/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sw=2 et tw=0 ft=c: * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef frontend_ObjLiteral_h #define frontend_ObjLiteral_h #include "mozilla/EndianUtils.h" #include "mozilla/EnumSet.h" #include "mozilla/Span.h" #include "frontend/ParserAtom.h" #include "js/AllocPolicy.h" #include "js/GCPolicyAPI.h" #include "js/Value.h" #include "js/Vector.h" /* * [SMDOC] ObjLiteral (Object Literal) Handling * ============================================ * * The `ObjLiteral*` family of classes defines an infastructure to handle * object literals as they are encountered at parse time and translate them * into objects that are attached to the bytecode. * * The object-literal "instructions", whose opcodes are defined in * `ObjLiteralOpcode` below, each specify one key (atom property name, or * numeric index) and one value. An `ObjLiteralWriter` buffers a linear * sequence of such instructions, along with a side-table of atom references. * The writer stores a compact binary format that is then interpreted by the * `ObjLiteralReader` to construct an object according to the instructions. * * This may seem like an odd dance: create an intermediate data structure that * specifies key/value pairs, then later build the object. Why not just do so * directly, as we parse? In fact, we used to do this. However, for several * good reasons, we want to avoid allocating or touching GC objects at all * *during* the parse. We thus use a sequence of ObjLiteral instructions as an * intermediate data structure to carry object literal contents from parse to * the time at which we *can* allocate objects. * * (The original intent was to allow for ObjLiteral instructions to actually be * invoked by a new JS opcode, JSOp::ObjLiteral, thus replacing the more * general opcode sequences sometimes generated to fill in objects and removing * the need to attach actual objects to JSOp::Object or JSOp::NewObject. * However, this was far too invasive and led to performance regressions, so * currently ObjLiteral only carries literals as far as the end of the parse * pipeline, when all GC things are allocated.) * * ObjLiteral data structures are used to represent object literals whenever * they are "compatible". See * BytecodeEmitter::isPropertyListObjLiteralCompatible for the precise * conditions; in brief, we can represent object literals with "primitive" * (numeric, boolean, string, null/undefined) values, and "normal" * (non-computed) object names. We can also represent arrays with the same * value restrictions. We cannot represent nested objects. We use ObjLiteral in * two different ways: * * - To build a template object, when we can support the properties but not the * keys. * - To build the actual result object, when we support the properties and the * keys and this is a JSOp::Object case (see below). * * Design and Performance Considerations * ------------------------------------- * * As a brief overview, there are a number of opcodes that allocate objects: * * - JSOp::NewInit allocates a new empty `{}` object. * * - JSOp::NewObject, with an object as an argument (held by the script data * side-tables), allocates a new object with `undefined` property values but * with a defined set of properties. The given object is used as a * *template*. * * - JSOp::Object, with an object as argument, instructs the runtime to * literally return the object argument as the result. This is thus only an * "allocation" in the sense that the object was originally allocated when * the script data / bytecode was created. It is only used when we know for * sure that the script, and this program point within the script, will run * *once*. (See the `treatAsRunOnce` flag on JSScript.) * * An operation occurs in a "singleton context", according to the parser, if it * will only ever execute once. In particular, this happens when (i) the script * is a "run-once" script, which is usually the case for e.g. top-level scripts * of web-pages (they run on page load, but no function or handle wraps or * refers to the script so it can't be invoked again), and (ii) the operation * itself is not within a loop