge& edge) { auto p = predecessorSets.lookupForAdd(edge.referent); if (!p) { mozilla::UniquePtr> set( js_new()); if (!set || !predecessorSets.add(p, edge.referent, std::move(set))) { return false; } } MOZ_ASSERT(p && p->value()); return p->value()->put(origin); }; PostOrder traversal(cx, noGC); return traversal.addStart(root) && traversal.traverse(onNode, onEdge); } // Populates the given `map` with an entry for each node to its index in // `postOrder`. static MOZ_MUST_USE bool mapNodesToTheirIndices( JS::ubi::Vector& postOrder, NodeToIndexMap& map) { MOZ_ASSERT(map.empty()); MOZ_ASSERT(postOrder.length() < UINT32_MAX); uint32_t length = postOrder.length(); if (!map.reserve(length)) { return false; } for (uint32_t i = 0; i < length; i++) { map.putNewInfallible(postOrder[i], i); } return true; } // Convert the Node -> NodeSet predecessorSets to a index -> Vector // form. static MOZ_MUST_USE bool convertPredecessorSetsToVectors( const Node& root, JS::ubi::Vector& postOrder, PredecessorSets& predecessorSets, NodeToIndexMap& nodeToPostOrderIndex, JS::ubi::Vector>& predecessorVectors) { MOZ_ASSERT(postOrder.length() < UINT32_MAX); uint32_t length = postOrder.length(); MOZ_ASSERT(predecessorVectors.length() == 0); if (!predecessorVectors.growBy(length)) { return false; } for (uint32_t i = 0; i < length - 1; i++) { auto& node = postOrder[i]; MOZ_ASSERT(node != root, "Only the last node should be root, since this was a post " "order traversal."); auto ptr = predecessorSets.lookup(node); MOZ_ASSERT(ptr, "Because this isn't the root, it had better have " "predecessors, or else how " "did we even find it."); auto& predecessors = ptr->value(); if (!predecessorVectors[i].reserve(predecessors->count())) { return false; } for (auto range = predecessors->all(); !range.empty(); range.popFront()) { auto ptr = nodeToPostOrderIndex.lookup(range.front()); MOZ_ASSERT(ptr); predecessorVectors[i].infallibleAppend(ptr->value()); } } predecessorSets.clearAndCompact(); return true; } // Initialize `doms` such that the immediate dominator of the `root` is the // `root` itself and all others are `UNDEFINED`. static MOZ_MUST_USE bool initializeDominators(JS::ubi::Vector& doms, uint32_t length) { MOZ_ASSERT(doms.length() == 0); if (!doms.growByUninitialized(length)) { return false; } doms[length - 1] = length - 1; for (uint32_t i = 0; i < length - 1; i++) { doms[i] = UNDEFINED; } return true; } void assertSanity() const { MOZ_ASSERT(postOrder.length() == doms.length()); MOZ_ASSERT(postOrder.length() == nodeToPostOrderIndex.count()); MOZ_ASSERT_IF(retainedSizes.isSome(), postOrder.length() == retainedSizes->length()); } MOZ_MUST_USE bool computeRetainedSizes(mozilla::MallocSizeOf mallocSizeOf) { MOZ_ASSERT(retainedSizes.isNothing()); auto length = postOrder.length(); retainedSizes.emplace(); if (!retainedSizes->growBy(length)) { retainedSizes = mozilla::Nothing(); return false; } // Iterate in forward order so that we know all of a node's children in // the dominator tree have already had their retained size // computed. Then we can simply say that the retained size of a node is // its shallow size (JS::ubi::Node::size) plus the retained sizes of its // immediate children in the tree. for (uint32_t i = 0; i < length; i++) { auto size = postOrder[i].size(mallocSizeOf); for (const auto& dominated : dominatedSets.dominatedSet(postOrder, i)) { // The root node dominates itself, but shouldn't contribute to // its own retained size. if (dominated == postOrder[length - 1]) { MOZ_ASSERT(i == length - 1); continue; } auto ptr = nodeToPostOrderIndex.lookup(dominated); MOZ_ASSERT(ptr); auto idxOfDominated = ptr->value(); MOZ_ASSERT(idxOfDominated < i); size += retainedSizes.ref()[idxOfDominated]; } retainedSizes.ref()[i] = size; } return true; } public: // DominatorTree is not copy-able. DominatorTree(const DominatorTree&) = delete; DominatorTree& operator=(const DominatorTree&) = delete; // DominatorTree is move-able. DominatorTree(DominatorTree&& rhs) : postOrder(std::move(rhs.postOrder)), nodeToPostOrderIndex(std::move(rhs.nodeToPostOrderIndex)), doms(std::move(rhs.doms)), dominatedSets(std::move(rhs.dominatedSets)), retainedSizes(std::move(rhs.retainedSizes)) { MOZ_ASSERT(this != &rhs, "self-move is not allowed"); } DominatorTree& operator=(DominatorTree&& rhs) { this->~DominatorTree(); new (this) DominatorTree(std::move(rhs)); return *this; } /** * Construct a `DominatorTree` of the heap graph visible from `root`. The * `root` is also used as the root of the resulting dominator tree. * * The resulting `DominatorTree` instance must not outlive the * `JS::ubi::Node` graph it was constructed from. * * - For `JS::ubi::Node` graphs backed by the live heap graph, this means * that the `DominatorTree`'s lifetime _must_ be contained within the * scope of the provided `AutoCheckCannotGC` reference because a GC will * invalidate the nodes. * * - For `JS::ubi::Node` graphs backed by some other offline structure * provided by the embedder, the resulting `DominatorTree`'s lifetime is * bounded by that offline structure's lifetime. * * In practice, this means that within SpiderMonkey we must treat * `DominatorTree` as if it were backed by the live heap graph and trust * that embedders with knowledge of the graph's implementation will do the * Right Thing. * * Returns `mozilla::Nothing()` on OOM failure. It is the caller's * responsibility to handle and report the OOM. */ static mozilla::Maybe Create(JSContext* cx, AutoCheckCannotGC& noGC, const Node& root) { JS::ubi::Vector postOrder; PredecessorSets predecessorSets; if (!doTraversal(cx, noGC, root, postOrder, predecessorSets)) { return mozilla::Nothing(); } MOZ_ASSERT(postOrder.length() < UINT32_MAX); uint32_t length = postOrder.length(); MOZ_ASSERT(postOrder[length - 1] == root); // From here on out we wish to avoid hash table lookups, and we use // indices into `postOrder` instead of actual nodes wherever // possible. This greatly improves the performance of this // implementation, but we have to pay a little bit of upfront cost to // convert our data structures to play along first. NodeToIndexMap nodeToPostOrderIndex(postOrder.length()); if (!mapNodesToTheirIndices(postOrder, nodeToPostOrderIndex)) { return mozilla::Nothing(); } JS::ubi::Vector> predecessorVectors; if (!convertPredecessorSetsToVectors(root, postOrder, predecessorSets, nodeToPostOrderIndex, predecessorVectors)) return mozilla::Nothing(); JS::ubi::Vector doms; if (!initializeDominators(doms, length)) { return mozilla::Nothing(); } bool changed = true; while (changed) { changed = false; // Iterate over the non-root nodes in reverse post order. for (uint32_t indexPlusOne = length - 1; indexPlusOne > 0; indexPlusOne--) { MOZ_ASSERT(postOrder[indexPlusOne - 1] != root); // Take the intersection of every predecessor's dominator set; // that is the current best guess at the immediate dominator for // this node. uint32_t newIDomIdx = UNDEFINED; auto& predecessors = predecessorVectors[indexPlusOne - 1]; auto range = predecessors.all(); for (; !range.empty(); range.popFront()) { auto idx = range.front(); if (doms[idx] != UNDEFINED) { newIDomIdx = idx; break; } } MOZ_ASSERT(newIDomIdx != UNDEFINED, "Because the root is initialized to dominate itself and is " "the first " "node in every path, there must exist a predecessor to this " "node that " "also has a dominator."); for (; !range.empty(); range.popFront()) { auto idx = range.front(); if (doms[idx] != UNDEFINED) { newIDomIdx = intersect(doms, newIDomIdx, idx); } } // If the immediate dominator changed, we will have to do // another pass of the outer while loop to continue the forward // dataflow. if (newIDomIdx != doms[indexPlusOne - 1]) { doms[indexPlusOne - 1] = newIDomIdx; changed = true; } } } auto maybeDominatedSets = DominatedSets::Create(doms); if (maybeDominatedSets.isNothing()) { return mozilla::Nothing(); } return mozilla::Some( DominatorTree(std::move(postOrder), std::move(nodeToPostOrderIndex), std::move(doms), std::move(*maybeDominatedSets))); } /** * Get the root node for this dominator tree. */ const Node& root() const { return postOrder[postOrder.length() - 1]; } /** * Return the immediate dominator of the given `node`. If `node` was not * reachable from the `root` that this dominator tree was constructed from, * then return the null `JS::ubi::Node`. */ Node getImmediateDominator(const Node& node) const { assertSanity(); auto ptr = nodeToPostOrderIndex.lookup(node); if (!ptr) { return Node(); } auto idx = ptr->value(); MOZ_ASSERT(idx < postOrder.length()); return postOrder[doms[idx]]; } /** * Get the set of nodes immediately dominated by the given `node`. If `node` * is not a member of this dominator tree, return `Nothing`. * * Example usage: * * mozilla::Maybe range = * myDominatorTree.getDominatedSet(myNode); * if (range.isNothing()) { * // Handle unknown node however you see fit... * return false; * } * * for (const JS::ubi::Node& dominatedNode : *range) { * // Do something with each immediately dominated node... * } */ mozilla::Maybe getDominatedSet(const Node& node) { assertSanity(); auto ptr = nodeToPostOrderIndex.lookup(node); if (!ptr) { return mozilla::Nothing(); } auto idx = ptr->value(); MOZ_ASSERT(idx < postOrder.length()); return mozilla::Some(dominatedSets.dominatedSet(postOrder, idx)); } /** * Get the retained size of the given `node`. The size is placed in * `outSize`, or 0 if `node` is not a member of the dominator tree. Returns * false on OOM failure, leaving `outSize` unchanged. */ MOZ_MUST_USE bool getRetainedSize(const Node& node, mozilla::MallocSizeOf mallocSizeOf, Node::Size& outSize) { assertSanity(); auto ptr = nodeToPostOrderIndex.lookup(node); if (!ptr) { outSize = 0; return true; } if (retainedSizes.isNothing() && !computeRetainedSizes(mallocSizeOf)) { return false; } auto idx = ptr->value(); MOZ_ASSERT(idx < postOrder.length()); outSize = retainedSizes.ref()[idx]; return true; } }; } // namespace ubi } // namespace JS #endif // js_UbiNodeDominatorTree_h