/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_arm64_MacroAssembler_arm64_inl_h #define jit_arm64_MacroAssembler_arm64_inl_h #include "jit/arm64/MacroAssembler-arm64.h" namespace js { namespace jit { //{{{ check_macroassembler_style void MacroAssembler::move64(Register64 src, Register64 dest) { Mov(ARMRegister(dest.reg, 64), ARMRegister(src.reg, 64)); } void MacroAssembler::move64(Imm64 imm, Register64 dest) { Mov(ARMRegister(dest.reg, 64), imm.value); } void MacroAssembler::moveFloat32ToGPR(FloatRegister src, Register dest) { Fmov(ARMRegister(dest, 32), ARMFPRegister(src, 32)); } void MacroAssembler::moveGPRToFloat32(Register src, FloatRegister dest) { Fmov(ARMFPRegister(dest, 32), ARMRegister(src, 32)); } void MacroAssembler::move8SignExtend(Register src, Register dest) { Sxtb(ARMRegister(dest, 32), ARMRegister(src, 32)); } void MacroAssembler::move16SignExtend(Register src, Register dest) { Sxth(ARMRegister(dest, 32), ARMRegister(src, 32)); } void MacroAssembler::moveDoubleToGPR64(FloatRegister src, Register64 dest) { Fmov(ARMRegister(dest.reg, 64), ARMFPRegister(src, 64)); } void MacroAssembler::moveGPR64ToDouble(Register64 src, FloatRegister dest) { Fmov(ARMFPRegister(dest, 64), ARMRegister(src.reg, 64)); } void MacroAssembler::move64To32(Register64 src, Register dest) { Mov(ARMRegister(dest, 32), ARMRegister(src.reg, 32)); } void MacroAssembler::move32To64ZeroExtend(Register src, Register64 dest) { Mov(ARMRegister(dest.reg, 32), ARMRegister(src, 32)); } void MacroAssembler::move8To64SignExtend(Register src, Register64 dest) { Sxtb(ARMRegister(dest.reg, 64), ARMRegister(src, 32)); } void MacroAssembler::move16To64SignExtend(Register src, Register64 dest) { Sxth(ARMRegister(dest.reg, 64), ARMRegister(src, 32)); } void MacroAssembler::move32To64SignExtend(Register src, Register64 dest) { Sxtw(ARMRegister(dest.reg, 64), ARMRegister(src, 32)); } void MacroAssembler::move32SignExtendToPtr(Register src, Register dest) { Sxtw(ARMRegister(dest, 64), ARMRegister(src, 32)); } void MacroAssembler::move32ZeroExtendToPtr(Register src, Register dest) { Mov(ARMRegister(dest, 32), ARMRegister(src, 32)); } // =============================================================== // Load instructions void MacroAssembler::load32SignExtendToPtr(const Address& src, Register dest) { load32(src, dest); move32To64SignExtend(dest, Register64(dest)); } void MacroAssembler::loadAbiReturnAddress(Register dest) { movePtr(lr, dest); } // =============================================================== // Logical instructions void MacroAssembler::not32(Register reg) { Orn(ARMRegister(reg, 32), vixl::wzr, ARMRegister(reg, 32)); } void MacroAssembler::notPtr(Register reg) { Orn(ARMRegister(reg, 64), vixl::xzr, ARMRegister(reg, 64)); } void MacroAssembler::and32(Register src, Register dest) { And(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(ARMRegister(src, 32))); } void MacroAssembler::and32(Imm32 imm, Register dest) { And(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value)); } void MacroAssembler::and32(Imm32 imm, Register src, Register dest) { And(ARMRegister(dest, 32), ARMRegister(src, 32), Operand(imm.value)); } void MacroAssembler::and32(Imm32 imm, const Address& dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != dest.base); load32(dest, scratch32.asUnsized()); And(scratch32, scratch32, Operand(imm.value)); store32(scratch32.asUnsized(), dest); } void MacroAssembler::and32(const Address& src, Register dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != src.base); load32(src, scratch32.asUnsized()); And(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(scratch32)); } void MacroAssembler::andPtr(Register src, Register dest) { And(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(ARMRegister(src, 64))); } void MacroAssembler::andPtr(Imm32 imm, Register dest) { And(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value)); } void MacroAssembler::and64(Imm64 imm, Register64 dest) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); mov(ImmWord(imm.value), scratch); andPtr(scratch, dest.reg); } void MacroAssembler::and64(Register64 src, Register64 dest) { And(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), ARMRegister(src.reg, 64)); } void MacroAssembler::or64(Imm64 imm, Register64 dest) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); mov(ImmWord(imm.value), scratch); orPtr(scratch, dest.reg); } void MacroAssembler::xor64(Imm64 imm, Register64 dest) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); mov(ImmWord(imm.value), scratch); xorPtr(scratch, dest.reg); } void MacroAssembler::or32(Imm32 imm, Register dest) { Orr(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value)); } void MacroAssembler::or32(Register src, Register dest) { Orr(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(ARMRegister(src, 32))); } void MacroAssembler::or32(Imm32 imm, const Address& dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != dest.base); load32(dest, scratch32.asUnsized()); Orr(scratch32, scratch32, Operand(imm.value)); store32(scratch32.asUnsized(), dest); } void MacroAssembler::orPtr(Register src, Register dest) { Orr(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(ARMRegister(src, 64))); } void MacroAssembler::orPtr(Imm32 imm, Register dest) { Orr(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value)); } void MacroAssembler::or64(Register64 src, Register64 dest) { orPtr(src.reg, dest.reg); } void MacroAssembler::xor64(Register64 src, Register64 dest) { xorPtr(src.reg, dest.reg); } void MacroAssembler::xor32(Register src, Register dest) { Eor(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(ARMRegister(src, 32))); } void MacroAssembler::xor32(Imm32 imm, Register dest) { Eor(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value)); } void MacroAssembler::xor32(Imm32 imm, const Address& dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != dest.base); load32(dest, scratch32.asUnsized()); Eor(scratch32, scratch32, Operand(imm.value)); store32(scratch32.asUnsized(), dest); } void MacroAssembler::xor32(const Address& src, Register dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != src.base); load32(src, scratch32.asUnsized()); Eor(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(scratch32)); } void MacroAssembler::xorPtr(Register src, Register dest) { Eor(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(ARMRegister(src, 64))); } void MacroAssembler::xorPtr(Imm32 imm, Register dest) { Eor(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value)); } // =============================================================== // Swap instructions void MacroAssembler::byteSwap16SignExtend(Register reg) { rev16(ARMRegister(reg, 32), ARMRegister(reg, 32)); sxth(ARMRegister(reg, 32), ARMRegister(reg, 32)); } void MacroAssembler::byteSwap16ZeroExtend(Register reg) { rev16(ARMRegister(reg, 32), ARMRegister(reg, 32)); uxth(ARMRegister(reg, 32), ARMRegister(reg, 32)); } void MacroAssembler::byteSwap32(Register reg) { rev(ARMRegister(reg, 32), ARMRegister(reg, 32)); } void MacroAssembler::byteSwap64(Register64 reg) { rev(ARMRegister(reg.reg, 64), ARMRegister(reg.reg, 64)); } // =============================================================== // Arithmetic functions void MacroAssembler::add32(Register src, Register dest) { Add(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(ARMRegister(src, 32))); } void MacroAssembler::add32(Imm32 imm, Register dest) { Add(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value)); } void MacroAssembler::add32(Imm32 imm, const Address& dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != dest.base); Ldr(scratch32, toMemOperand(dest)); Add(scratch32, scratch32, Operand(imm.value)); Str(scratch32, toMemOperand(dest)); } void MacroAssembler::addPtr(Register src, Register dest) { addPtr(src, dest, dest); } void MacroAssembler::addPtr(Register src1, Register src2, Register dest) { Add(ARMRegister(dest, 64), ARMRegister(src1, 64), Operand(ARMRegister(src2, 64))); } void MacroAssembler::addPtr(Imm32 imm, Register dest) { addPtr(imm, dest, dest); } void MacroAssembler::addPtr(Imm32 imm, Register src, Register dest) { Add(ARMRegister(dest, 64), ARMRegister(src, 64), Operand(imm.value)); } void MacroAssembler::addPtr(ImmWord imm, Register dest) { Add(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value)); } void MacroAssembler::addPtr(Imm32 imm, const Address& dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); MOZ_ASSERT(scratch64.asUnsized() != dest.base); Ldr(scratch64, toMemOperand(dest)); Add(scratch64, scratch64, Operand(imm.value)); Str(scratch64, toMemOperand(dest)); } void MacroAssembler::addPtr(const Address& src, Register dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); MOZ_ASSERT(scratch64.asUnsized() != src.base); Ldr(scratch64, toMemOperand(src)); Add(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(scratch64)); } void MacroAssembler::add64(Register64 src, Register64 dest) { addPtr(src.reg, dest.reg); } void MacroAssembler::add64(Imm32 imm, Register64 dest) { Add(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value)); } void MacroAssembler::add64(Imm64 imm, Register64 dest) { Add(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value)); } CodeOffset MacroAssembler::sub32FromStackPtrWithPatch(Register dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); AutoForbidPoolsAndNops afp(this, /* max number of instructions in scope = */ 3); CodeOffset offs = CodeOffset(currentOffset()); movz(scratch, 0, 0); movk(scratch, 0, 16); Sub(ARMRegister(dest, 64), sp, scratch); return offs; } void MacroAssembler::patchSub32FromStackPtr(CodeOffset offset, Imm32 imm) { Instruction* i1 = getInstructionAt(BufferOffset(offset.offset())); MOZ_ASSERT(i1->IsMovz()); i1->SetInstructionBits(i1->InstructionBits() | ImmMoveWide(uint16_t(imm.value))); Instruction* i2 = getInstructionAt(BufferOffset(offset.offset() + 4)); MOZ_ASSERT(i2->IsMovk()); i2->SetInstructionBits(i2->InstructionBits() | ImmMoveWide(uint16_t(imm.value >> 16))); } void MacroAssembler::addDouble(FloatRegister src, FloatRegister dest) { fadd(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64), ARMFPRegister(src, 64)); } void MacroAssembler::addFloat32(FloatRegister src, FloatRegister dest) { fadd(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32), ARMFPRegister(src, 32)); } void MacroAssembler::sub32(Imm32 imm, Register dest) { Sub(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value)); } void MacroAssembler::sub32(Register src, Register dest) { Sub(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(ARMRegister(src, 32))); } void MacroAssembler::sub32(const Address& src, Register dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != src.base); load32(src, scratch32.asUnsized()); Sub(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(scratch32)); } void MacroAssembler::subPtr(Register src, Register dest) { Sub(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(ARMRegister(src, 64))); } void MacroAssembler::subPtr(Register src, const Address& dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); MOZ_ASSERT(scratch64.asUnsized() != dest.base); Ldr(scratch64, toMemOperand(dest)); Sub(scratch64, scratch64, Operand(ARMRegister(src, 64))); Str(scratch64, toMemOperand(dest)); } void MacroAssembler::subPtr(Imm32 imm, Register dest) { Sub(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value)); } void MacroAssembler::subPtr(const Address& addr, Register dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); MOZ_ASSERT(scratch64.asUnsized() != addr.base); Ldr(scratch64, toMemOperand(addr)); Sub(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(scratch64)); } void MacroAssembler::sub64(Register64 src, Register64 dest) { Sub(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), ARMRegister(src.reg, 