// Copyright 2019 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGEXP_REGEXP_NODES_H_ #define V8_REGEXP_REGEXP_NODES_H_ #include "irregexp/imported/regexp-macro-assembler.h" namespace v8 { namespace internal { class AlternativeGenerationList; class BoyerMooreLookahead; class GreedyLoopState; class Label; class NodeVisitor; class QuickCheckDetails; class RegExpCompiler; class Trace; struct PreloadState; class ChoiceNode; #define FOR_EACH_NODE_TYPE(VISIT) \ VISIT(End) \ VISIT(Action) \ VISIT(Choice) \ VISIT(LoopChoice) \ VISIT(NegativeLookaroundChoice) \ VISIT(BackReference) \ VISIT(Assertion) \ VISIT(Text) struct NodeInfo final { NodeInfo() : being_analyzed(false), been_analyzed(false), follows_word_interest(false), follows_newline_interest(false), follows_start_interest(false), at_end(false), visited(false), replacement_calculated(false) {} // Returns true if the interests and assumptions of this node // matches the given one. bool Matches(NodeInfo* that) { return (at_end == that->at_end) && (follows_word_interest == that->follows_word_interest) && (follows_newline_interest == that->follows_newline_interest) && (follows_start_interest == that->follows_start_interest); } // Updates the interests of this node given the interests of the // node preceding it. void AddFromPreceding(NodeInfo* that) { at_end |= that->at_end; follows_word_interest |= that->follows_word_interest; follows_newline_interest |= that->follows_newline_interest; follows_start_interest |= that->follows_start_interest; } bool HasLookbehind() { return follows_word_interest || follows_newline_interest || follows_start_interest; } // Sets the interests of this node to include the interests of the // following node. void AddFromFollowing(NodeInfo* that) { follows_word_interest |= that->follows_word_interest; follows_newline_interest |= that->follows_newline_interest; follows_start_interest |= that->follows_start_interest; } void ResetCompilationState() { being_analyzed = false; been_analyzed = false; } bool being_analyzed : 1; bool been_analyzed : 1; // These bits are set of this node has to know what the preceding // character was. bool follows_word_interest : 1; bool follows_newline_interest : 1; bool follows_start_interest : 1; bool at_end : 1; bool visited : 1; bool replacement_calculated : 1; }; struct EatsAtLeastInfo final { EatsAtLeastInfo() : EatsAtLeastInfo(0) {} explicit EatsAtLeastInfo(uint8_t eats) : eats_at_least_from_possibly_start(eats), eats_at_least_from_not_start(eats) {} void SetMin(const EatsAtLeastInfo& other) { if (other.eats_at_least_from_possibly_start < eats_at_least_from_possibly_start) { eats_at_least_from_possibly_start = other.eats_at_least_from_possibly_start; } if (other.eats_at_least_from_not_start < eats_at_least_from_not_start) { eats_at_least_from_not_start = other.eats_at_least_from_not_start; } } // Any successful match starting from the current node will consume at least // this many characters. This does not necessarily mean that there is a // possible match with exactly this many characters, but we generally try to // get this number as high as possible to allow for early exit on failure. uint8_t eats_at_least_from_possibly_start; // Like eats_at_least_from_possibly_start, but with the additional assumption // that start-of-string assertions (^) can't match. This value is greater than // or equal to eats_at_least_from_possibly_start. uint8_t eats_at_least_from_not_start; }; class RegExpNode : public ZoneObject { public: explicit RegExpNode(Zone* zone) : replacement_(nullptr), on_work_list_(false), trace_count_(0), zone_(zone) { bm_info_[0] = bm_info_[1] = nullptr; } virtual ~RegExpNode(); virtual void Accept(NodeVisitor* visitor) = 0; // Generates a goto to this node or actually generates the code at this point. virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; // How many characters must this node consume at a minimum in order to // succeed. The not_at_start argument is used to indicate that we know we are // not at the start of the input. In this case anchored branches will always // fail and can be ignored when determining how many characters are consumed // on success. If this node has not been analyzed yet, EatsAtLeast returns 0. int EatsAtLeast(bool not_at_start); // Returns how many characters this node must consume in order to succeed, // given that this is a LoopChoiceNode whose counter register is in a // newly-initialized state at the current position in the generated code. For // example, consider /a{6,8}/. Absent any extra information, the // LoopChoiceNode for the repetition must report that it consumes at least // zero characters, because it may have already looped several times. However, // with a newly-initialized counter, it can report that it consumes at least // six characters. virtual EatsAtLeastInfo EatsAtLeastFromLoopEntry(); // Emits some quick code that checks whether the preloaded characters match. // Falls through on certain failure, jumps to the label on possible