/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_arm_MacroAssembler_arm_h
#define jit_arm_MacroAssembler_arm_h

#include "mozilla/DebugOnly.h"

#include "jit/arm/Assembler-arm.h"
#include "jit/MoveResolver.h"
#include "vm/BigIntType.h"
#include "vm/BytecodeUtil.h"
#include "wasm/WasmTypes.h"

namespace js {
namespace jit {

static Register CallReg = ip;
static const int defaultShift = 3;
static_assert(1 << defaultShift == sizeof(JS::Value));

// See documentation for ScratchTagScope and ScratchTagScopeRelease in
// MacroAssembler-x64.h.

class ScratchTagScope {
  const ValueOperand& v_;

 public:
  ScratchTagScope(MacroAssembler&, const ValueOperand& v) : v_(v) {}
  operator Register() { return v_.typeReg(); }
  void release() {}
  void reacquire() {}
};

class ScratchTagScopeRelease {
 public:
  explicit ScratchTagScopeRelease(ScratchTagScope*) {}
};

// MacroAssemblerARM is inheriting form Assembler defined in
// Assembler-arm.{h,cpp}
class MacroAssemblerARM : public Assembler {
 private:
  // Perform a downcast. Should be removed by Bug 996602.
  MacroAssembler& asMasm();
  const MacroAssembler& asMasm() const;

 protected:
  // On ARM, some instructions require a second scratch register. This
  // register defaults to lr, since it's non-allocatable (as it can be
  // clobbered by some instructions). Allow the baseline compiler to override
  // this though, since baseline IC stubs rely on lr holding the return
  // address.
  Register secondScratchReg_;

 public:
  Register getSecondScratchReg() const { return secondScratchReg_; }

 public:
  // Higher level tag testing code.
  // TODO: Can probably remove the Operand versions.
  Operand ToPayload(Operand base) const {
    return Operand(Register::FromCode(base.base()), base.disp());
  }
  Address ToPayload(const Address& base) const { return base; }

 protected:
  Operand ToType(Operand base) const {
    return Operand(Register::FromCode(base.base()),
                   base.disp() + sizeof(void*));
  }
  Address ToType(const Address& base) const {
    return ToType(Operand(base)).toAddress();
  }

  Address ToPayloadAfterStackPush(const Address& base) const {
    // If we are based on StackPointer, pass over the type tag just pushed.
    if (base.base == StackPointer) {
      return Address(base.base, base.offset + sizeof(void*));
    }
    return ToPayload(base);
  }

 public:
  MacroAssemblerARM() : secondScratchReg_(lr) {}

  void setSecondScratchReg(Register reg) {
    MOZ_ASSERT(reg != ScratchRegister);
    secondScratchReg_ = reg;
  }

  void convertBoolToInt32(Register source, Register dest);
  void convertInt32ToDouble(Register src, FloatRegister dest);
  void convertInt32ToDouble(const Address& src, FloatRegister dest);
  void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest);
  void convertUInt32ToFloat32(Register src, FloatRegister dest);
  void convertUInt32ToDouble(Register src, FloatRegister dest);
  void convertDoubleToFloat32(FloatRegister src, FloatRegister dest,
                              Condition c = Always);
  void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail,
                            bool negativeZeroCheck = true);
  void convertDoubleToPtr(FloatRegister src, Register dest, Label* fail,
                          bool negativeZeroCheck = true) {
    convertDoubleToInt32(src, dest, fail, negativeZeroCheck);
  }
  void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail,
                             bool negativeZeroCheck = true);

  void convertFloat32ToDouble(FloatRegister src, FloatRegister dest);
  void convertInt32ToFloat32(Register src, FloatRegister dest);
  void convertInt32ToFloat32(const Address& src, FloatRegister dest);

  void wasmTruncateToInt32(FloatRegister input, Register output,
                           MIRType fromType, bool isUnsigned, bool isSaturating,
                           Label* oolEntry);
  void outOfLineWasmTruncateToIntCheck(FloatRegister input, MIRType fromType,
                                       MIRType toType, TruncFlags flags,
                                       Label* rejoin,
                                       wasm::BytecodeOffset trapOffset);

  // Somewhat direct wrappers for the low-level assembler funcitons
  // bitops. Attempt to encode a virtual alu instruction using two real
  // instructions.
 private:
  bool alu_dbl(Register src1, Imm32 imm, Register dest, ALUOp op, SBit s,
               Condition c);

 public:
  void ma_alu(Register src1, Imm32 imm, Register dest,
              AutoRegisterScope& scratch, ALUOp op, SBit s = LeaveCC,
              Condition c = Always);
  void ma_alu(Register src1, Operand2 op2, Register dest, ALUOp op,
              SBit s = LeaveCC, Condition c = Always);
  void ma_alu(Register src1, Operand op2, Register dest, ALUOp op,
              SBit s = LeaveCC, Condition c = Always);
  void ma_nop();

  BufferOffset ma_movPatchable(Imm32 imm, Register dest,
                               Assembler::Condition c);
  BufferOffset ma_movPatchable(ImmPtr imm, Register dest,
                               Assembler::Condition c);

  // To be used with Iter := InstructionIterator or BufferInstructionIterator.
  template <class Iter>
  static void ma_mov_patch(Imm32 imm, Register dest, Assembler::Condition c,
                           RelocStyle rs, Iter iter);

  // ALU based ops
  // mov
  void ma_mov(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_mov(Imm32 imm, Register dest, Condition c = Always);
  void ma_mov(ImmWord imm, Register dest, Condition c = Always);

  void ma_mov(ImmGCPtr ptr, Register dest);

  // Shifts (just a move with a shifting op2)
  void ma_lsl(Imm32 shift, Register src, Register dst);
  void ma_lsr(Imm32 shift, Register src, Register dst);
  void ma_asr(Imm32 shift, Register src, Register dst);
  void ma_ror(Imm32 shift, Register src, Register dst);
  void ma_rol(Imm32 shift, Register src, Register dst);

  void ma_lsl(Register shift, Register src, Register dst);
  void ma_lsr(Register shift, Register src, Register dst);
  void ma_asr(Register shift, Register src, Register dst);
  void ma_ror(Register shift, Register src, Register dst);
  void ma_rol(Register shift, Register src, Register dst,
              AutoRegisterScope& scratch);