or function in that run-once script. * * When we encounter an object literal, we decide which opcode to use, and we * construct the ObjLiteral and the bytecode using its result appropriately: * * - If in a singleton context, and if we support the values, we use * JSOp::Object and we build the ObjLiteral instructions with values. * - Otherwise, if we support the keys but not the values, or if we are not * in a singleton context, we use JSOp::NewObject. In this case, the initial * opcode only creates an object with empty values, so BytecodeEmitter then * generates bytecode to set the values appropriately. * - Otherwise, we generate JSOp::NewInit and bytecode to add properties one at * a time. This will always work, but is the slowest and least * memory-efficient option. */ namespace js { class JSONPrinter; namespace frontend { struct CompilationAtomCache; struct BaseCompilationStencil; class StencilXDR; } // namespace frontend // Object-literal instruction opcodes. An object literal is constructed by a // straight-line sequence of these ops, each adding one property to the // object. enum class ObjLiteralOpcode : uint8_t { INVALID = 0, ConstValue = 1, // numeric types only. ConstAtom = 2, Null = 3, Undefined = 4, True = 5, False = 6, MAX = False, }; // Flags that are associated with a sequence of object-literal instructions. // (These become bitflags by wrapping with EnumSet below.) enum class ObjLiteralFlag : uint8_t { // If set, this object is an array. Array = 1, // If set, this is an object literal in a singleton context and property // values are included. See also JSOp::Object. Singleton = 2, }; using ObjLiteralFlags = mozilla::EnumSet; inline bool ObjLiteralOpcodeHasValueArg(ObjLiteralOpcode op) { return op == ObjLiteralOpcode::ConstValue; } inline bool ObjLiteralOpcodeHasAtomArg(ObjLiteralOpcode op) { return op == ObjLiteralOpcode::ConstAtom; } struct ObjLiteralReaderBase; // Property name (as TaggedParserAtomIndex) or an integer index. Only used for // object-type literals; array literals do not require the index (the sequence // is always dense, with no holes, so the index is implicit). For the latter // case, we have a `None` placeholder. struct ObjLiteralKey { private: uint32_t value_; enum ObjLiteralKeyType { None, AtomIndex, ArrayIndex, }; ObjLiteralKeyType type_; ObjLiteralKey(uint32_t value, ObjLiteralKeyType ty) : value_(value), type_(ty) {} public: ObjLiteralKey() : ObjLiteralKey(0, None) {} ObjLiteralKey(uint32_t value, bool isArrayIndex) : ObjLiteralKey(value, isArrayIndex ? ArrayIndex : AtomIndex) {} ObjLiteralKey(const ObjLiteralKey& other) = default; static ObjLiteralKey fromPropName(frontend::TaggedParserAtomIndex atomIndex) { return ObjLiteralKey(*atomIndex.rawData(), false); } static ObjLiteralKey fromArrayIndex(uint32_t index) { return ObjLiteralKey(index, true); } static ObjLiteralKey none() { return ObjLiteralKey(); } bool isNone() const { return type_ == None; } bool isAtomIndex() const { return type_ == AtomIndex; } bool isArrayIndex() const { return type_ == ArrayIndex; } frontend::TaggedParserAtomIndex getAtomIndex() const { MOZ_ASSERT(isAtomIndex()); return frontend::TaggedParserAtomIndex::fromRaw(value_); } uint32_t getArrayIndex() const { MOZ_ASSERT(isArrayIndex()); return value_; } uint32_t rawIndex() const { return value_; } }; struct ObjLiteralWriterBase { protected: friend struct ObjLiteralReaderBase; // for access to mask and shift. static const uint32_t ATOM_INDEX_MASK = 0x7fffffff; // If set, the atom index field is an array index, not an atom index. static const uint32_t INDEXED_PROP = 0x80000000; public: using CodeVector = Vector; protected: CodeVector code_; public: ObjLiteralWriterBase() = default; uint32_t curOffset() const { return code_.length(); } private: MOZ_MUST_USE bool pushByte(JSContext* cx, uint8_t data) { if (!code_.append(data)) { js::ReportOutOfMemory(cx); return false; } return true; } MOZ_MUST_USE bool prepareBytes(JSContext* cx, size_t len, uint8_t** p) { size_t offset = code_.length(); if (!code_.growByUninitialized(len)) { js::ReportOutOfMemory(cx); return false; } *p = &code_[offset]; return true; } template