success. // If the node cannot make a quick check it does nothing and returns false. bool EmitQuickCheck(RegExpCompiler* compiler, Trace* bounds_check_trace, Trace* trace, bool preload_has_checked_bounds, Label* on_possible_success, QuickCheckDetails* details_return, bool fall_through_on_failure, ChoiceNode* predecessor); // For a given number of characters this returns a mask and a value. The // next n characters are anded with the mask and compared with the value. // A comparison failure indicates the node cannot match the next n characters. // A comparison success indicates the node may match. virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) = 0; // Fills in quick check details for this node, given that this is a // LoopChoiceNode whose counter register is in a newly-initialized state at // the current position in the generated code. For example, consider /a{6,8}/. // Absent any extra information, the LoopChoiceNode for the repetition cannot // generate any useful quick check because a match might be the (empty) // continuation node. However, with a newly-initialized counter, it can // generate a quick check for several 'a' characters at once. virtual void GetQuickCheckDetailsFromLoopEntry(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start); static const int kNodeIsTooComplexForGreedyLoops = kMinInt; virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } // Only returns the successor for a text node of length 1 that matches any // character and that has no guards on it. virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( RegExpCompiler* compiler) { return nullptr; } // Collects information on the possible code units (mod 128) that can match if // we look forward. This is used for a Boyer-Moore-like string searching // implementation. TODO(erikcorry): This should share more code with // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit // the number of nodes we are willing to look at in order to create this data. static const int kRecursionBudget = 200; bool KeepRecursing(RegExpCompiler* compiler); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { UNREACHABLE(); } // If we know that the input is one-byte then there are some nodes that can // never match. This method returns a node that can be substituted for // itself, or nullptr if the node can never match. virtual RegExpNode* FilterOneByte(int depth) { return this; } // Helper for FilterOneByte. RegExpNode* replacement() { DCHECK(info()->replacement_calculated); return replacement_; } RegExpNode* set_replacement(RegExpNode* replacement) { info()->replacement_calculated = true; replacement_ = replacement; return replacement; // For convenience. } // We want to avoid recalculating the lookahead info, so we store it on the // node. Only info that is for this node is stored. We can tell that the // info is for this node when offset == 0, so the information is calculated // relative to this node. void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { if (offset == 0) set_bm_info(not_at_start, bm); } Label* label() { return &label_; } // If non-generic code is generated for a node (i.e. the node is not at the // start of the trace) then it cannot be reused. This variable sets a limit // on how often we allow that to happen before we insist on starting a new // trace and generating generic code for a node that can be reused by flushing // the deferred actions in the current trace and generating a goto. static const int kMaxCopiesCodeGenerated = 10; bool on_work_list() { return on_work_list_; } void set_on_work_list(bool value) { on_work_list_ = value; } NodeInfo* info() { return &info_; } const EatsAtLeastInfo* eats_at_least_info() const { return &eats_at_least_; } void set_eats_at_least_info(const EatsAtLeastInfo& eats_at_least) { eats_at_least_ = eats_at_least; } // TODO(v8:10441): This is a hacky way to avoid exponential code size growth // for very large choice nodes that can be generated by unicode property // escapes. In order to avoid inlining (i.e. trace recursion), we pretend to // have generated the maximum count of code copies already. // We should instead fix this properly, e.g. by using the code size budget // (flush_budget) or by generating property escape matches as calls to a C // function. void SetDoNotInline() { trace_count_ = kMaxCopiesCodeGenerated; } BoyerMooreLookahead* bm_info(bool not_at_start) { return bm_info_[not_at_start ? 1 : 0]; } Zone* zone() const { return zone_; } protected: enum LimitResult { DONE, CONTINUE }; RegExpNode* replacement_; LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { bm_info_[not_at_start ? 