  // Move not (dest <- ~src)
  void ma_mvn(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Negate (dest <- -src) implemented as rsb dest, src, 0
  void ma_neg(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // And
  void ma_and(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_and(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_and(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  void ma_and(Imm32 imm, Register src1, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2)
  void ma_bic(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  // Exclusive or
  void ma_eor(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_eor(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_eor(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  void ma_eor(Imm32 imm, Register src1, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Or
  void ma_orr(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_orr(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_orr(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  void ma_orr(Imm32 imm, Register src1, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Arithmetic based ops.
  // Add with carry:
  void ma_adc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_adc(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_adc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Add:
  void ma_add(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_add(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_add(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_add(Register src1, Operand op, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_add(Register src1, Imm32 op, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Subtract with carry:
  void ma_sbc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_sbc(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sbc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Subtract:
  void ma_sub(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_sub(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sub(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sub(Register src1, Operand op, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sub(Register src1, Imm32 op, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Reverse subtract:
  void ma_rsb(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_rsb(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_rsb(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_rsb(Register src1, Imm32 op2, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Reverse subtract with carry:
  void ma_rsc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_rsc(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_rsc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Compares/tests.
  // Compare negative (sets condition codes as src1 + src2 would):
  void ma_cmn(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmn(Register src1, Register src2, Condition c = Always);
  void ma_cmn(Register src1, Operand op, Condition c = Always);

  // Compare (src - src2):
  void ma_cmp(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmp(Register src1, ImmTag tag, Condition c = Always);
  void ma_cmp(Register src1, ImmWord ptr, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmp(Register src1, ImmGCPtr ptr, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmp(Register src1, Operand op, AutoRegisterScope& scratch,
              AutoRegisterScope& scratch2, Condition c = Always);
  void ma_cmp(Register src1, Register src2, Condition c = Always);

  // Test for equality, (src1 ^ src2):
  void ma_teq(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_teq(Register src1, Register src2, Condition c = Always);
  void ma_teq(Register src1, Operand op, Condition c = Always);

  // Test (src1 & src2):
  void ma_tst(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_tst(Register src1, Register src2, Condition c = Always);
  void ma_tst(Register src1, Operand op, Condition c = Always);

  // Multiplies. For now, there are only two that we care about.
  void ma_mul(Register src1, Register src2, Register dest);
  void ma_mul(Register src1, Imm32 imm, Register dest,
              AutoRegisterScope& scratch);
  Condition ma_check_mul(Register src1, Register src2, Register dest,
                         AutoRegisterScope& scratch, Condition cond);
  Condition ma_check_mul(Register src1, Imm32 imm, Register dest,
                         AutoRegisterScope& scratch, Condition cond);

  void ma_umull(Register src1, Imm32 imm, Register destHigh, Register destLow,
                AutoRegisterScope& scratch);
  void ma_umull(Register src1, Register src2, Register destHigh,
                Register destLow);

  // Fast mod, uses scratch registers, and thus needs to be in the assembler
  // implicitly assumes that we can overwrite dest at the beginning of the
  // sequence.
  void ma_mod_mask(Register src, Register dest, Register hold, Register tmp,
                   AutoRegisterScope& scratch, AutoRegisterScope& scratch2,
                   int32_t shift);

  // Mod - depends on integer divide instructions being supported.
  void ma_smod(Register num, Register div, Register dest,
               AutoRegisterScope& scratch);
  void ma_umod(Register num, Register div, Register dest,
               AutoRegisterScope& scratch);

  // Division - depends on integer divide instructions being supported.
  void ma_sdiv(Register num, Register div, Register dest,
               Condition cond = Always);
  void ma_udiv(Register num, Register div, Register dest,
               Condition cond = Always);
  // Misc operations
  void ma_clz(Register src, Register dest, Condition cond = Always);
  void ma_ctz(Register src, Register dest, AutoRegisterScope& scratch);
  // Memory:
  // Shortcut for when we know we're transferring 32 bits of data.
  void ma_dtr(LoadStore ls, Register rn, Imm32 offset, Register rt,
              AutoRegisterScope& scratch, Index mode = Offset,
              Condition cc = Always);
  void ma_dtr(LoadStore ls, Register rt, const Address& addr,
              AutoRegisterScope& scratch, Index mode, Condition cc);

  void ma_str(Register rt, DTRAddr addr, Index mode = Offset,
              Condition cc = Always);
  void ma_str(Register rt, const Address& addr, AutoRegisterScope& scratch,
              Index mode = Offset, Condition cc = Always);

  void ma_ldr(DTRAddr addr, Register rt, Index mode = Offset,
              Condition cc = Always);
  void ma_ldr(const Address& addr, Register rt, AutoRegisterScope& scratch,
              Index mode = Offset, Condition cc = Always);

  void ma_ldrb(DTRAddr addr, Register rt, Index mode = Offset,
               Condition cc = Always);
  void ma_ldrh(EDtrAddr addr, Register rt, Index mode = Offset,
               Condition cc = Always);
  void ma_ldrsh(EDtrAddr addr, Register rt, Index mode = Offset,
                Condition cc = Always);
  void ma_ldrsb(EDtrAddr addr, Register rt, Index mode = Offset,
                Condition cc = Always);
  void ma_ldrd(EDtrAddr addr, Register rt, mozilla::DebugOnly<Register> rt2,
               Index mode = Offset, Condition cc = Always);
  void ma_strb(Register rt, DTRAddr addr, Index mode = Offset,
               Condition cc = Always);
  void ma_strh(Register rt, EDtrAddr addr, Index mode = Offset,
               Condition cc = Always);
  void ma_strd(Register rt, mozilla::DebugOnly<Register> rt2, EDtrAddr addr,
               Index mode = Offset, Condition cc = Always);

  // Specialty for moving N bits of data, where n == 8,16,32,64.
  BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
                                Register rn, Register rm, Register rt,
                                AutoRegisterScope& scratch, Index mode = Offset,
                                Condition cc = Always, Scale scale = TimesOne);

  BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
                                Register rn, Register rm, Register rt,
                                Index mode = Offset, Condition cc = Always);

  BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
                                Register rn, Imm32 offset, Register rt,
                                AutoRegisterScope& scratch, Index mode = Offset,
                                Condition cc = Always);

  void ma_pop(Register r);
  void ma_popn_pc(Imm32 n, AutoRegisterScope& scratch,
                  AutoRegisterScope& scratch2);
  void ma_push(Register r);
  void ma_push_sp(Register r, AutoRegisterScope& scratch);

  void ma_vpop(VFPRegister r);
  void ma_vpush(VFPRegister r);

  // Barriers.
  void ma_dmb(BarrierOption option = BarrierSY);
  void ma_dsb(BarrierOption option = BarrierSY);

  // Branches when done from within arm-specific code.
  BufferOffset ma_b(Label* dest, Condition c = Always);
  void ma_b(void* target, Condition c = Always);
  void ma_bx(Register dest, Condition c = Always);

  // This is almost NEVER necessary, we'll basically never be calling a label
  // except, possibly in the crazy bailout-table case.
  void ma_bl(Label* dest, Condition c = Always);

  void ma_blx(Register dest, Condition c = Always);

  // VFP/ALU:
  void ma_vadd(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vsub(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vmul(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vdiv(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vneg(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vmov(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vmov_f32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always);
  void ma_vabs(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vabs_f32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always);

  void ma_vsqrt(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vsqrt_f32(FloatRegister src, FloatRegister dest,
                    Condition cc = Always);

  void ma_vimm(double value, FloatRegister dest, Condition cc = Always);
  void ma_vimm_f32(float value, FloatRegister dest, Condition cc = Always);

  void ma_vcmp(FloatRegister src1, FloatRegister src2, Condition cc = Always);
  void ma_vcmp_f32(FloatRegister src1, FloatRegister src2,
                   Condition cc = Always);
  void ma_vcmpz(FloatRegister src1, Condition cc = Always);
  void ma_vcmpz_f32(FloatRegister src1, Condition cc = Always);

  void ma_vadd_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vsub_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vmul_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vdiv_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vneg_f32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always);

  // Source is F64, dest is I32:
  void ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Source is I32, dest is F64:
  void ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Source is F32, dest is I32:
  void ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Source is I32, dest is F32:
  void ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Transfer (do not coerce) a float into a gpr.
  void ma_vxfer(VFPRegister src, Register dest, Condition cc = Always);
  // Transfer (do not coerce) a double into a couple of gpr.
  void ma_vxfer(VFPRegister src, Register dest1, Register dest2,
                Condition cc = Always);

  // Transfer (do not coerce) a gpr into a float
  void ma_vxfer(Register src, FloatRegister dest, Condition cc = Always);
  // Transfer (do not coerce) a couple of gpr into a double
  void ma_vxfer(Register src1, Register src2, FloatRegister dest,
                Condition cc = Always);

  BufferOffset ma_vdtr(LoadStore ls, const Address& addr, VFPRegister dest,
                       AutoRegisterScope& scratch, Condition cc = Always);

  BufferOffset ma_vldr(VFPAddr addr, VFPRegister dest, Condition cc = Always);
  BufferOffset ma_vldr(const Address& addr, VFPRegister dest,
                       AutoRegisterScope& scratch, Condition cc = Always);
  BufferOffset ma_vldr(VFPRegister src, Register base, Register index,
                       AutoRegisterScope& scratch, int32_t shift = defaultShift,
                       Condition cc = Always);

  BufferOffset ma_vstr(VFPRegister src, VFPAddr addr, Condition cc = Always);
  BufferOffset ma_vstr(VFPRegister src, const Address& addr,
                       AutoRegisterScope& scratch, Condition cc = Always);
  BufferOffset ma_vstr(VFPRegister src, Register base, Register index,
                       AutoRegisterScope& scratch, AutoRegisterScope& scratch2,
                       int32_t shift, int32_t offset, Condition cc = Always);
  BufferOffset ma_vstr(VFPRegister src, Register base, Register index,
                       AutoRegisterScope& scratch, int32_t shift,
                       Condition cc = Always);

  void ma_call(ImmPtr dest);

  // Float registers can only be loaded/stored in continuous runs when using
  // vstm/vldm. This function breaks set into continuous runs and loads/stores
  // them at [rm]. rm will be modified and left in a state logically suitable
  // for the next load/store. Returns the offset from [dm] for the logical
  // next load/store.
  int32_t transferMultipleByRuns(FloatRegisterSet set, LoadStore ls,
                                 Register rm, DTMMode mode) {
    if (mode == IA) {
      return transferMultipleByRunsImpl<FloatRegisterForwardIterator>(
          set, ls, rm, mode, 1);
    }
    if (mode == DB) {
      return transferMultipleByRunsImpl<FloatRegisterBackwardIterator>(
          set, ls, rm, mode, -1);
    }
    MOZ_CRASH("Invalid data transfer addressing mode");
  }

  // `outAny` is valid if and only if `out64` == Register64::Invalid().
  void wasmLoadImpl(const wasm::MemoryAccessDesc& access, Register memoryBase,
                    Register ptr, Register ptrScratch, AnyRegister outAny,
                    Register64 out64);

  // `valAny` is valid if and only if `val64` == Register64::Invalid().
  void wasmStoreImpl(const wasm::MemoryAccessDesc& access, AnyRegister valAny,
                     Register64 val64, Register memoryBase, Register ptr,
                     Register ptrScratch);

 protected:
  // `outAny` is valid if and only if `out64` == Register64::Invalid().
  void wasmUnalignedLoadImpl(const wasm::MemoryAccessDesc& access,
                             Register memoryBase, Register ptr,
                             Register ptrScratch, AnyRegister outAny,
                             Register64 out64, Register tmp1, Register tmp2,
                             Register tmp3);