MOZ_MUST_USE bool pushRawData(JSContext* cx, T data) { uint8_t* p = nullptr; if (!prepareBytes(cx, sizeof(T), &p)) { return false; } mozilla::NativeEndian::copyAndSwapToLittleEndian(reinterpret_cast(p), &data, 1); return true; } public: MOZ_MUST_USE bool pushOpAndName(JSContext* cx, ObjLiteralOpcode op, ObjLiteralKey key) { uint8_t opdata = static_cast(op); uint32_t data = key.rawIndex() | (key.isArrayIndex() ? INDEXED_PROP : 0); return pushByte(cx, opdata) && pushRawData(cx, data); } MOZ_MUST_USE bool pushValueArg(JSContext* cx, const JS::Value& value) { MOZ_ASSERT(value.isNumber() || value.isNullOrUndefined() || value.isBoolean()); uint64_t data = value.asRawBits(); return pushRawData(cx, data); } MOZ_MUST_USE bool pushAtomArg(JSContext* cx, frontend::TaggedParserAtomIndex atomIndex) { return pushRawData(cx, *atomIndex.rawData()); } }; // An object-literal instruction writer. This class, held by the bytecode // emitter, keeps a sequence of object-literal instructions emitted as object // literal expressions are parsed. It allows the user to 'begin' and 'end' // straight-line sequences, returning the offsets for this range of instructions // within the writer. struct ObjLiteralWriter : private ObjLiteralWriterBase { public: ObjLiteralWriter() = default; void clear() { code_.clear(); } using CodeVector = typename ObjLiteralWriterBase::CodeVector; mozilla::Span getCode() const { return code_; } ObjLiteralFlags getFlags() const { return flags_; } void beginObject(ObjLiteralFlags flags) { flags_ = flags; } void setPropName(const frontend::ParserAtom* propName) { // Only valid in object-mode. MOZ_ASSERT(!flags_.contains(ObjLiteralFlag::Array)); propName->markUsedByStencil(); nextKey_ = ObjLiteralKey::fromPropName(propName->toIndex()); } void setPropIndex(uint32_t propIndex) { // Only valid in object-mode. MOZ_ASSERT(!flags_.contains(ObjLiteralFlag::Array)); MOZ_ASSERT(propIndex <= ATOM_INDEX_MASK); nextKey_ = ObjLiteralKey::fromArrayIndex(propIndex); } void beginDenseArrayElements() { // Only valid in array-mode. MOZ_ASSERT(flags_.contains(ObjLiteralFlag::Array)); // Dense array element sequences do not use the keys; the indices are // implicit. nextKey_ = ObjLiteralKey::none(); } MOZ_MUST_USE bool propWithConstNumericValue(JSContext* cx, const JS::Value& value) { MOZ_ASSERT(value.isNumber()); return pushOpAndName(cx, ObjLiteralOpcode::ConstValue, nextKey_) && pushValueArg(cx, value); } MOZ_MUST_USE bool propWithAtomValue(JSContext* cx, const frontend::ParserAtom* value) { value->markUsedByStencil(); return pushOpAndName(cx, ObjLiteralOpcode::ConstAtom, nextKey_) && pushAtomArg(cx, value->toIndex()); } MOZ_MUST_USE bool propWithNullValue(JSContext* cx) { return pushOpAndName(cx, ObjLiteralOpcode::Null, nextKey_); } MOZ_MUST_USE bool propWithUndefinedValue(JSContext* cx) { return pushOpAndName(cx, ObjLiteralOpcode::Undefined, nextKey_); } MOZ_MUST_USE bool propWithTrueValue(JSContext* cx) { return pushOpAndName(cx, ObjLiteralOpcode::True, nextKey_); } MOZ_MUST_USE bool propWithFalseValue(JSContext* cx) { return pushOpAndName(cx, ObjLiteralOpcode::False, nextKey_); } static bool arrayIndexInRange(int32_t i) { return i >= 0 && static_cast(i) <= ATOM_INDEX_MASK; } #if defined(DEBUG) || defined(JS_JITSPEW) void dump(); void dump(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); void dumpFields(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); #endif private: ObjLiteralFlags flags_; ObjLiteralKey nextKey_; }; struct ObjLiteralReaderBase { private: mozilla::Span data_; size_t cursor_; MOZ_MUST_USE bool readByte(uint8_t* b) { if (cursor_ + 1 > data_.Length()) { return false; } *b = *data_.From(cursor_).data(); cursor_ += 1; return true; } MOZ_MUST_USE bool readBytes(size_t size, const uint8_t** p) { if (cursor_ + size > data_.Length()) { return false; } *p = data_.From(cursor_).data(); cursor_ += size; return true; } template MOZ_MUST_USE bool readRawData(T* data) { const uint8_t* p = nullptr; if (!readBytes(sizeof(T), &p)) { return false; } mozilla::NativeEndian::copyAndSwapFromLittleEndian( data, reinterpret_cast(p), 1); return true; } public: explicit ObjLiteralReaderBase(mozilla::Span