1 : 0] = bm; } private: static const int kFirstCharBudget = 10; Label label_; bool on_work_list_; NodeInfo info_; // Saved values for EatsAtLeast results, to avoid recomputation. Filled in // during analysis (valid if info_.been_analyzed is true). EatsAtLeastInfo eats_at_least_; // This variable keeps track of how many times code has been generated for // this node (in different traces). We don't keep track of where the // generated code is located unless the code is generated at the start of // a trace, in which case it is generic and can be reused by flushing the // deferred operations in the current trace and generating a goto. int trace_count_; BoyerMooreLookahead* bm_info_[2]; Zone* zone_; }; class SeqRegExpNode : public RegExpNode { public: explicit SeqRegExpNode(RegExpNode* on_success) : RegExpNode(on_success->zone()), on_success_(on_success) {} RegExpNode* on_success() { return on_success_; } void set_on_success(RegExpNode* node) { on_success_ = node; } RegExpNode* FilterOneByte(int depth) override; void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override { on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); if (offset == 0) set_bm_info(not_at_start, bm); } protected: RegExpNode* FilterSuccessor(int depth); private: RegExpNode* on_success_; }; class ActionNode : public SeqRegExpNode { public: enum ActionType { SET_REGISTER_FOR_LOOP, INCREMENT_REGISTER, STORE_POSITION, BEGIN_SUBMATCH, POSITIVE_SUBMATCH_SUCCESS, EMPTY_MATCH_CHECK, CLEAR_CAPTURES }; static ActionNode* SetRegisterForLoop(int reg, int val, RegExpNode* on_success); static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); static ActionNode* StorePosition(int reg, bool is_capture, RegExpNode* on_success); static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); static ActionNode* BeginSubmatch(int stack_pointer_reg, int position_reg, RegExpNode* on_success); static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, int restore_reg, int clear_capture_count, int clear_capture_from, RegExpNode* on_success); static ActionNode* EmptyMatchCheck(int start_register, int repetition_register, int repetition_limit, RegExpNode* on_success); void Accept(NodeVisitor* visitor) override; void Emit(RegExpCompiler* compiler, Trace* trace) override; void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) override; void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override; ActionType action_type() { return action_type_; } // TODO(erikcorry): We should allow some action nodes in greedy loops. int GreedyLoopTextLength() override { return kNodeIsTooComplexForGreedyLoops; } private: union { struct { int reg; int value; } u_store_register; struct { int reg; } u_increment_register; struct { int reg; bool is_capture; } u_position_register; struct { int stack_pointer_register; int current_position_register; int clear_register_count; int clear_register_from; } u_submatch; struct { int start_register; int repetition_register; int repetition_limit; } u_empty_match_check; struct { int range_from; int range_to; } u_clear_captures; } data_; ActionNode(ActionType action_type, RegExpNode* on_success) : SeqRegExpNode(on_success), action_type_(action_type) {} ActionType action_type_; friend class DotPrinterImpl; }; class TextNode : public SeqRegExpNode { public: TextNode(ZoneList* elms, bool read_backward, RegExpNode* on_success) : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {} TextNode(RegExpCharacterClass* that, bool read_backward, RegExpNode* on_success) : SeqRegExpNode(on_success), elms_(new (zone()) ZoneList(1, zone())), read_backward_(read_backward) { elms_->Add(TextElement::CharClass(that), zone()); } // Create TextNode for a single character class for the given ranges. static TextNode* CreateForCharacterRanges(Zone* zone, ZoneList* ranges, bool read_backward, RegExpNode* on_success, JSRegExp::Flags flags); // Create TextNode for a surrogate pair with a range given for the // lead and the trail surrogate each. static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead, CharacterRange trail, bool read_backward, RegExpNode* on_success, JSRegExp::Flags flags); void Accept(NodeVisitor* visitor) override; void Emit(RegExpCompiler* compiler, Trace* trace) override; void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) override; ZoneList* elements() { return elms_; } bool read_backward() { return read_backward_; } void MakeCaseIndependent(Isolate* isolate, bool is_one_byte); int GreedyLoopTextLength() override; RegExpNode* GetSuccessorOfOmnivorousTextNode( RegExpCompiler* compiler) override; void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override; void CalculateOffsets(); RegExpNode* FilterOneByte(int depth) override; int Length(); private: enum TextEmitPassType { NON_LATIN1_MATCH, // Check for characters that can't match. SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. CASE_CHARACTER_MATCH, // Case-independent single character check. CHARACTER_CLASS_MATCH // Character class. }; static bool SkipPass(TextEmitPassType pass, bool ignore_case); static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; static const int kLastPass = CHARACTER_CLASS_MATCH; void TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass, bool preloaded, Trace* trace, bool first_element_checked, int* checked_up_to); ZoneList* elms_; bool read_backward_; }; class AssertionNode : public SeqRegExpNode { public: enum AssertionType { AT_END, AT_START, AT_BOUNDARY, AT_NON_BOUNDARY, AFTER_NEWLINE }; static AssertionNode* AtEnd(RegExpNode* on_success) { return new (on_success->zone()) AssertionNode(AT_END, on_success); } static AssertionNode* AtStart(RegExpNode* on_success) { return new (on_success->zone()) AssertionNode(AT_START, on_success); } static AssertionNode* AtBoundary(RegExpNode* on_success) { return new (on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); } static AssertionNode* AtNonBoundary(RegExpNode* on_success) { return new (on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); } static AssertionNode* AfterNewline(RegExpNode* on_success) { return new (on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); } void Accept(NodeVisitor* visitor) override; void Emit(RegExpCompiler* compiler, Trace* trace) override; void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) override; void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override; AssertionType assertion_type() { return assertion_type_; } private: void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); enum IfPrevious { kIsNonWord, kIsWord }; void BacktrackIfPrevious(RegExpCompiler* compiler, Trace* trace, IfPrevious backtrack_if_previous); AssertionNode(AssertionType t, RegExpNode* on_success) : SeqRegExpNode(on_success), assertion_type_(t) {} AssertionType assertion_type_; }; class BackReferenceNode : public SeqRegExpNode { public: BackReferenceNode(int start_reg, int end_reg, JSRegExp::Flags flags, bool read_backward, RegExpNode* on_success) : SeqRegExpNode(on_success), start_reg_(start_reg), end_reg_(end_reg), flags_(flags), read_backward_(read_backward) {} void Accept(NodeVisitor* visitor) override; int start_register() { return start_reg_; } int end_register() { return end_reg_; } bool read_backward() { return read_backward_; } void Emit(RegExpCompiler* compiler, Trace* trace) override; void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) override { return; } void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override; private: int start_reg_; int end_reg_; JSRegExp::Flags flags_; bool read_backward_; }; class EndNode : public RegExpNode { public: enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {} void Accept(NodeVisitor* visitor) override; void Emit(RegExpCompiler* compiler, Trace* trace) override; void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) override { // Returning 0 from EatsAtLeast should ensure we never get here. UNREACHABLE(); } void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override { // Returning 0 from EatsAtLeast should ensure we never get here. UNREACHABLE(); } private: Action action_; }; class NegativeSubmatchSuccess : public EndNode { public: NegativeSubmatchSuccess(int stack_pointer_reg, int position_reg, int clear_capture_count, int clear_capture_start, Zone* zone) : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), stack_pointer_register_(stack_pointer_reg), current_position_register_(position_reg), clear_capture_count_(clear_capture_count), clear_capture_start_(clear_capture_start) {} void Emit(RegExpCompiler* compiler, Trace* trace) override; private: int stack_pointer_register_; int current_position_register_; int clear_capture_count_; int clear_capture_start_; }; class Guard : public ZoneObject { public: enum Relation { LT, GEQ }; Guard(int reg, Relation op, int value) : reg_(reg), op_(op), value_(value) {} int reg() { return reg_; } Relation op() { return op_; } int value() { return value_; } private: int reg_; Relation op_; int value_; }; class GuardedAlternative { public: explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(nullptr) {} void AddGuard(Guard* guard, Zone* zone); RegExpNode* node() { return node_; } void set_node(RegExpNode* node) { node_ = node; } ZoneList* guards() { return guards_; } private: RegExpNode* node_; ZoneList* guards_; }; class AlternativeGeneration; class ChoiceNode : public RegExpNode { public: explicit ChoiceNode(int expected_size, Zone* zone) : RegExpNode(zone), alternatives_(new (zone) ZoneList(expected_size, zone)), not_at_start_(false), being_calculated_(false) {} void Accept(NodeVisitor* visitor) override; void AddAlternative(GuardedAlternative node) { alternatives()->Add(node, zone()); } ZoneList* alternatives() { return alternatives_; } void Emit(RegExpCompiler* compiler, Trace* trace) override; void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) override; void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override; bool being_calculated() { return being_calculated_; } bool not_at_start() { return not_at_start_; } void set_not_at_start() { not_at_start_ = true; } void set_being_calculated(bool b) { being_calculated_ = b; } virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { return true; } RegExpNode* FilterOneByte(int depth) override; virtual bool read_backward() { return false; } protected: int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); ZoneList* alternatives_; private: template