  // The value to be stored is in `floatValue` (if not invalid), `val64` (if not
  // invalid), or in `valOrTmp` (if `floatValue` and `val64` are both invalid).
  // Note `valOrTmp` must always be valid.
  void wasmUnalignedStoreImpl(const wasm::MemoryAccessDesc& access,
                              FloatRegister floatValue, Register64 val64,
                              Register memoryBase, Register ptr,
                              Register ptrScratch, Register valOrTmp);

 private:
  // Loads `byteSize` bytes, byte by byte, by reading from ptr[offset],
  // applying the indicated signedness (defined by isSigned).
  // - all three registers must be different.
  // - tmp and dest will get clobbered, ptr will remain intact.
  // - byteSize can be up to 4 bytes and no more (GPR are 32 bits on ARM).
  // - offset can be 0 or 4
  // If `access` is not null then emit the appropriate access metadata.
  void emitUnalignedLoad(const wasm::MemoryAccessDesc* access, bool isSigned,
                         unsigned byteSize, Register ptr, Register tmp,
                         Register dest, unsigned offset = 0);

  // Ditto, for a store. Note stores don't care about signedness.
  // - the two registers must be different.
  // - val will get clobbered, ptr will remain intact.
  // - byteSize can be up to 4 bytes and no more (GPR are 32 bits on ARM).
  // - offset can be 0 or 4
  // If `access` is not null then emit the appropriate access metadata.
  void emitUnalignedStore(const wasm::MemoryAccessDesc* access,
                          unsigned byteSize, Register ptr, Register val,
                          unsigned offset = 0);

  // Implementation for transferMultipleByRuns so we can use different
  // iterators for forward/backward traversals. The sign argument should be 1
  // if we traverse forwards, -1 if we traverse backwards.
  template <typename RegisterIterator>
  int32_t transferMultipleByRunsImpl(FloatRegisterSet set, LoadStore ls,
                                     Register rm, DTMMode mode, int32_t sign) {
    MOZ_ASSERT(sign == 1 || sign == -1);

    int32_t delta = sign * sizeof(float);
    int32_t offset = 0;
    // Build up a new set, which is the sum of all of the single and double
    // registers. This set can have up to 48 registers in it total
    // s0-s31 and d16-d31
    FloatRegisterSet mod = set.reduceSetForPush();

    RegisterIterator iter(mod);
    while (iter.more()) {
      startFloatTransferM(ls, rm, mode, WriteBack);
      int32_t reg = (*iter).code();
      do {
        offset += delta;
        if ((*iter).isDouble()) {
          offset += delta;
        }
        transferFloatReg(*iter);
      } while ((++iter).more() && int32_t((*iter).code()) == (reg += sign));
      finishFloatTransfer();
    }
    return offset;
  }
};

class MacroAssembler;

class MacroAssemblerARMCompat : public MacroAssemblerARM {
 private:
  // Perform a downcast. Should be removed by Bug 996602.
  MacroAssembler& asMasm();
  const MacroAssembler& asMasm() const;

 public:
  MacroAssemblerARMCompat() {}

 public:
  // Jumps + other functions that should be called from non-arm specific
  // code. Basically, an x86 front end on top of the ARM code.
  void j(Condition code, Label* dest) { as_b(dest, code); }
  void j(Label* dest) { as_b(dest, Always); }

  void mov(Register src, Register dest) { ma_mov(src, dest); }
  void mov(ImmWord imm, Register dest) { ma_mov(Imm32(imm.value), dest); }
  void mov(ImmPtr imm, Register dest) {
    mov(ImmWord(uintptr_t(imm.value)), dest);
  }

  void branch(JitCode* c) {
    BufferOffset bo = m_buffer.nextOffset();
    addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE);
    ScratchRegisterScope scratch(asMasm());
    ma_movPatchable(ImmPtr(c->raw()), scratch, Always);
    ma_bx(scratch);
  }
  void branch(const Register reg) { ma_bx(reg); }
  void nop() { ma_nop(); }
  void shortJumpSizedNop() { ma_nop(); }
  void ret() { ma_pop(pc); }
  void retn(Imm32 n) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_popn_pc(n, scratch, scratch2);
  }
  void push(Imm32 imm) {
    ScratchRegisterScope scratch(asMasm());
    ma_mov(imm, scratch);
    ma_push(scratch);
  }
  void push(ImmWord imm) { push(Imm32(imm.value)); }
  void push(ImmGCPtr imm) {
    ScratchRegisterScope scratch(asMasm());
    ma_mov(imm, scratch);
    ma_push(scratch);
  }
  void push(const Address& addr) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_ldr(addr, scratch, scratch2);
    ma_push(scratch);
  }
  void push(Register reg) {
    if (reg == sp) {
      ScratchRegisterScope scratch(asMasm());
      ma_push_sp(reg, scratch);
    } else {
      ma_push(reg);
    }
  }
  void push(FloatRegister reg) { ma_vpush(VFPRegister(reg)); }
  void pushWithPadding(Register reg, const Imm32 extraSpace) {
    ScratchRegisterScope scratch(asMasm());
    Imm32 totSpace = Imm32(extraSpace.value + 4);
    ma_dtr(IsStore, sp, totSpace, reg, scratch, PreIndex);
  }
  void pushWithPadding(Imm32 imm, const Imm32 extraSpace) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    Imm32 totSpace = Imm32(extraSpace.value + 4);
    ma_mov(imm, scratch);
    ma_dtr(IsStore, sp, totSpace, scratch, scratch2, PreIndex);
  }

  void pop(Register reg) { ma_pop(reg); }
  void pop(FloatRegister reg) { ma_vpop(VFPRegister(reg)); }

  void popN(Register reg, Imm32 extraSpace) {
    ScratchRegisterScope scratch(asMasm());
    Imm32 totSpace = Imm32(extraSpace.value + 4);
    ma_dtr(IsLoad, sp, totSpace, reg, scratch, PostIndex);
  }

  CodeOffset toggledJump(Label* label);

  // Emit a BLX or NOP instruction. ToggleCall can be used to patch this
  // instruction.
  CodeOffset toggledCall(JitCode* target, bool enabled);

  CodeOffset pushWithPatch(ImmWord imm) {
    ScratchRegisterScope scratch(asMasm());
    CodeOffset label = movWithPatch(imm, scratch);
    ma_push(scratch);
    return label;
  }

