/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // A Disassembler object is used to disassemble a block of code instruction by // instruction. The default implementation of the NameConverter object can be // overriden to modify register names or to do symbol lookup on addresses. // // The example below will disassemble a block of code and print it to stdout. // // disasm::NameConverter converter; // disasm::Disassembler d(converter); // for (uint8_t* pc = begin; pc < end;) { // disasm::EmbeddedVector buffer; // uint8_t* prev_pc = pc; // pc += d.InstructionDecode(buffer, pc); // printf("%p %08x %s\n", // prev_pc, *reinterpret_cast(prev_pc), buffer); // } // // The Disassembler class also has a convenience method to disassemble a block // of code into a FILE*, meaning that the above functionality could also be // achieved by just calling Disassembler::Disassemble(stdout, begin, end); #include "jit/arm/disasm/Disasm-arm.h" #ifdef JS_DISASM_ARM # include # include # include # include "jit/arm/disasm/Constants-arm.h" namespace js { namespace jit { namespace disasm { // Helper function for printing to a Vector. static int MOZ_FORMAT_PRINTF(2, 3) SNPrintF(V8Vector str, const char* format, ...) { va_list args; va_start(args, format); int result = vsnprintf(str.start(), str.length(), format, args); va_end(args); return result; } //------------------------------------------------------------------------------ // Decoder decodes and disassembles instructions into an output buffer. // It uses the converter to convert register names and call destinations into // more informative description. class Decoder { public: Decoder(const disasm::NameConverter& converter, V8Vector out_buffer) : converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) { out_buffer_[out_buffer_pos_] = '\0'; } ~Decoder() {} // Writes one disassembled instruction into 'buffer' (0-terminated). // Returns the length of the disassembled machine instruction in bytes. int InstructionDecode(uint8_t* instruction); static bool IsConstantPoolAt(uint8_t* instr_ptr); static int ConstantPoolSizeAt(uint8_t* instr_ptr); private: // Bottleneck functions to print into the out_buffer. void PrintChar(const char ch); void Print(const char* str); // Printing of common values. void PrintRegister(int reg); void PrintSRegister(int reg); void PrintDRegister(int reg); int FormatVFPRegister(Instruction* instr, const char* format); void PrintMovwMovt(Instruction* instr); int FormatVFPinstruction(Instruction* instr, const char* format); void PrintCondition(Instruction* instr); void PrintShiftRm(Instruction* instr); void PrintShiftImm(Instruction* instr); void PrintShiftSat(Instruction* instr); void PrintPU(Instruction* instr); void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); // Handle formatting of instructions and their options. int FormatRegister(Instruction* instr, const char* option); void FormatNeonList(int Vd, int type); void FormatNeonMemory(int Rn, int align, int Rm); int FormatOption(Instruction* instr, const char* option); void Format(Instruction* instr, const char* format); void Unknown(Instruction* instr); // Each of these functions decodes one particular instruction type, a 3-bit // field in the instruction encoding. // Types 0 and 1 are combined as they are largely the same except for the way // they interpret the shifter operand. void DecodeType01(Instruction* instr); void DecodeType2(Instruction* instr); void DecodeType3(Instruction* instr); void DecodeType4(Instruction* instr); void DecodeType5(Instruction* instr); void DecodeType6(Instruction* instr); // Type 7 includes special Debugger instructions. int DecodeType7(Instruction* instr); // For VFP support. void DecodeTypeVFP(Instruction* instr); void DecodeType6CoprocessorIns(Instruction* instr); void DecodeSpecialCondition(Instruction* instr); void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); void DecodeVCMP(Instruction* instr); void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); const disasm::NameConverter& converter_; V8Vector out_buffer_; int out_buffer_pos_; // Disallow copy and assign. Decoder(const Decoder&) = delete; void operator=(const Decoder&) = delete; }; // Support for assertions in the Decoder formatting functions. # define STRING_STARTS_WITH(string, compare_string) \ (strncmp(string, compare_string, strlen(compare_string)) == 0) // Append the ch to the output buffer. void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; } // Append the str to the output buffer. void Decoder::Print(const char* str) { char cur = *str++; while (cur != '\0' && (out_buffer_pos_ < int(out_buffer_.length() - 1))) { PrintChar(cur); cur = *str++; } out_buffer_[out_buffer_pos_] = 0; } // These condition names are defined in a way to match the native disassembler // formatting. See for example the command "objdump -d ". static const char* const cond_names[kNumberOfConditions] = { "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc", "hi", "ls", "ge", "lt", "gt", "le", "", "invalid", }; // Print the condition guarding the instruction. void Decoder::PrintCondition(Instruction* instr) { Print(cond_names[instr->ConditionValue()]); } // Print the register name according to the active name converter. void Decoder::PrintRegister(int reg) { Print(converter_.NameOfCPURegister(reg)); } // Print the VFP S register name according to the active name converter. void Decoder::PrintSRegister(int reg) { Print(VFPRegisters::Name(reg, false)); } // Print the VFP D register name according to the active name converter. void Decoder::PrintDRegister(int reg) { Print(VFPRegisters::Name(reg, true)); } // These shift names are defined in a way to match the native disassembler // formatting. See for example the command "objdump -d ". static const char* const shift_names[kNumberOfShifts] = {"lsl", "lsr", "asr", "ror"}; // Print the register shift operands for the instruction. Generally used for // data processing instructions. void Decoder::PrintShiftRm(Instruction* instr) { ShiftOp shift = instr->ShiftField(); int shift_index = instr->ShiftValue(); int shift_amount = instr->ShiftAmountValue(); int rm = instr->RmValue(); PrintRegister(rm); if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) { // Special case for using rm only. return; } if (instr->RegShiftValue() == 0) { // by immediate if ((shift == ROR) && (shift_amount == 0)) { Print(", RRX"); return; } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { shift_amount = 32; } out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", %s #%d", shift_names[shift_index], shift_amount); } else { // by register int rs = instr->RsValue(); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", %s ", shift_names[shift_index]); PrintRegister(rs); } } static inline uint32_t RotateRight32(uint32_t value, uint32_t shift) { if (shift == 0) return value; return (value >> shift) | (value << (32 - shift)); } // Print the immediate operand for the instruction. Generally used for data // processing instructions. void Decoder::PrintShiftImm(Instruction* instr) { int rotate = instr->RotateValue() * 2; int immed8 = instr->Immed8Value(); int imm = RotateRight32(immed8, rotate); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%d", imm); } // Print the optional shift and immediate used by saturating instructions. void Decoder::PrintShiftSat(Instruction* instr) { int shift = instr->Bits(11, 7); if (shift > 0) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", %s #%d", shift_names[instr->Bit(6) * 2], instr->Bits(11, 7)); } } // Print PU formatting to reduce complexity of FormatOption. void Decoder::PrintPU(Instruction* instr) { switch (instr->PUField()) { case da_x: { Print("da"); break; } case ia_x: { Print("ia"); break; } case db_x: { Print("db"); break; } case ib_x: { Print("ib"); break; } default: { MOZ_CRASH(); break; } } } // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of // the FormatOption method. void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { switch (svc) { case kCallRtRedirected: Print("call rt redirected"); return; case kBreakpoint: Print("breakpoint"); return; default: if (svc >= kStopCode) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d - 0x%x", svc & kStopCodeMask, svc & kStopCodeMask); } else { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", svc); } return; } } // Handle all register based formatting in this function to reduce the // complexity of FormatOption. int Decoder::FormatRegister(Instruction* instr, const char* format) { MOZ_ASSERT(format[0] == 'r'); if (format[1] == 'n') { // 'rn: Rn register int reg = instr->RnValue(); PrintRegister(reg); return 2; } else if (format[1] == 'd') { // 'rd: Rd register int reg = instr->RdValue(); PrintRegister(reg); return 2; } else if (format[1] == 's') { // 'rs: Rs register int reg = instr->RsValue(); PrintRegister(reg); return 2; } else if (format[1] == 'm') { // 'rm: Rm register int reg = instr->RmValue(); PrintRegister(reg); return 2; } else if (format[1] == 't') { // 'rt: Rt register int reg = instr->RtValue(); PrintRegister(reg); return 2; } else if (format[1] == 'l') { // 'rlist: register list for load and store multiple instructions MOZ_ASSERT(STRING_STARTS_WITH(format, "rlist")); int rlist = instr->RlistValue(); int reg = 0; Print("{"); // Print register list in ascending order, by scanning the bit mask. while (rlist != 0) { if ((rlist & 1) != 0) { PrintRegister(reg); if ((rlist >> 1) != 0) { Print(", "); } } reg++; rlist >>= 1; } Print("}"); return 5; } MOZ_CRASH(); return -1; } // Handle all VFP register based formatting in this function to reduce the // complexity of FormatOption. int Decoder::FormatVFPRegister(Instruction* instr, const char* format) { MOZ_ASSERT((format[0] == 'S') || (format[0] == 'D')); VFPRegPrecision precision = format[0] == 'D' ? kDoublePrecision : kSinglePrecision; int retval = 2; int reg = -1; if (format[1] == 'n') { reg = instr->VFPNRegValue(precision); } else if (format[1] == 'm') { reg = instr->VFPMRegValue(precision); } else if (format[1] == 'd') { if ((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) && (instr->Bits(11, 9) == 0x5) && (instr->Bit(4) == 0x1)) { // vmov.32 has Vd in a different place. reg = instr->Bits(19, 16) | (instr->Bit(7) << 4); } else { reg = instr->VFPDRegValue(precision); } if (format[2] == '+') { int immed8 = instr->Immed8Value(); if (format[0] == 'S') reg += immed8 - 1; if (format[0] == 'D') reg += (immed8 / 2 - 1); } if (format[2] == '+') retval = 3; } else { MOZ_CRASH(); } if (precision == kSinglePrecision) { PrintSRegister(reg); } else { PrintDRegister(reg); } return retval; } int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) { Print(format); return 0; } void Decoder::FormatNeonList(int Vd, int type) { if (type == nlt_1) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d}", Vd); } else if (type == nlt_2) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d, d%d}", Vd, Vd + 1); } else if (type == nlt_3) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2); } else if (type == nlt_4) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d, d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2, Vd + 3); } } void Decoder::FormatNeonMemory(int Rn, int align, int Rm) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "[r%d", Rn); if (align != 0) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ":%d", (1 << align) << 6); } if (Rm == 15) { Print("]"); } else if (Rm == 13) { Print("]!"); } else { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "], r%d", Rm); } } // Print the movw or movt instruction. void Decoder::PrintMovwMovt(Instruction* instr) { int imm = instr->ImmedMovwMovtValue(); int rd = instr->RdValue(); PrintRegister(rd); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", imm); } // FormatOption takes a formatting string and interprets it based on // the current instructions. The format string points to the first // character of the option string (the option escape has already been // consumed by the caller.) FormatOption returns the number of // characters that were consumed from the formatting string. int Decoder::FormatOption(Instruction* instr, const char* format) { switch (format[0]) { case 'a': { // 'a: accumulate multiplies if (instr->Bit(21) == 0) { Print("ul"); } else { Print("la"); } return 1; } case 'b': { // 'b: byte loads or stores if (instr->HasB()) { Print("b"); } return 1; } case 'c': { // 'cond: conditional execution MOZ_ASSERT(STRING_STARTS_WITH(format, "cond")); PrintCondition(instr); return 4; } case 'd': { // 'd: vmov double immediate. double d = instr->DoubleImmedVmov(); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%g", d); return 1; } case 'f': { // 'f: bitfield instructions - v7 and above. uint32_t lsbit = instr->Bits(11, 7); uint32_t width = instr->Bits(20, 16) + 1; if (instr->Bit(21) == 0) { // BFC/BFI: // Bits 20-16 represent most-significant bit. Covert to width. width -= lsbit; MOZ_ASSERT(width > 0); } MOZ_ASSERT((width + lsbit) <= 32); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%d, #%d", lsbit, width); return 1; } case 'h': { // 'h: halfword operation for extra loads and stores if (instr->HasH()) { Print("h"); } else { Print("b"); } return 1; } case 'i': { // 'i: immediate value from adjacent bits. // Expects tokens in the form imm%02d@%02d, i.e. imm05@07, imm10@16 int width = (format[3] - '0') * 10 + (format[4] - '0'); int lsb = (format[6] - '0') * 10 + (format[7] - '0'); MOZ_ASSERT((width >= 1) && (width <= 32)); MOZ_ASSERT((lsb >= 0) && (lsb <= 31)); MOZ_ASSERT((width + lsb) <= 32); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", instr->Bits(width + lsb - 1, lsb)); return 8; } case 'l': { // 'l: branch and link if (instr->HasLink()) { Print("l"); } return 1; } case 'm': { if (format[1] == 'w') { // 'mw: movt/movw instructions. PrintMovwMovt(instr); return 2; } if (format[1] == 'e') { // 'memop: load/store instructions. MOZ_ASSERT(STRING_STARTS_WITH(format, "memop")); if (instr->HasL()) { Print("ldr"); } else { if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) && (instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) { if (instr->Bit(5) == 1) { Print("strd"); } else { Print("ldrd"); } return 5; } Print("str"); } return 5; } // 'msg: for simulator break instructions MOZ_ASSERT(STRING_STARTS_WITH(format, "msg")); uint8_t* str = reinterpret_cast(instr->InstructionBits() & 0x0fffffff); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%s", converter_.NameInCode(str)); return 3; } case 'o': { if ((format[3] == '1') && (format[4] == '2')) { // 'off12: 12-bit offset for load and store instructions MOZ_ASSERT(STRING_STARTS_WITH(format, "off12")); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", instr->Offset12Value()); return 5; } else if (format[3] == '0') { // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0. MOZ_ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19")); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", (instr->Bits(19, 8) << 4) + instr->Bits(3, 0)); return 15; } // 'off8: 8-bit offset for extra load and store instructions MOZ_ASSERT(STRING_STARTS_WITH(format, "off8")); int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs8); return 4; } case 'p': { // 'pu: P and U bits for load and store instructions MOZ_ASSERT(STRING_STARTS_WITH(format, "pu")); PrintPU(instr); return 2; } case 'r': { return FormatRegister(instr, format); } case 's': { if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat. if (format[6] == 'o') { // 'shift_op MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_op")); if (instr->TypeValue() == 0) { PrintShiftRm(instr); } else { MOZ_ASSERT(instr->TypeValue() == 1); PrintShiftImm(instr); } return 8; } else if (format[6] == 's') { // 'shift_sat. MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_sat")); PrintShiftSat(instr); return 9; } else { // 'shift_rm MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_rm")); PrintShiftRm(instr); return 8; } } else if (format[1] == 'v') { // 'svc MOZ_ASSERT(STRING_STARTS_WITH(format, "svc")); PrintSoftwareInterrupt(instr->SvcValue()); return 3; } else if (format[1] == 'i') { // 'sign: signed extra loads and stores MOZ_ASSERT(STRING_STARTS_WITH(format, "sign")); if (instr->HasSign()) { Print("s"); } return 4; } // 's: S field of data processing instructions if (instr->HasS()) { Print("s"); } return 1; } case 't': { // 'target: target of branch instructions MOZ_ASSERT(STRING_STARTS_WITH(format, "target")); int off = (instr->SImmed24Value() << 2) + 8; out_buffer_pos_ += SNPrintF( out_buffer_ + out_buffer_pos_, "%+d -> %s", off, converter_.NameOfAddress(reinterpret_cast(instr) + off)); return 6; } case 'u': { // 'u: signed or unsigned multiplies // The manual gets the meaning of bit 22 backwards in the multiply // instruction overview on page A3.16.2. The instructions that // exist in u and s variants are the following: // smull A4.1.87 // umull A4.1.129 // umlal A4.1.128 // smlal A4.1.76 // For these 0 means u and 1 means s. As can be seen on their individual // pages. The other 18 mul instructions have the bit set or unset in // arbitrary ways that are unrelated to the signedness of the instruction. // None of these 18 instructions exist in both a 'u' and an 's' variant. if (instr->Bit(22) == 0) { Print("u"); } else { Print("s"); } return 1; } case 'v': { return FormatVFPinstruction(instr, format); } case 'S': case 'D': { return FormatVFPRegister(instr, format); } case 'w': { // 'w: W field of load and store instructions if (instr->HasW()) { Print("!"); } return 1; } default: { MOZ_CRASH(); break; } } MOZ_CRASH(); return -1; } // Format takes a formatting string for a whole instruction and prints it into // the output buffer. All escaped options are handed to FormatOption to be // parsed further. void Decoder::Format(Instruction* instr, const char* format) { char cur = *format++; while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { if (cur == '\'') { // Single quote is used as the formatting escape. format += FormatOption(instr, format); } else { out_buffer_[out_buffer_pos_++] = cur; } cur = *format++; } out_buffer_[out_buffer_pos_] = '\0'; } // The disassembler may end up decoding data inlined in the code. We do not want // it to crash if the data does not ressemble any known instruction. # define VERIFY(condition) \ if (!