friend class Analysis; void GenerateGuard(RegExpMacroAssembler* macro_assembler, Guard* guard, Trace* trace); int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); void EmitOutOfLineContinuation(RegExpCompiler* compiler, Trace* trace, GuardedAlternative alternative, AlternativeGeneration* alt_gen, int preload_characters, bool next_expects_preload); void SetUpPreLoad(RegExpCompiler* compiler, Trace* current_trace, PreloadState* preloads); void AssertGuardsMentionRegisters(Trace* trace); int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); Trace* EmitGreedyLoop(RegExpCompiler* compiler, Trace* trace, AlternativeGenerationList* alt_gens, PreloadState* preloads, GreedyLoopState* greedy_loop_state, int text_length); void EmitChoices(RegExpCompiler* compiler, AlternativeGenerationList* alt_gens, int first_choice, Trace* trace, PreloadState* preloads); // If true, this node is never checked at the start of the input. // Allows a new trace to start with at_start() set to false. bool not_at_start_; bool being_calculated_; }; class NegativeLookaroundChoiceNode : public ChoiceNode { public: explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail, GuardedAlternative then_do_this, Zone* zone) : ChoiceNode(2, zone) { AddAlternative(this_must_fail); AddAlternative(then_do_this); } void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) override; void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override { continue_node()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); if (offset == 0) set_bm_info(not_at_start, bm); } static constexpr int kLookaroundIndex = 0; static constexpr int kContinueIndex = 1; RegExpNode* lookaround_node() { return alternatives()->at(kLookaroundIndex).node(); } RegExpNode* continue_node() { return alternatives()->at(kContinueIndex).node(); } // For a negative lookahead we don't emit the quick check for the // alternative that is expected to fail. This is because quick check code // starts by loading enough characters for the alternative that takes fewest // characters, but on a negative lookahead the negative branch did not take // part in that calculation (EatsAtLeast) so the assumptions don't hold. bool try_to_emit_quick_check_for_alternative(bool is_first) override { return !is_first; } void Accept(NodeVisitor* visitor) override; RegExpNode* FilterOneByte(int depth) override; }; class LoopChoiceNode : public ChoiceNode { public: LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, int min_loop_iterations, Zone* zone) : ChoiceNode(2, zone), loop_node_(nullptr), continue_node_(nullptr), body_can_be_zero_length_(body_can_be_zero_length), read_backward_(read_backward), traversed_loop_initialization_node_(false), min_loop_iterations_(min_loop_iterations) {} void AddLoopAlternative(GuardedAlternative alt); void AddContinueAlternative(GuardedAlternative alt); void Emit(RegExpCompiler* compiler, Trace* trace) override; void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) override; void GetQuickCheckDetailsFromLoopEntry(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) override; void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) override; EatsAtLeastInfo EatsAtLeastFromLoopEntry() override; RegExpNode* loop_node() { return loop_node_; } RegExpNode* continue_node() { return continue_node_; } bool body_can_be_zero_length() { return body_can_be_zero_length_; } int min_loop_iterations() const { return min_loop_iterations_; } bool read_backward() override { return read_backward_; } void Accept(NodeVisitor* visitor) override; RegExpNode* FilterOneByte(int depth) override; private: // AddAlternative is made private for loop nodes because alternatives // should not be added freely, we need to keep track of which node // goes back to the node itself. void AddAlternative(GuardedAlternative node) { ChoiceNode::AddAlternative(node); } RegExpNode* loop_node_; RegExpNode* continue_node_; bool body_can_be_zero_length_; bool read_backward_; // Temporary marker set only while generating quick check details. Represents // whether GetQuickCheckDetails traversed the initialization node for this // loop's counter. If so, we may be able to generate stricter quick checks // because we know the loop node must match at least min_loop_iterations_ // times before the continuation node can match. bool traversed_loop_initialization_node_; // The minimum number of times the loop_node_ must match before the // continue_node_ might be considered. This value can be temporarily decreased // while generating quick check details, to represent the remaining iterations // after the completed portion of the quick check details. int min_loop_iterations_; friend class IterationDecrementer; friend class LoopInitializationMarker; }; class NodeVisitor { public: virtual ~NodeVisitor() = default; #define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that) = 0; FOR_EACH_NODE_TYPE(DECLARE_VISIT) #undef DECLARE_VISIT }; } // namespace internal } // namespace v8 #endif // V8_REGEXP_REGEXP_NODES_H_