  CodeOffset movWithPatch(ImmWord imm, Register dest) {
    CodeOffset label = CodeOffset(currentOffset());
    ma_movPatchable(Imm32(imm.value), dest, Always);
    return label;
  }
  CodeOffset movWithPatch(ImmPtr imm, Register dest) {
    return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
  }

  void jump(Label* label) { as_b(label); }
  void jump(JitCode* code) { branch(code); }
  void jump(ImmPtr ptr) {
    ScratchRegisterScope scratch(asMasm());
    movePtr(ptr, scratch);
    ma_bx(scratch);
  }
  void jump(TrampolinePtr code) { jump(ImmPtr(code.value)); }
  void jump(Register reg) { ma_bx(reg); }
  void jump(const Address& addr) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_ldr(addr, scratch, scratch2);
    ma_bx(scratch);
  }

  void negl(Register reg) { ma_neg(reg, reg, SetCC); }
  void test32(Register lhs, Register rhs) { ma_tst(lhs, rhs); }
  void test32(Register lhs, Imm32 imm) {
    ScratchRegisterScope scratch(asMasm());
    ma_tst(lhs, imm, scratch);
  }
  void test32(const Address& addr, Imm32 imm) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_ldr(addr, scratch, scratch2);
    ma_tst(scratch, imm, scratch2);
  }
  void testPtr(Register lhs, Register rhs) { test32(lhs, rhs); }

  void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag) {
    MOZ_ASSERT(value.typeReg() == tag);
  }

  // Higher level tag testing code.
  Condition testInt32(Condition cond, const ValueOperand& value);
  Condition testBoolean(Condition cond, const ValueOperand& value);
  Condition testDouble(Condition cond, const ValueOperand& value);
  Condition testNull(Condition cond, const ValueOperand& value);
  Condition testUndefined(Condition cond, const ValueOperand& value);
  Condition testString(Condition cond, const ValueOperand& value);
  Condition testSymbol(Condition cond, const ValueOperand& value);
  Condition testBigInt(Condition cond, const ValueOperand& value);
  Condition testObject(Condition cond, const ValueOperand& value);
  Condition testNumber(Condition cond, const ValueOperand& value);
  Condition testMagic(Condition cond, const ValueOperand& value);

  Condition testPrimitive(Condition cond, const ValueOperand& value);
  Condition testGCThing(Condition cond, const ValueOperand& value);

  // Register-based tests.
  Condition testInt32(Condition cond, Register tag);
  Condition testBoolean(Condition cond, Register tag);
  Condition testNull(Condition cond, Register tag);
  Condition testUndefined(Condition cond, Register tag);
  Condition testString(Condition cond, Register tag);
  Condition testSymbol(Condition cond, Register tag);
  Condition testBigInt(Condition cond, Register tag);
  Condition testObject(Condition cond, Register tag);
  Condition testDouble(Condition cond, Register tag);
  Condition testNumber(Condition cond, Register tag);
  Condition testMagic(Condition cond, Register tag);
  Condition testPrimitive(Condition cond, Register tag);
  Condition testGCThing(Condition cond, Register tag);

  Condition testGCThing(Condition cond, const Address& address);
  Condition testMagic(Condition cond, const Address& address);
  Condition testInt32(Condition cond, const Address& address);
  Condition testDouble(Condition cond, const Address& address);
  Condition testBoolean(Condition cond, const Address& address);
  Condition testNull(Condition cond, const Address& address);
  Condition testUndefined(Condition cond, const Address& address);
  Condition testString(Condition cond, const Address& address);
  Condition testSymbol(Condition cond, const Address& address);
  Condition testBigInt(Condition cond, const Address& address);
  Condition testObject(Condition cond, const Address& address);
  Condition testNumber(Condition cond, const Address& address);

  Condition testUndefined(Condition cond, const BaseIndex& src);
  Condition testNull(Condition cond, const BaseIndex& src);
  Condition testBoolean(Condition cond, const BaseIndex& src);
  Condition testString(Condition cond, const BaseIndex& src);
  Condition testSymbol(Condition cond, const BaseIndex& src);
  Condition testBigInt(Condition cond, const BaseIndex& src);
  Condition testInt32(Condition cond, const BaseIndex& src);
  Condition testObject(Condition cond, const BaseIndex& src);
  Condition testDouble(Condition cond, const BaseIndex& src);
  Condition testMagic(Condition cond, const BaseIndex& src);
  Condition testGCThing(Condition cond, const BaseIndex& src);

  // Unboxing code.
  void unboxNonDouble(const ValueOperand& operand, Register dest,
                      JSValueType type);
  void unboxNonDouble(const Address& src, Register dest, JSValueType type);
  void unboxNonDouble(const BaseIndex& src, Register dest, JSValueType type);
  void unboxInt32(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
  }
  void unboxInt32(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
  }
  void unboxInt32(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
  }
  void unboxBoolean(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
  }
  void unboxBoolean(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
  }
  void unboxBoolean(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
  }
  void unboxString(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
  }
  void unboxString(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
  }
  void unboxSymbol(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
  }
  void unboxSymbol(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
  }
  void unboxBigInt(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
  }
  void unboxBigInt(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
  }
  void unboxObject(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObject(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObject(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObjectOrNull(const ValueOperand& src, Register dest) {
    // Due to Spectre mitigation logic (see Value.h), if the value is an Object
    // then this yields the object; otherwise it yields zero (null), as desired.
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObjectOrNull(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObjectOrNull(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxDouble(const ValueOperand& src, FloatRegister dest);
  void unboxDouble(const Address& src, FloatRegister dest);
  void unboxDouble(const BaseIndex& src, FloatRegister dest);

  void unboxValue(const ValueOperand& src, AnyRegister dest, JSValueType type);

  // See comment in MacroAssembler-x64.h.
  void unboxGCThingForGCBarrier(const Address& src, Register dest) {
    load32(ToPayload(src), dest);
  }

  void notBoolean(const ValueOperand& val) {
    as_eor(val.payloadReg(), val.payloadReg(), Imm8(1));
  }

  template <typename T>
  void fallibleUnboxPtrImpl(const T& src, Register dest, JSValueType type,
                            Label* fail);

  // Boxing code.
  void boxDouble(FloatRegister src, const ValueOperand& dest, FloatRegister);
  void boxNonDouble(JSValueType type, Register src, const ValueOperand& dest);