(condition)) { \ Unknown(instr); \ return; \ } // For currently unimplemented decodings the disassembler calls Unknown(instr) // which will just print "unknown" of the instruction bits. void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); } void Decoder::DecodeType01(Instruction* instr) { int type = instr->TypeValue(); if ((type == 0) && instr->IsSpecialType0()) { // multiply instruction or extra loads and stores if (instr->Bits(7, 4) == 9) { if (instr->Bit(24) == 0) { // multiply instructions if (instr->Bit(23) == 0) { if (instr->Bit(21) == 0) { // The MUL instruction description (A 4.1.33) refers to Rd as being // the destination for the operation, but it confusingly uses the // Rn field to encode it. Format(instr, "mul'cond's 'rn, 'rm, 'rs"); } else { if (instr->Bit(22) == 0) { // The MLA instruction description (A 4.1.28) refers to the order // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the // Rn field to encode the Rd register and the Rd field to encode // the Rn register. Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); } else { // The MLS instruction description (A 4.1.29) refers to the order // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the // Rn field to encode the Rd register and the Rd field to encode // the Rn register. Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); } } } else { // The signed/long multiply instructions use the terms RdHi and RdLo // when referring to the target registers. They are mapped to the Rn // and Rd fields as follows: // RdLo == Rd field // RdHi == Rn field // The order of registers is: , , , Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs"); } } else { if (instr->Bits(ExclusiveOpHi, ExclusiveOpLo) == ExclusiveOpcode) { if (instr->Bit(ExclusiveLoad) == 1) { switch (instr->Bits(ExclusiveSizeHi, ExclusiveSizeLo)) { case ExclusiveWord: Format(instr, "ldrex'cond 'rt, ['rn]"); break; case ExclusiveDouble: Format(instr, "ldrexd'cond 'rt, ['rn]"); break; case ExclusiveByte: Format(instr, "ldrexb'cond 'rt, ['rn]"); break; case ExclusiveHalf: Format(instr, "ldrexh'cond 'rt, ['rn]"); break; } } else { // The documentation names the low four bits of the // store-exclusive instructions "Rt" but canonically // for disassembly they are really "Rm". switch (instr->Bits(ExclusiveSizeHi, ExclusiveSizeLo)) { case ExclusiveWord: Format(instr, "strex'cond 'rd, 'rm, ['rn]"); break; case ExclusiveDouble: Format(instr, "strexd'cond 'rd, 'rm, ['rn]"); break; case ExclusiveByte: Format(instr, "strexb'cond 'rd, 'rm, ['rn]"); break; case ExclusiveHalf: Format(instr, "strexh'cond 'rd, 'rm, ['rn]"); break; } } } else { Unknown(instr); } } } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) { // ldrd, strd switch (instr->PUField()) { case da_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond's 'rd, ['rn], -'rm"); } else { Format(instr, "'memop'cond's 'rd, ['rn], #-'off8"); } break; } case ia_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond's 'rd, ['rn], +'rm"); } else { Format(instr, "'memop'cond's 'rd, ['rn], #+'off8"); } break; } case db_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w"); } else { Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w"); } break; } case ib_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w"); } else { Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w"); } break; } default: { // The PU field is a 2-bit field. MOZ_CRASH(); break; } } } else { // extra load/store instructions switch (instr->PUField()) { case da_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); } else { Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); } break; } case ia_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); } else { Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); } break; } case db_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); } else { Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); } break; } case ib_x: { if (instr->Bit(22) == 0) { Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); } else { Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); } break; } default: { // The PU field is a 2-bit field. MOZ_CRASH(); break; } } return; } } else if ((type == 0) && instr->IsMiscType0()) { if (instr->Bits(22, 21) == 1) { switch (instr->BitField(7, 4)) { case BX: Format(instr, "bx'cond 'rm"); break; case BLX: Format(instr, "blx'cond 'rm"); break; case BKPT: Format(instr, "bkpt 'off0to3and8to19"); break; default: Unknown(instr); // not used by V8 break; } } else if (instr->Bits(22, 21) == 3) { switch (instr->BitField(7, 4)) { case CLZ: Format(instr, "clz'cond 'rd, 'rm"); break; default: Unknown(instr); // not used by V8 break; } } else { Unknown(instr); // not used by V8 } } else if ((type == 1) && instr->IsNopType1()) { Format(instr, "nop'cond"); } else if ((type == 1) && instr->IsCsdbType1()) { Format(instr, "csdb'cond"); } else { switch (instr->OpcodeField()) { case AND: { Format(instr, "and'cond's 'rd, 'rn, 'shift_op"); break; } case EOR: { Format(instr, "eor'cond's 'rd, 'rn, 'shift_op"); break; } case SUB: { Format(instr, "sub'cond's 'rd, 'rn, 'shift_op"); break; } case RSB: { Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op"); break; } case ADD: { Format(instr, "add'cond's 'rd, 'rn, 'shift_op"); break; } case ADC: { Format(instr, "adc'cond's 'rd, 'rn, 'shift_op"); break; } case SBC: { Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op"); break; } case RSC: { Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op"); break; } case TST: { if (instr->HasS()) { Format(instr, "tst'cond 'rn, 'shift_op"); } else { Format(instr, "movw'cond 'mw"); } break; } case TEQ: { if (instr->HasS()) { Format(instr, "teq'cond 'rn, 'shift_op"); } else { // Other instructions matching this pattern are handled in the // miscellaneous instructions part above. MOZ_CRASH(); } break; } case CMP: { if (instr->HasS()) { Format(instr, "cmp'cond 'rn, 'shift_op"); } else { Format(instr, "movt'cond 'mw"); } break; } case CMN: { if (instr->HasS()) { Format(instr, "cmn'cond 'rn, 'shift_op"); } else { // Other instructions matching this pattern are handled in