64)); } void MacroAssembler::sub64(Imm64 imm, Register64 dest) { Sub(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value)); } void MacroAssembler::subDouble(FloatRegister src, FloatRegister dest) { fsub(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64), ARMFPRegister(src, 64)); } void MacroAssembler::subFloat32(FloatRegister src, FloatRegister dest) { fsub(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32), ARMFPRegister(src, 32)); } void MacroAssembler::mul32(Register rhs, Register srcDest) { mul32(srcDest, rhs, srcDest, nullptr); } void MacroAssembler::mul32(Register src1, Register src2, Register dest, Label* onOver) { Smull(ARMRegister(dest, 64), ARMRegister(src1, 32), ARMRegister(src2, 32)); if (onOver) { Cmp(ARMRegister(dest, 64), Operand(ARMRegister(dest, 32), vixl::SXTW)); B(onOver, NotEqual); } // Clear upper 32 bits. Mov(ARMRegister(dest, 32), ARMRegister(dest, 32)); } void MacroAssembler::mul64(Imm64 imm, const Register64& dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); MOZ_ASSERT(dest.reg != scratch64.asUnsized()); mov(ImmWord(imm.value), scratch64.asUnsized()); Mul(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), scratch64); } void MacroAssembler::mul64(const Register64& src, const Register64& dest, const Register temp) { MOZ_ASSERT(temp == Register::Invalid()); Mul(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), ARMRegister(src.reg, 64)); } void MacroAssembler::mulBy3(Register src, Register dest) { ARMRegister xdest(dest, 64); ARMRegister xsrc(src, 64); Add(xdest, xsrc, Operand(xsrc, vixl::LSL, 1)); } void MacroAssembler::mulFloat32(FloatRegister src, FloatRegister dest) { fmul(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32), ARMFPRegister(src, 32)); } void MacroAssembler::mulDouble(FloatRegister src, FloatRegister dest) { fmul(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64), ARMFPRegister(src, 64)); } void MacroAssembler::mulDoublePtr(ImmPtr imm, Register temp, FloatRegister dest) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(temp != scratch); movePtr(imm, scratch); const ARMFPRegister scratchDouble = temps.AcquireD(); Ldr(scratchDouble, MemOperand(Address(scratch, 0))); fmul(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64), scratchDouble); } void MacroAssembler::quotient32(Register rhs, Register srcDest, bool isUnsigned) { if (isUnsigned) { Udiv(ARMRegister(srcDest, 32), ARMRegister(srcDest, 32), ARMRegister(rhs, 32)); } else { Sdiv(ARMRegister(srcDest, 32), ARMRegister(srcDest, 32), ARMRegister(rhs, 32)); } } // This does not deal with x % 0 or INT_MIN % -1, the caller needs to filter // those cases when they may occur. void MacroAssembler::remainder32(Register rhs, Register srcDest, bool isUnsigned) { vixl::UseScratchRegisterScope temps(this); ARMRegister scratch = temps.AcquireW(); if (isUnsigned) { Udiv(scratch, ARMRegister(srcDest, 32), ARMRegister(rhs, 32)); } else { Sdiv(scratch, ARMRegister(srcDest, 32), ARMRegister(rhs, 32)); } Mul(scratch, scratch, ARMRegister(rhs, 32)); Sub(ARMRegister(srcDest, 32), ARMRegister(srcDest, 32), scratch); } void MacroAssembler::divFloat32(FloatRegister src, FloatRegister dest) { fdiv(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32), ARMFPRegister(src, 32)); } void MacroAssembler::divDouble(FloatRegister src, FloatRegister dest) { fdiv(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64), ARMFPRegister(src, 64)); } void MacroAssembler::inc64(AbsoluteAddress dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratchAddr64 = temps.AcquireX(); const ARMRegister scratch64 = temps.AcquireX(); Mov(scratchAddr64, uint64_t(dest.addr)); Ldr(scratch64, MemOperand(scratchAddr64, 0)); Add(scratch64, scratch64, Operand(1)); Str(scratch64, MemOperand(scratchAddr64, 0)); } void MacroAssembler::neg32(Register reg) { Negs(ARMRegister(reg, 32), Operand(ARMRegister(reg, 32))); } void MacroAssembler::neg64(Register64 reg) { negPtr(reg.reg); } void