  // Extended unboxing API. If the payload is already in a register, returns
  // that register. Otherwise, provides a move to the given scratch register,
  // and returns that.
  [[nodiscard]] Register extractObject(const Address& address,
                                       Register scratch);
  [[nodiscard]] Register extractObject(const ValueOperand& value,
                                       Register scratch) {
    unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_OBJECT);
    return value.payloadReg();
  }
  [[nodiscard]] Register extractSymbol(const ValueOperand& value,
                                       Register scratch) {
    unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_SYMBOL);
    return value.payloadReg();
  }
  [[nodiscard]] Register extractInt32(const ValueOperand& value,
                                      Register scratch) {
    return value.payloadReg();
  }
  [[nodiscard]] Register extractBoolean(const ValueOperand& value,
                                        Register scratch) {
    return value.payloadReg();
  }
  [[nodiscard]] Register extractTag(const Address& address, Register scratch);
  [[nodiscard]] Register extractTag(const BaseIndex& address, Register scratch);
  [[nodiscard]] Register extractTag(const ValueOperand& value,
                                    Register scratch) {
    return value.typeReg();
  }

  void boolValueToDouble(const ValueOperand& operand, FloatRegister dest);
  void int32ValueToDouble(const ValueOperand& operand, FloatRegister dest);
  void loadInt32OrDouble(const Address& src, FloatRegister dest);
  void loadInt32OrDouble(Register base, Register index, FloatRegister dest,
                         int32_t shift = defaultShift);
  void loadConstantDouble(double dp, FloatRegister dest);

  // Treat the value as a boolean, and set condition codes accordingly.
  Condition testInt32Truthy(bool truthy, const ValueOperand& operand);
  Condition testBooleanTruthy(bool truthy, const ValueOperand& operand);
  Condition testDoubleTruthy(bool truthy, FloatRegister reg);
  Condition testStringTruthy(bool truthy, const ValueOperand& value);
  Condition testBigIntTruthy(bool truthy, const ValueOperand& value);

  void boolValueToFloat32(const ValueOperand& operand, FloatRegister dest);
  void int32ValueToFloat32(const ValueOperand& operand, FloatRegister dest);
  void loadConstantFloat32(float f, FloatRegister dest);

  void loadUnboxedValue(Address address, MIRType type, AnyRegister dest) {
    if (dest.isFloat()) {
      loadInt32OrDouble(address, dest.fpu());
    } else {
      ScratchRegisterScope scratch(asMasm());
      ma_ldr(address, dest.gpr(), scratch);
    }
  }

  void loadUnboxedValue(BaseIndex address, MIRType type, AnyRegister dest) {
    if (dest.isFloat()) {
      loadInt32OrDouble(address.base, address.index, dest.fpu(), address.scale);
    } else {
      load32(address, dest.gpr());
    }
  }

  template <typename T>
  void storeUnboxedPayload(ValueOperand value, T address, size_t nbytes,
                           JSValueType) {
    switch (nbytes) {
      case 4:
        storePtr(value.payloadReg(), address);
        return;
      case 1:
        store8(value.payloadReg(), address);
        return;
      default:
        MOZ_CRASH("Bad payload width");
    }
  }

  void storeValue(ValueOperand val, const Address& dst);
  void storeValue(ValueOperand val, const BaseIndex& dest);
  void storeValue(JSValueType type, Register reg, BaseIndex dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET;
    int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET;

    ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);

    // Store the payload.
    if (payloadoffset < 4096 && payloadoffset > -4096) {
      ma_str(reg, DTRAddr(scratch, DtrOffImm(payloadoffset)));
    } else {
      ma_str(reg, Address(scratch, payloadoffset), scratch2);
    }

    // Store the type.
    if (typeoffset < 4096 && typeoffset > -4096) {
      // Encodable as DTRAddr, so only two instructions needed.
      ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset)));
    } else {
      // Since there are only two scratch registers, the offset must be
      // applied early using a third instruction to be safe.
      ma_add(Imm32(typeoffset), scratch, scratch2);
      ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
    }
  }
  void storeValue(JSValueType type, Register reg, Address dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    ma_str(reg, dest, scratch2);
    ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch);
    ma_str(scratch, Address(dest.base, dest.offset + NUNBOX32_TYPE_OFFSET),
           scratch2);
  }
  void storeValue(const Value& val, const Address& dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    ma_mov(Imm32(val.toNunboxTag()), scratch);
    ma_str(scratch, ToType(dest), scratch2);
    if (val.isGCThing()) {
      ma_mov(ImmGCPtr(val.toGCThing()), scratch);
    } else {
      ma_mov(Imm32(val.toNunboxPayload()), scratch);
    }
    ma_str(scratch, ToPayload(dest), scratch2);
  }
  void storeValue(const Value& val, BaseIndex dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET;
    int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET;

    ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);

    // Store the type.
    if (typeoffset < 4096 && typeoffset > -4096) {
      ma_mov(Imm32(val.toNunboxTag()), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset)));
    } else {
      ma_add(Imm32(typeoffset), scratch, scratch2);
      ma_mov(Imm32(val.toNunboxTag()), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
      // Restore scratch for the payload store.
      ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
    }

    // Store the payload, marking if necessary.
    if (payloadoffset < 4096 && payloadoffset > -4096) {
      if (val.isGCThing()) {
        ma_mov(ImmGCPtr(val.toGCThing()), scratch2);
      } else {
        ma_mov(Imm32(val.toNunboxPayload()), scratch2);
      }
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(payloadoffset)));
    } else {
      ma_add(Imm32(payloadoffset), scratch, scratch2);
      if (val.isGCThing()) {
        ma_mov(ImmGCPtr(val.toGCThing()), scratch2);
      } else {
        ma_mov(Imm32(val.toNunboxPayload()), scratch2);
      }
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
    }
  }
  void storeValue(const Address& src, const Address& dest, Register temp) {
    load32(ToType(src), temp);
    store32(temp, ToType(dest));

    load32(ToPayload(src), temp);
    store32(temp, ToPayload(dest));
  }

  void loadValue(Address src, ValueOperand val);
  void loadValue(Operand dest, ValueOperand val) {
    loadValue(dest.toAddress(), val);
  }
  void loadValue(const BaseIndex& addr, ValueOperand val);