the // miscellaneous instructions part above. MOZ_CRASH(); } break; } case ORR: { Format(instr, "orr'cond's 'rd, 'rn, 'shift_op"); break; } case MOV: { Format(instr, "mov'cond's 'rd, 'shift_op"); break; } case BIC: { Format(instr, "bic'cond's 'rd, 'rn, 'shift_op"); break; } case MVN: { Format(instr, "mvn'cond's 'rd, 'shift_op"); break; } default: { // The Opcode field is a 4-bit field. MOZ_CRASH(); break; } } } } void Decoder::DecodeType2(Instruction* instr) { switch (instr->PUField()) { case da_x: { if (instr->HasW()) { Unknown(instr); // not used in V8 return; } Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); break; } case ia_x: { if (instr->HasW()) { Unknown(instr); // not used in V8 return; } Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); break; } case db_x: { Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); break; } case ib_x: { Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); break; } default: { // The PU field is a 2-bit field. MOZ_CRASH(); break; } } } void Decoder::DecodeType3(Instruction* instr) { switch (instr->PUField()) { case da_x: { VERIFY(!instr->HasW()); Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); break; } case ia_x: { if (instr->Bit(4) == 0) { Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); } else { if (instr->Bit(5) == 0) { switch (instr->Bits(22, 21)) { case 0: if (instr->Bit(20) == 0) { if (instr->Bit(6) == 0) { Format(instr, "pkhbt'cond 'rd, 'rn, 'rm, lsl #'imm05@07"); } else { if (instr->Bits(11, 7) == 0) { Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #32"); } else { Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #'imm05@07"); } } } else { MOZ_CRASH(); } break; case 1: MOZ_CRASH(); break; case 2: MOZ_CRASH(); break; case 3: Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat"); break; } } else { switch (instr->Bits(22, 21)) { case 0: MOZ_CRASH(); break; case 1: if (instr->Bits(9, 6) == 1) { if (instr->Bit(20) == 0) { if (instr->Bits(19, 16) == 0xF) { switch (instr->Bits(11, 10)) { case 0: Format(instr, "sxtb'cond 'rd, 'rm"); break; case 1: Format(instr, "sxtb'cond 'rd, 'rm, ror #8"); break; case 2: Format(instr, "sxtb'cond 'rd, 'rm, ror #16"); break; case 3: Format(instr, "sxtb'cond 'rd, 'rm, ror #24"); break; } } else { switch (instr->Bits(11, 10)) { case 0: Format(instr, "sxtab'cond 'rd, 'rn, 'rm"); break; case 1: Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #8"); break; case 2: Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #16"); break; case 3: Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #24"); break; } } } else { if (instr->Bits(19, 16) == 0xF) { switch (instr->Bits(11, 10)) { case 0: Format(instr, "sxth'cond 'rd, 'rm"); break; case 1: Format(instr, "sxth'cond 'rd, 'rm, ror #8"); break; case 2: Format(instr, "sxth'cond 'rd, 'rm, ror #16"); break; case 3: Format(instr, "sxth'cond 'rd, 'rm, ror #24"); break; } } else { switch (instr->Bits(11, 10)) { case 0: Format(instr, "sxtah'cond 'rd, 'rn, 'rm"); break; case 1: Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #8"); break; case 2: Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #16"); break; case 3: Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #24"); break; } } } } else { MOZ_CRASH(); } break; case 2: if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { if (instr->Bits(19, 16) == 0xF) { switch (instr->Bits(11, 10)) { case 0: Format(instr, "uxtb16'cond 'rd, 'rm"); break; case 1: Format(instr, "uxtb16'cond 'rd, 'rm, ror #8"); break; case 2: Format(instr, "uxtb16'cond 'rd, 'rm, ror #16"); break; case 3: Format(instr, "uxtb16'cond 'rd, 'rm, ror #24"); break; } } else { MOZ_CRASH(); } } else { MOZ_CRASH(); } break; case 3: if ((instr->Bits(9, 6) == 1)) { if ((instr->Bit(20) == 0)) { if (instr->Bits(19, 16) == 0xF) { switch (instr->Bits(11, 10)) { case 0: Format(instr, "uxtb'cond 'rd, 'rm"); break; case 1: Format(instr, "uxtb'cond 'rd, 'rm, ror #8"); break; case 2: Format(instr, "uxtb'cond 'rd, 'rm, ror #16"); break; case 3: Format(instr, "uxtb'cond 'rd, 'rm, ror #24"); break; } } else { switch (instr->Bits(11, 10)) { case 0: Format(instr, "uxtab'cond 'rd, 'rn, 'rm"); break; case 1: Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #8"); break; case 2: Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #16"); break; case 3: Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #24"); break; } } } else { if (instr->Bits(19, 16) == 0xF) { switch (instr->Bits(11, 10)) { case 0: Format(instr, "uxth'cond 'rd, 'rm"); break; case 1: Format(instr, "uxth'cond 'rd, 'rm, ror #8"); break; case 2: Format(instr, "uxth'cond 'rd, 'rm, ror #16"); break; case 3: Format(instr, "uxth'cond 'rd, 'rm, ror #24"); break; } } else { switch (instr->Bits(11, 10)) { case 0: Format(instr, "uxtah'cond 'rd, 'rn, 'rm"); break; case 1: Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #8"); break; case 2: Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #16"); break; case 3: Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #24"); break; } } } } else { MOZ_CRASH(); } break; } } } break; } case db_x: { if (instr->Bits(22, 20) == 0x5) { if (instr->Bits(7, 4) == 0x1) { if (instr->Bits(15, 12) == 0xF) { Format(instr, "smmul'cond 'rn, 'rm, 'rs"); } else { // SMMLA (in V8 notation matching ARM ISA format) Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd"); } break; } } bool FLAG_enable_sudiv = true; // Flag doesn't exist in our engine. if (FLAG_enable_sudiv) { if (instr->Bits(5, 4) == 0x1) { if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { if (instr->Bit(21) == 0x1) { // UDIV (in V8 notation matching ARM ISA format) rn = rm/rs Format(instr, "udiv'cond'b 'rn, 'rm, 'rs"); } else { // SDIV (in V8 notation matching ARM ISA format) rn = rm/rs Format(instr, "sdiv'cond'b 'rn, 'rm, 'rs"); } break; } } } Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); break; } case ib_x: { if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { uint32_t widthminus1 = static_cast(instr->Bits(20, 16)); uint32_t lsbit = static_cast(instr->Bits(11, 7)); uint32_t msbit = widthminus1 + lsbit; if (msbit <= 31) { if (instr->Bit(22)) { Format(instr, "ubfx'cond 