MacroAssembler::negPtr(Register reg) { Negs(ARMRegister(reg, 64), Operand(ARMRegister(reg, 64))); } void MacroAssembler::negateFloat(FloatRegister reg) { fneg(ARMFPRegister(reg, 32), ARMFPRegister(reg, 32)); } void MacroAssembler::negateDouble(FloatRegister reg) { fneg(ARMFPRegister(reg, 64), ARMFPRegister(reg, 64)); } void MacroAssembler::absFloat32(FloatRegister src, FloatRegister dest) { fabs(ARMFPRegister(dest, 32), ARMFPRegister(src, 32)); } void MacroAssembler::absDouble(FloatRegister src, FloatRegister dest) { fabs(ARMFPRegister(dest, 64), ARMFPRegister(src, 64)); } void MacroAssembler::sqrtFloat32(FloatRegister src, FloatRegister dest) { fsqrt(ARMFPRegister(dest, 32), ARMFPRegister(src, 32)); } void MacroAssembler::sqrtDouble(FloatRegister src, FloatRegister dest) { fsqrt(ARMFPRegister(dest, 64), ARMFPRegister(src, 64)); } void MacroAssembler::minFloat32(FloatRegister other, FloatRegister srcDest, bool handleNaN) { MOZ_ASSERT(handleNaN); // Always true for wasm fmin(ARMFPRegister(srcDest, 32), ARMFPRegister(srcDest, 32), ARMFPRegister(other, 32)); } void MacroAssembler::minDouble(FloatRegister other, FloatRegister srcDest, bool handleNaN) { MOZ_ASSERT(handleNaN); // Always true for wasm fmin(ARMFPRegister(srcDest, 64), ARMFPRegister(srcDest, 64), ARMFPRegister(other, 64)); } void MacroAssembler::maxFloat32(FloatRegister other, FloatRegister srcDest, bool handleNaN) { MOZ_ASSERT(handleNaN); // Always true for wasm fmax(ARMFPRegister(srcDest, 32), ARMFPRegister(srcDest, 32), ARMFPRegister(other, 32)); } void MacroAssembler::maxDouble(FloatRegister other, FloatRegister srcDest, bool handleNaN) { MOZ_ASSERT(handleNaN); // Always true for wasm fmax(ARMFPRegister(srcDest, 64), ARMFPRegister(srcDest, 64), ARMFPRegister(other, 64)); } // =============================================================== // Shift functions void MacroAssembler::lshiftPtr(Imm32 imm, Register dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 64); Lsl(ARMRegister(dest, 64), ARMRegister(dest, 64), imm.value); } void MacroAssembler::lshiftPtr(Register shift, Register dest) { Lsl(ARMRegister(dest, 64), ARMRegister(dest, 64), ARMRegister(shift, 64)); } void MacroAssembler::lshift64(Imm32 imm, Register64 dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 64); lshiftPtr(imm, dest.reg); } void MacroAssembler::lshift64(Register shift, Register64 srcDest) { Lsl(ARMRegister(srcDest.reg, 64), ARMRegister(srcDest.reg, 64), ARMRegister(shift, 64)); } void MacroAssembler::lshift32(Register shift, Register dest) { Lsl(ARMRegister(dest, 32), ARMRegister(dest, 32), ARMRegister(shift, 32)); } void MacroAssembler::flexibleLshift32(Register src, Register dest) { lshift32(src, dest); } void MacroAssembler::lshift32(Imm32 imm, Register dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 32); Lsl(ARMRegister(dest, 32), ARMRegister(dest, 32), imm.value); } void MacroAssembler::rshiftPtr(Imm32 imm, Register dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 64); Lsr(ARMRegister(dest, 64), ARMRegister(dest, 64), imm.value); } void MacroAssembler::rshiftPtr(Imm32 imm, Register src, Register dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 64); Lsr(ARMRegister(dest, 64), ARMRegister(src, 64), imm.value); } void MacroAssembler::rshiftPtr(Register shift, Register dest) { Lsr(ARMRegister(dest, 64), ARMRegister(dest, 64), ARMRegister(shift, 64)); } void MacroAssembler::rshift32(Register shift, Register dest) { Lsr(ARMRegister(dest, 32), ARMRegister(dest, 32), ARMRegister(shift, 32)); } void MacroAssembler::flexibleRshift32(Register src, Register dest) { rshift32(src, dest); } void MacroAssembler::rshift32(Imm32 imm, Register dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 32); Lsr(ARMRegister(dest, 32), ARMRegister(dest, 32), imm.value); } void MacroAssembler::rshiftPtrArithmetic(Imm32 imm, Register dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 64); Asr(ARMRegister(dest, 