  // Like loadValue but guaranteed to not use LDRD or LDM instructions (these
  // don't support unaligned accesses).
  void loadUnalignedValue(const Address& src, ValueOperand dest);

  void tagValue(JSValueType type, Register payload, ValueOperand dest);

  void pushValue(ValueOperand val);
  void popValue(ValueOperand val);
  void pushValue(const Value& val) {
    push(Imm32(val.toNunboxTag()));
    if (val.isGCThing()) {
      push(ImmGCPtr(val.toGCThing()));
    } else {
      push(Imm32(val.toNunboxPayload()));
    }
  }
  void pushValue(JSValueType type, Register reg) {
    push(ImmTag(JSVAL_TYPE_TO_TAG(type)));
    ma_push(reg);
  }
  void pushValue(const Address& addr);

  void storePayload(const Value& val, const Address& dest);
  void storePayload(Register src, const Address& dest);
  void storePayload(const Value& val, const BaseIndex& dest);
  void storePayload(Register src, const BaseIndex& dest);
  void storeTypeTag(ImmTag tag, const Address& dest);
  void storeTypeTag(ImmTag tag, const BaseIndex& dest);

  void handleFailureWithHandlerTail(Label* profilerExitTail);

  /////////////////////////////////////////////////////////////////
  // Common interface.
  /////////////////////////////////////////////////////////////////
 public:
  void not32(Register reg);

  void move32(Imm32 imm, Register dest);
  void move32(Register src, Register dest);

  void movePtr(Register src, Register dest);
  void movePtr(ImmWord imm, Register dest);
  void movePtr(ImmPtr imm, Register dest);
  void movePtr(wasm::SymbolicAddress imm, Register dest);
  void movePtr(ImmGCPtr imm, Register dest);

  void load8SignExtend(const Address& address, Register dest);
  void load8SignExtend(const BaseIndex& src, Register dest);

  void load8ZeroExtend(const Address& address, Register dest);
  void load8ZeroExtend(const BaseIndex& src, Register dest);

  void load16SignExtend(const Address& address, Register dest);
  void load16SignExtend(const BaseIndex& src, Register dest);

  template <typename S>
  void load16UnalignedSignExtend(const S& src, Register dest) {
    // load16SignExtend uses |ldrsh|, which supports unaligned access.
    load16SignExtend(src, dest);
  }

  void load16ZeroExtend(const Address& address, Register dest);
  void load16ZeroExtend(const BaseIndex& src, Register dest);

  template <typename S>
  void load16UnalignedZeroExtend(const S& src, Register dest) {
    // load16ZeroExtend uses |ldrh|, which supports unaligned access.
    load16ZeroExtend(src, dest);
  }

  void load32(const Address& address, Register dest);
  void load32(const BaseIndex& address, Register dest);
  void load32(AbsoluteAddress address, Register dest);

  template <typename S>
  void load32Unaligned(const S& src, Register dest) {
    // load32 uses |ldr|, which supports unaligned access.
    load32(src, dest);
  }

  void load64(const Address& address, Register64 dest) {
    load32(LowWord(address), dest.low);
    load32(HighWord(address), dest.high);
  }
  void load64(const BaseIndex& address, Register64 dest) {
    load32(LowWord(address), dest.low);
    load32(HighWord(address), dest.high);
  }

  template <typename S>
  void load64Unaligned(const S& src, Register64 dest) {
    // load64 calls load32, which supports unaligned accesses.
    load64(src, dest);
  }

  void loadPtr(const Address& address, Register dest);
  void loadPtr(const BaseIndex& src, Register dest);
  void loadPtr(AbsoluteAddress address, Register dest);
  void loadPtr(wasm::SymbolicAddress address, Register dest);

  void loadPrivate(const Address& address, Register dest);

  void loadDouble(const Address& addr, FloatRegister dest);
  void loadDouble(const BaseIndex& src, FloatRegister dest);

  // Load a float value into a register, then expand it to a double.
  void loadFloatAsDouble(const Address& addr, FloatRegister dest);
  void loadFloatAsDouble(const BaseIndex& src, FloatRegister dest);

  void loadFloat32(const Address& addr, FloatRegister dest);
  void loadFloat32(const BaseIndex& src, FloatRegister dest);

  void store8(Register src, const Address& address);
  void store8(Imm32 imm, const Address& address);
  void store8(Register src, const BaseIndex& address);
  void store8(Imm32 imm, const BaseIndex& address);

  void store16(Register src, const Address& address);
  void store16(Imm32 imm, const Address& address);
  void store16(Register src, const BaseIndex& address);
  void store16(Imm32 imm, const BaseIndex& address);

  template <typename S, typename T>
  void store16Unaligned(const S& src, const T& dest) {
    // store16 uses |strh|, which supports unaligned access.
    store16(src, dest);
  }

  void store32(Register src, AbsoluteAddress address);
  void store32(Register src, const Address& address);
  void store32(Register src, const BaseIndex& address);
  void store32(Imm32 src, const Address& address);
  void store32(Imm32 src, const BaseIndex& address);

  template <typename S, typename T>
  void store32Unaligned(const S& src, const T& dest) {
    // store32 uses |str|, which supports unaligned access.
    store32(src, dest);
  }

  void store64(Register64 src, Address address) {
    store32(src.low, LowWord(address));
    store32(src.high, HighWord(address));
  }

  void store64(Register64 src, const BaseIndex& address) {
    store32(src.low, LowWord(address));
    store32(src.high, HighWord(address));
  }

  void store64(Imm64 imm, Address address) {
    store32(imm.low(), LowWord(address));
    store32(imm.hi(), HighWord(address));
  }

  void store64(Imm64 imm, const BaseIndex& address) {
    store32(imm.low(), LowWord(address));
    store32(imm.hi(), HighWord(address));
  }

  template <typename S, typename T>
  void store64Unaligned(const S& src, const T& dest) {
    // store64 calls store32, which supports unaligned access.
    store64(src, dest);
  }