data) : data_(data), cursor_(0) {} MOZ_MUST_USE bool readOpAndKey(ObjLiteralOpcode* op, ObjLiteralKey* key) { uint8_t opbyte; if (!readByte(&opbyte)) { return false; } if (MOZ_UNLIKELY(opbyte > static_cast(ObjLiteralOpcode::MAX))) { return false; } *op = static_cast(opbyte); uint32_t data; if (!readRawData(&data)) { return false; } bool isArray = data & ObjLiteralWriterBase::INDEXED_PROP; uint32_t rawIndex = data & ~ObjLiteralWriterBase::INDEXED_PROP; *key = ObjLiteralKey(rawIndex, isArray); return true; } MOZ_MUST_USE bool readValueArg(JS::Value* value) { uint64_t data; if (!readRawData(&data)) { return false; } *value = JS::Value::fromRawBits(data); return true; } MOZ_MUST_USE bool readAtomArg(frontend::TaggedParserAtomIndex* atomIndex) { return readRawData(atomIndex->rawData()); } }; // A single object-literal instruction, creating one property on an object. struct ObjLiteralInsn { private: ObjLiteralOpcode op_; ObjLiteralKey key_; union Arg { explicit Arg(uint64_t raw_) : raw(raw_) {} JS::Value constValue; frontend::TaggedParserAtomIndex atomIndex; uint64_t raw; } arg_; public: ObjLiteralInsn() : op_(ObjLiteralOpcode::INVALID), arg_(0) {} ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key) : op_(op), key_(key), arg_(0) { MOZ_ASSERT(!hasConstValue()); MOZ_ASSERT(!hasAtomIndex()); } ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key, const JS::Value& value) : op_(op), key_(key), arg_(0) { MOZ_ASSERT(hasConstValue()); MOZ_ASSERT(!hasAtomIndex()); arg_.constValue = value; } ObjLiteralInsn(ObjLiteralOpcode op, ObjLiteralKey key, frontend::TaggedParserAtomIndex atomIndex) : op_(op), key_(key), arg_(0) { MOZ_ASSERT(!hasConstValue()); MOZ_ASSERT(hasAtomIndex()); arg_.atomIndex = atomIndex; } ObjLiteralInsn(const ObjLiteralInsn& other) : ObjLiteralInsn() { *this = other; } ObjLiteralInsn& operator=(const ObjLiteralInsn& other) { op_ = other.op_; key_ = other.key_; arg_.raw = other.arg_.raw; return *this; } bool isValid() const { return op_ > ObjLiteralOpcode::INVALID && op_ <= ObjLiteralOpcode::MAX; } ObjLiteralOpcode getOp() const { MOZ_ASSERT(isValid()); return op_; } const ObjLiteralKey& getKey() const { MOZ_ASSERT(isValid()); return key_; } bool hasConstValue() const { MOZ_ASSERT(isValid()); return ObjLiteralOpcodeHasValueArg(op_); } bool hasAtomIndex() const { MOZ_ASSERT(isValid()); return ObjLiteralOpcodeHasAtomArg(op_); } JS::Value getConstValue() const { MOZ_ASSERT(isValid()); MOZ_ASSERT(hasConstValue()); return arg_.constValue; } frontend::TaggedParserAtomIndex getAtomIndex() const { MOZ_ASSERT(isValid()); MOZ_ASSERT(hasAtomIndex()); return arg_.atomIndex; }; }; // A reader that parses a sequence of object-literal instructions out of the // encoded form. struct ObjLiteralReader : private ObjLiteralReaderBase { public: explicit ObjLiteralReader(mozilla::Span data) : ObjLiteralReaderBase(data) {} MOZ_MUST_USE bool readInsn(ObjLiteralInsn* insn) { ObjLiteralOpcode op; ObjLiteralKey key; if (!readOpAndKey(&op, &key)) { return false; } if (ObjLiteralOpcodeHasValueArg(op)) { JS::Value value; if (!readValueArg(&value)) { return false; } *insn = ObjLiteralInsn(op, key, value); return true; } if (ObjLiteralOpcodeHasAtomArg(op)) { frontend::TaggedParserAtomIndex atomIndex; if (!readAtomArg(&atomIndex)) { return false; } *insn = ObjLiteralInsn(op, key, atomIndex); return true; } *insn = ObjLiteralInsn(op, key); return true; } }; JSObject* InterpretObjLiteral(JSContext* cx, frontend::CompilationAtomCache& atomCache, const mozilla::Span insns, ObjLiteralFlags flags); class ObjLiteralStencil { friend class frontend::StencilXDR; mozilla::Span code_; ObjLiteralFlags flags_; public: ObjLiteralStencil() = default; ObjLiteralStencil(uint8_t* code, size_t length, const ObjLiteralFlags& flags) : code_(mozilla::Span(code, length)), flags_(flags) {} JSObject* create(JSContext* cx, frontend::CompilationAtomCache& atomCache) const; #if defined(DEBUG) || defined(JS_JITSPEW) void dump(); void dump(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); void dumpFields(JSONPrinter& json, frontend::BaseCompilationStencil* stencil); #endif }; } // namespace js #endif // frontend_ObjLiteral_h