'rd, 'rm, 'f"); } else { Format(instr, "sbfx'cond 'rd, 'rm, 'f"); } } else { MOZ_CRASH(); } } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { uint32_t lsbit = static_cast(instr->Bits(11, 7)); uint32_t msbit = static_cast(instr->Bits(20, 16)); if (msbit >= lsbit) { if (instr->RmValue() == 15) { Format(instr, "bfc'cond 'rd, 'f"); } else { Format(instr, "bfi'cond 'rd, 'rm, 'f"); } } else { MOZ_CRASH(); } } else { Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); } break; } default: { // The PU field is a 2-bit field. MOZ_CRASH(); break; } } } void Decoder::DecodeType4(Instruction* instr) { if (instr->Bit(22) != 0) { // Privileged mode currently not supported. Unknown(instr); } else { if (instr->HasL()) { Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); } else { Format(instr, "stm'cond'pu 'rn'w, 'rlist"); } } } void Decoder::DecodeType5(Instruction* instr) { Format(instr, "b'l'cond 'target"); } void Decoder::DecodeType6(Instruction* instr) { DecodeType6CoprocessorIns(instr); } int Decoder::DecodeType7(Instruction* instr) { if (instr->Bit(24) == 1) { if (instr->SvcValue() >= kStopCode) { Format(instr, "stop'cond 'svc"); // Also print the stop message. Its address is encoded // in the following 4 bytes. out_buffer_pos_ += SNPrintF( out_buffer_ + out_buffer_pos_, "\n %p %08x stop message: %s", reinterpret_cast(instr + Instruction::kInstrSize), *reinterpret_cast(instr + Instruction::kInstrSize), *reinterpret_cast(instr + Instruction::kInstrSize)); // We have decoded 2 * Instruction::kInstrSize bytes. return 2 * Instruction::kInstrSize; } else { Format(instr, "svc'cond 'svc"); } } else { DecodeTypeVFP(instr); } return Instruction::kInstrSize; } // void Decoder::DecodeTypeVFP(Instruction* instr) // vmov: Sn = Rt // vmov: Rt = Sn // vcvt: Dd = Sm // vcvt: Sd = Dm // vcvt.f64.s32 Dd, Dd, # // Dd = vabs(Dm) // Sd = vabs(Sm) // Dd = vneg(Dm) // Sd = vneg(Sm) // Dd = vadd(Dn, Dm) // Sd = vadd(Sn, Sm) // Dd = vsub(Dn, Dm) // Sd = vsub(Sn, Sm) // Dd = vmul(Dn, Dm) // Sd = vmul(Sn, Sm) // Dd = vmla(Dn, Dm) // Sd = vmla(Sn, Sm) // Dd = vmls(Dn, Dm) // Sd = vmls(Sn, Sm) // Dd = vdiv(Dn, Dm) // Sd = vdiv(Sn, Sm) // vcmp(Dd, Dm) // vcmp(Sd, Sm) // Dd = vsqrt(Dm) // Sd = vsqrt(Sm) // vmrs // vmsr void Decoder::DecodeTypeVFP(Instruction* instr) { VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0)); VERIFY(instr->Bits(11, 9) == 0x5); if (instr->Bit(4) == 0) { if (instr->Opc1Value() == 0x7) { // Other data processing instructions if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { // vmov register to register. if (instr->SzValue() == 0x1) { Format(instr, "vmov'cond.f64 'Dd, 'Dm"); } else { Format(instr, "vmov'cond.f32 'Sd, 'Sm"); } } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { // vabs if (instr->SzValue() == 0x1) { Format(instr, "vabs'cond.f64 'Dd, 'Dm"); } else { Format(instr, "vabs'cond.f32 'Sd, 'Sm"); } } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { // vneg if (instr->SzValue() == 0x1) { Format(instr, "vneg'cond.f64 'Dd, 'Dm"); } else { Format(instr, "vneg'cond.f32 'Sd, 'Sm"); } } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { DecodeVCVTBetweenDoubleAndSingle(instr); } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { DecodeVCVTBetweenFloatingPointAndInteger(instr); } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && (instr->Bit(8) == 1)) { // vcvt.f64.s32 Dd, Dd, # int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); Format(instr, "vcvt'cond.f64.s32 'Dd, 'Dd"); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", fraction_bits); } else if (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)) { DecodeVCVTBetweenFloatingPointAndInteger(instr); } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && (instr->Opc3Value() & 0x1)) { DecodeVCMP(instr); } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { if (instr->SzValue() == 0x1) { Format(instr, "vsqrt'cond.f64 'Dd, 'Dm"); } else { Format(instr, "vsqrt'cond.f32 'Sd, 'Sm"); } } else if (instr->Opc3Value() == 0x0) { if (instr->SzValue() == 0x1) { Format(instr, "vmov'cond.f64 'Dd, 'd"); } else { Unknown(instr); // Not used by V8. } } else if (((instr->Opc2Value() == 0x6)) && instr->Opc3Value() == 0x3) { // vrintz - round towards zero (truncate) if (instr->SzValue() == 0x1) { Format(instr, "vrintz'cond.f64.f64 'Dd, 'Dm"); } else { Format(instr, "vrintz'cond.f32.f32 'Sd, 'Sm"); } } else { Unknown(instr); // Not used by V8. } } else if (instr->Opc1Value() == 0x3) { if (instr->SzValue() == 0x1) { if (instr->Opc3Value() & 0x1) { Format(instr, "vsub'cond.f64 'Dd, 'Dn, 'Dm"); } else { Format(instr, "vadd'cond.f64 'Dd, 'Dn, 'Dm"); } } else { if (instr->Opc3Value() & 0x1) { Format(instr, "vsub'cond.f32 'Sd, 'Sn, 'Sm"); } else { Format(instr, "vadd'cond.f32 'Sd, 'Sn, 'Sm"); } } } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { if (instr->SzValue() == 0x1) { Format(instr, "vmul'cond.f64 'Dd, 'Dn, 'Dm"); } else { Format(instr, "vmul'cond.f32 'Sd, 'Sn, 'Sm"); } } else if ((instr->Opc1Value() == 0x0) && !(instr->Opc3Value() & 0x1)) { if (instr->SzValue() == 0x1) { Format(instr, "vmla'cond.f64 'Dd, 'Dn, 'Dm"); } else { Format(instr, "vmla'cond.f32 'Sd, 'Sn, 'Sm"); } } else if ((instr->Opc1Value() == 0x0) && (instr->Opc3Value() & 0x1)) { if (instr->SzValue() == 0x1) { Format(instr, "vmls'cond.f64 'Dd, 'Dn, 'Dm"); } else { Format(instr, "vmls'cond.f32 'Sd, 'Sn, 'Sm"); } } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { if (instr->SzValue() == 0x1) { Format(instr, "vdiv'cond.f64 'Dd, 'Dn, 'Dm"); } else { Format(instr, "vdiv'cond.f32 'Sd, 'Sn, 'Sm"); } } else { Unknown(instr); // Not used by V8. } } else { if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)) { DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) && (instr->Bit(23) == 0x0)) { if (instr->Bit(21) == 0x0) { Format(instr, "vmov'cond.32 'Dd[0], 'rt"); } else { Format(instr, "vmov'cond.32 'Dd[1], 'rt"); } } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) && (instr->Bit(23) == 0x0)) { if (instr->Bit(21) == 0x0) { Format(instr, "vmov'cond.32 'rt, 'Dd[0]"); } else { Format(instr, "vmov'cond.32 'rt, 