  void storePtr(ImmWord imm, const Address& address);
  void storePtr(ImmWord imm, const BaseIndex& address);
  void storePtr(ImmPtr imm, const Address& address);
  void storePtr(ImmPtr imm, const BaseIndex& address);
  void storePtr(ImmGCPtr imm, const Address& address);
  void storePtr(ImmGCPtr imm, const BaseIndex& address);
  void storePtr(Register src, const Address& address);
  void storePtr(Register src, const BaseIndex& address);
  void storePtr(Register src, AbsoluteAddress dest);

  void moveDouble(FloatRegister src, FloatRegister dest,
                  Condition cc = Always) {
    ma_vmov(src, dest, cc);
  }

  inline void incrementInt32Value(const Address& addr);

  void cmp32(Register lhs, Imm32 rhs);
  void cmp32(Register lhs, Register rhs);
  void cmp32(const Address& lhs, Imm32 rhs);
  void cmp32(const Address& lhs, Register rhs);

  void cmpPtr(Register lhs, Register rhs);
  void cmpPtr(Register lhs, ImmWord rhs);
  void cmpPtr(Register lhs, ImmPtr rhs);
  void cmpPtr(Register lhs, ImmGCPtr rhs);
  void cmpPtr(Register lhs, Imm32 rhs);
  void cmpPtr(const Address& lhs, Register rhs);
  void cmpPtr(const Address& lhs, ImmWord rhs);
  void cmpPtr(const Address& lhs, ImmPtr rhs);
  void cmpPtr(const Address& lhs, ImmGCPtr rhs);
  void cmpPtr(const Address& lhs, Imm32 rhs);

  void setStackArg(Register reg, uint32_t arg);

  void breakpoint();
  // Conditional breakpoint.
  void breakpoint(Condition cc);

  // Trigger the simulator's interactive read-eval-print loop.
  // The message will be printed at the stopping point.
  // (On non-simulator builds, does nothing.)
  void simulatorStop(const char* msg);

  // Evaluate srcDest = minmax<isMax>{Float32,Double}(srcDest, other).
  // Checks for NaN if canBeNaN is true.
  void minMaxDouble(FloatRegister srcDest, FloatRegister other, bool canBeNaN,
                    bool isMax);
  void minMaxFloat32(FloatRegister srcDest, FloatRegister other, bool canBeNaN,
                     bool isMax);

  void compareDouble(FloatRegister lhs, FloatRegister rhs);

  void compareFloat(FloatRegister lhs, FloatRegister rhs);

  void checkStackAlignment();

  // If source is a double, load it into dest. If source is int32, convert it
  // to double. Else, branch to failure.
  void ensureDouble(const ValueOperand& source, FloatRegister dest,
                    Label* failure);

  void emitSet(Assembler::Condition cond, Register dest) {
    ma_mov(Imm32(0), dest);
    ma_mov(Imm32(1), dest, cond);
  }

  void testNullSet(Condition cond, const ValueOperand& value, Register dest) {
    cond = testNull(cond, value);
    emitSet(cond, dest);
  }

  void testObjectSet(Condition cond, const ValueOperand& value, Register dest) {
    cond = testObject(cond, value);
    emitSet(cond, dest);
  }

  void testUndefinedSet(Condition cond, const ValueOperand& value,
                        Register dest) {
    cond = testUndefined(cond, value);
    emitSet(cond, dest);
  }

 protected:
  bool buildOOLFakeExitFrame(void* fakeReturnAddr);

 public:
  void computeEffectiveAddress(const Address& address, Register dest) {
    ScratchRegisterScope scratch(asMasm());
    ma_add(address.base, Imm32(address.offset), dest, scratch, LeaveCC);
  }
  void computeEffectiveAddress(const BaseIndex& address, Register dest) {
    ScratchRegisterScope scratch(asMasm());
    ma_alu(address.base, lsl(address.index, address.scale), dest, OpAdd,
           LeaveCC);
    if (address.offset) {
      ma_add(dest, Imm32(address.offset), dest, scratch, LeaveCC);
    }
  }
  void floor(FloatRegister input, Register output, Label* handleNotAnInt);
  void floorf(FloatRegister input, Register output, Label* handleNotAnInt);
  void ceil(FloatRegister input, Register output, Label* handleNotAnInt);
  void ceilf(FloatRegister input, Register output, Label* handleNotAnInt);
  void round(FloatRegister input, Register output, Label* handleNotAnInt,
             FloatRegister tmp);
  void roundf(FloatRegister input, Register output, Label* handleNotAnInt,
              FloatRegister tmp);
  void trunc(FloatRegister input, Register output, Label* handleNotAnInt);
  void truncf(FloatRegister input, Register output, Label* handleNotAnInt);

  void clampCheck(Register r, Label* handleNotAnInt) {
    // Check explicitly for r == INT_MIN || r == INT_MAX
    // This is the instruction sequence that gcc generated for this
    // operation.
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_sub(r, Imm32(0x80000001), scratch, scratch2);
    as_cmn(scratch, Imm8(3));
    ma_b(handleNotAnInt, Above);
  }

  void lea(Operand addr, Register dest) {
    ScratchRegisterScope scratch(asMasm());
    ma_add(addr.baseReg(), Imm32(addr.disp()), dest, scratch);
  }

  void abiret() { as_bx(lr); }

  void moveFloat32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always) {
    as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(),
            cc);
  }

  void loadWasmGlobalPtr(uint32_t globalDataOffset, Register dest) {
    loadPtr(Address(WasmTlsReg,
                    offsetof(wasm::TlsData, globalArea) + globalDataOffset),
            dest);
  }
  void loadWasmPinnedRegsFromTls() {
    ScratchRegisterScope scratch(asMasm());
    ma_ldr(Address(WasmTlsReg, offsetof(wasm::TlsData, memoryBase)), HeapReg,
           scratch);
  }

  // Instrumentation for entering and leaving the profiler.
  void profilerEnterFrame(Register framePtr, Register scratch);
  void profilerExitFrame();
};

typedef MacroAssemblerARMCompat MacroAssemblerSpecific;

}  // namespace jit
}  // namespace js

#endif /* jit_arm_MacroAssembler_arm_h */