'Dd[1]"); } } else if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) { if (instr->VLValue() == 0) { if (instr->Bits(15, 12) == 0xF) { Format(instr, "vmsr'cond FPSCR, APSR"); } else { Format(instr, "vmsr'cond FPSCR, 'rt"); } } else { if (instr->Bits(15, 12) == 0xF) { Format(instr, "vmrs'cond APSR, FPSCR"); } else { Format(instr, "vmrs'cond 'rt, FPSCR"); } } } } } void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( Instruction* instr) { VERIFY((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)); bool to_arm_register = (instr->VLValue() == 0x1); if (to_arm_register) { Format(instr, "vmov'cond 'rt, 'Sn"); } else { Format(instr, "vmov'cond 'Sn, 'rt"); } } void Decoder::DecodeVCMP(Instruction* instr) { VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); VERIFY(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && (instr->Opc3Value() & 0x1)); // Comparison. bool dp_operation = (instr->SzValue() == 1); bool raise_exception_for_qnan = (instr->Bit(7) == 0x1); if (dp_operation && !raise_exception_for_qnan) { if (instr->Opc2Value() == 0x4) { Format(instr, "vcmp'cond.f64 'Dd, 'Dm"); } else if (instr->Opc2Value() == 0x5) { Format(instr, "vcmp'cond.f64 'Dd, #0.0"); } else { Unknown(instr); // invalid } } else if (!raise_exception_for_qnan) { if (instr->Opc2Value() == 0x4) { Format(instr, "vcmp'cond.f32 'Sd, 'Sm"); } else if (instr->Opc2Value() == 0x5) { Format(instr, "vcmp'cond.f32 'Sd, #0.0"); } else { Unknown(instr); // invalid } } else { Unknown(instr); // Not used by V8. } } void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); VERIFY((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); bool double_to_single = (instr->SzValue() == 1); if (double_to_single) { Format(instr, "vcvt'cond.f32.f64 'Sd, 'Dm"); } else { Format(instr, "vcvt'cond.f64.f32 'Dd, 'Sm"); } } void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); VERIFY(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); bool to_integer = (instr->Bit(18) == 1); bool dp_operation = (instr->SzValue() == 1); if (to_integer) { bool unsigned_integer = (instr->Bit(16) == 0); if (dp_operation) { if (unsigned_integer) { Format(instr, "vcvt'cond.u32.f64 'Sd, 'Dm"); } else { Format(instr, "vcvt'cond.s32.f64 'Sd, 'Dm"); } } else { if (unsigned_integer) { Format(instr, "vcvt'cond.u32.f32 'Sd, 'Sm"); } else { Format(instr, "vcvt'cond.s32.f32 'Sd, 'Sm"); } } } else { bool unsigned_integer = (instr->Bit(7) == 0); if (dp_operation) { if (unsigned_integer) { Format(instr, "vcvt'cond.f64.u32 'Dd, 'Sm"); } else { Format(instr, "vcvt'cond.f64.s32 'Dd, 'Sm"); } } else { if (unsigned_integer) { Format(instr, "vcvt'cond.f32.u32 'Sd, 'Sm"); } else { Format(instr, "vcvt'cond.f32.s32 'Sd, 'Sm"); } } } } // Decode Type 6 coprocessor instructions. // Dm = vmov(Rt, Rt2) // = vmov(Dm) // Ddst = MEM(Rbase + 4*offset). // MEM(Rbase + 4*offset) = Dsrc. void Decoder::DecodeType6CoprocessorIns(Instruction* instr) { VERIFY(instr->TypeValue() == 6); if (instr->CoprocessorValue() == 0xA) { switch (instr->OpcodeValue()) { case 0x8: case 0xA: if (instr->HasL()) { Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]"); } else { Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]"); } break; case 0xC: case 0xE: if (instr->HasL()) { Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]"); } else { Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]"); } break; case 0x4: case 0x5: case 0x6: case 0x7: case 0x9: case 0xB: { bool to_vfp_register = (instr->VLValue() == 0x1); if (to_vfp_register) { Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}"); } else { Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}"); } break; } default: Unknown(instr); // Not used by V8. } } else if (instr->CoprocessorValue() == 0xB) { switch (instr->OpcodeValue()) { case 0x2: // Load and store double to two GP registers if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { Unknown(instr); // Not used by V8. } else if (instr->HasL()) { Format(instr, "vmov'cond 'rt, 'rn, 'Dm"); } else { Format(instr, "vmov'cond 'Dm, 'rt, 'rn"); } break; case 0x8: case 0xA: if (instr->HasL()) { Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]"); } else { Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]"); } break; case 0xC: case 0xE: if (instr->HasL()) { Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]"); } else { Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]"); } break; case 0x4: case 0x5: case 0x6: case 0x7: case 0x9: case 0xB: { bool to_vfp_register = (instr->VLValue() == 0x1); if (to_vfp_register) { Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}"); } else { Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}"); } break; } default: Unknown(instr); // Not used by V8. } } else { Unknown(instr); // Not used by V8. } } void Decoder::DecodeSpecialCondition(Instruction* instr) { switch (instr->SpecialValue()) { case 5: if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && (instr->Bit(4) == 1)) { // vmovl signed if ((instr->VdValue() & 1) != 0) Unknown(instr); int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); int Vm = (instr->Bit(5) << 4) | instr->VmValue(); int imm3 = instr->Bits(21, 19); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vmovl.s%d q%d, d%d", imm3 * 8, Vd, Vm); } else { Unknown(instr); } break; case 7: if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && (instr->Bit(4) == 1)) { // vmovl unsigned if ((instr->VdValue() & 1) != 0) Unknown(instr); int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); int Vm = (instr->Bit(5) << 4) | instr->VmValue(); int imm3 = instr->Bits(21, 19); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vmovl.u%d q%d, d%d", imm3 * 8, Vd, Vm); } else { Unknown(instr); } break; case 8: if (instr->Bits(21, 20) == 0) { // vst1 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); int Rn = instr->VnValue(); int type = instr->Bits(11, 8); int size = instr->Bits(7, 6); int align = instr->Bits(5, 4); int Rm = instr->VmValue(); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vst1.%d ", (1 << size) << 3); FormatNeonList(Vd, type); Print(", "); FormatNeonMemory(Rn, align, Rm); } else if (instr->Bits(21, 20) == 2) { // vld1 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); int Rn = instr->VnValue(); int type = instr->Bits(11, 8); int size = instr->Bits(7, 6); int align = instr->Bits(5, 4); int Rm = instr->VmValue(); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vld1.%d ", (1 << size) << 3); FormatNeonList(Vd, type); Print(", "); FormatNeonMemory(Rn, align, Rm); } else { Unknown(instr); } break; case 0xA: if (instr->Bits(22, 20) == 7) { const char* option = "?"; switch (instr->Bits(3, 0)) { case 2: option = "oshst"; break; case 3: option = "osh"; break; case 6: option = "nshst"; break; case 7: option = "nsh"; break; case 10: option = "ishst"; break; case 11: option = "ish"; break; case 14: option = "st"; break; case 15: option = "sy"; break; } switch (instr->Bits(7, 4)) { case 1: Print("clrex"); break; case 4: out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "dsb %s", option); break; case 5: out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "dmb %s", option); break; default: Unknown(instr); } break; } [[fallthrough]]; case 0xB: if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) { int Rn = instr->Bits(19, 16); int offset = instr->Bits(11, 0); if (offset == 0) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "pld [r%d]", Rn); } else if (instr->Bit(23) == 0) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "pld [r%d, #-%d]", Rn, offset); } else { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "pld [r%d, #+%d]", Rn, offset); } } else { Unknown(instr); } break; case 0x1D: if (instr->Opc1Value() == 0x7 && instr->Bits(19, 18) == 0x2 && instr->Bits(11, 9) == 0x5 && instr->Bits(7, 6) == 0x1 && instr->Bit(4) == 0x0) { // VRINTA, VRINTN, VRINTP, VRINTM (floating-point) bool dp_operation = (instr->SzValue() == 1); int rounding_mode = instr->Bits(17, 16); switch (rounding_mode) { case 0x0: if (dp_operation) { Format(instr, "vrinta.f64.f64 'Dd, 'Dm"); } else { Unknown(instr); } break; case 0x1: if (dp_operation) { Format(instr, "vrintn.f64.f64 'Dd, 'Dm"); } else { Unknown(instr); } break; case 0x2: if (dp_operation) { Format(instr, "vrintp.f64.f64 'Dd, 'Dm"); } else { Unknown(instr); } break; case 0x3: if (dp_operation) { Format(instr, "vrintm.f64.f64 'Dd, 'Dm"); } else { Unknown(instr); } break; default: MOZ_CRASH(); // Case analysis is exhaustive. break; } } else { Unknown(instr); } break; default: Unknown(instr); break; } } # undef VERIFIY bool Decoder::IsConstantPoolAt(uint8_t* instr_ptr) { int instruction_bits = *(reinterpret_cast(instr_ptr)); return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker; } int Decoder::ConstantPoolSizeAt(uint8_t* instr_ptr) { if (IsConstantPoolAt(instr_ptr)) { int instruction_bits = *(reinterpret_cast(instr_ptr)); return DecodeConstantPoolLength(instruction_bits); } else { return -1; } } // Disassemble the instruction at *instr_ptr into the output buffer. int Decoder::InstructionDecode(uint8_t* instr_ptr) { Instruction* instr = Instruction::At(instr_ptr); // Print raw instruction bytes. out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ", instr->InstructionBits()); if (instr->ConditionField() == kSpecialCondition) { DecodeSpecialCondition(instr); return Instruction::kInstrSize; } int instruction_bits = *(reinterpret_cast(instr_ptr)); if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "constant pool begin (length %d)", DecodeConstantPoolLength(instruction_bits)); return Instruction::kInstrSize; } else if (instruction_bits == kCodeAgeJumpInstruction) { // The code age prologue has a constant immediatly following the jump // instruction. Instruction* target = Instruction::At(instr_ptr + Instruction::kInstrSize); DecodeType2(instr); SNPrintF(out_buffer_ + out_buffer_pos_, " (0x%08x)", target->InstructionBits()); return 2 * Instruction::kInstrSize; } switch (instr->TypeValue()) { case 0: case 1: { DecodeType01(instr); break; } case 2: { DecodeType2(instr); break; } case 3: { DecodeType3(instr); break; } case 4: { DecodeType4(instr); break; } case 5: { DecodeType5(instr); break; } case 6: { DecodeType6(instr); break; } case 7: { return DecodeType7(instr); } default: { // The type field is 3-bits in the ARM encoding. MOZ_CRASH(); break; } } return Instruction::kInstrSize; } } // namespace disasm # undef STRING_STARTS_WITH # undef VERIFY //------------------------------------------------------------------------------ namespace disasm { const char* NameConverter::NameOfAddress(uint8_t* addr) const { SNPrintF(tmp_buffer_, "%p", addr); return tmp_buffer_.start(); } const char* NameConverter::NameOfConstant(uint8_t* addr) const { return NameOfAddress(addr); } const char* NameConverter::NameOfCPURegister(int reg) const { return disasm::Registers::Name(reg); } const char* NameConverter::NameOfByteCPURegister(int reg) const { MOZ_CRASH(); // ARM does not have the concept of a byte register return "nobytereg"; } const char* NameConverter::NameOfXMMRegister(int reg) const { MOZ_CRASH(); // ARM does not have any XMM registers return "noxmmreg"; } const char* NameConverter::NameInCode(uint8_t* addr) const { // The default name converter is called for unknown code. So we will not try // to access any memory. return ""; } //------------------------------------------------------------------------------ Disassembler::Disassembler(const NameConverter& converter) : converter_(converter) {} Disassembler::~Disassembler() {} int Disassembler::InstructionDecode(V8Vector buffer, uint8_t* instruction) { Decoder d(converter_, buffer); return d.InstructionDecode(instruction); } int Disassembler::ConstantPoolSizeAt(uint8_t* instruction) { return Decoder::ConstantPoolSizeAt(instruction); } void Disassembler::Disassemble(FILE* f, uint8_t* begin, uint8_t* end) { NameConverter converter; Disassembler d(converter); for (uint8_t* pc = begin; pc < end;) { EmbeddedVector buffer; buffer[0] = '\0'; uint8_t* prev_pc = pc; pc += d.InstructionDecode(buffer, pc); fprintf(f, "%p %08x %s\n", prev_pc, *reinterpret_cast(prev_pc), buffer.start()); } } } // namespace disasm } // namespace jit } // namespace js #endif // JS_DISASM_ARM