64), ARMRegister(dest, 64), imm.value); } void MacroAssembler::rshift32Arithmetic(Register shift, Register dest) { Asr(ARMRegister(dest, 32), ARMRegister(dest, 32), ARMRegister(shift, 32)); } void MacroAssembler::rshift32Arithmetic(Imm32 imm, Register dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 32); Asr(ARMRegister(dest, 32), ARMRegister(dest, 32), imm.value); } void MacroAssembler::flexibleRshift32Arithmetic(Register src, Register dest) { rshift32Arithmetic(src, dest); } void MacroAssembler::rshift64(Imm32 imm, Register64 dest) { MOZ_ASSERT(0 <= imm.value && imm.value < 64); rshiftPtr(imm, dest.reg); } void MacroAssembler::rshift64(Register shift, Register64 srcDest) { Lsr(ARMRegister(srcDest.reg, 64), ARMRegister(srcDest.reg, 64), ARMRegister(shift, 64)); } void MacroAssembler::rshift64Arithmetic(Imm32 imm, Register64 dest) { Asr(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), imm.value); } void MacroAssembler::rshift64Arithmetic(Register shift, Register64 srcDest) { Asr(ARMRegister(srcDest.reg, 64), ARMRegister(srcDest.reg, 64), ARMRegister(shift, 64)); } // =============================================================== // Condition functions template void MacroAssembler::cmp32Set(Condition cond, T1 lhs, T2 rhs, Register dest) { cmp32(lhs, rhs); emitSet(cond, dest); } template void MacroAssembler::cmpPtrSet(Condition cond, T1 lhs, T2 rhs, Register dest) { cmpPtr(lhs, rhs); emitSet(cond, dest); } // =============================================================== // Rotation functions void MacroAssembler::rotateLeft(Imm32 count, Register input, Register dest) { Ror(ARMRegister(dest, 32), ARMRegister(input, 32), (32 - count.value) & 31); } void MacroAssembler::rotateLeft(Register count, Register input, Register dest) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireW(); // Really 32 - count, but the upper bits of the result are ignored. Neg(scratch, ARMRegister(count, 32)); Ror(ARMRegister(dest, 32), ARMRegister(input, 32), scratch); } void MacroAssembler::rotateRight(Imm32 count, Register input, Register dest) { Ror(ARMRegister(dest, 32), ARMRegister(input, 32), count.value & 31); } void MacroAssembler::rotateRight(Register count, Register input, Register dest) { Ror(ARMRegister(dest, 32), ARMRegister(input, 32), ARMRegister(count, 32)); } void MacroAssembler::rotateLeft64(Register count, Register64 input, Register64 dest, Register temp) { MOZ_ASSERT(temp == Register::Invalid()); vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); // Really 64 - count, but the upper bits of the result are ignored. Neg(scratch, ARMRegister(count, 64)); Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64), scratch); } void MacroAssembler::rotateLeft64(Imm32 count, Register64 input, Register64 dest, Register temp) { MOZ_ASSERT(temp == Register::Invalid()); Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64), (64 - count.value) & 63); } void MacroAssembler::rotateRight64(Register count, Register64 input, Register64 dest, Register temp) { MOZ_ASSERT(temp == Register::Invalid()); Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64), ARMRegister(count, 64)); } void MacroAssembler::rotateRight64(Imm32 count, Register64 input, Register64 dest, Register temp) { MOZ_ASSERT(temp == Register::Invalid()); Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64), count.value & 63); } // =============================================================== // Bit counting functions void MacroAssembler::clz32(Register src, Register dest, bool knownNotZero) { Clz(ARMRegister(dest, 32), ARMRegister(src, 32)); } void MacroAssembler::ctz32(Register src, Register dest, bool knownNotZero) { Rbit(ARMRegister(dest, 32), ARMRegister(src, 32)); Clz(ARMRegister(dest, 32), ARMRegister(dest, 32)); } void MacroAssembler::clz64(Register64 src, Register dest) { Clz(ARMRegister(dest, 64), ARMRegister(src.reg, 64)); } void MacroAssembler::ctz64(Register64 src, Register dest) { Rbit(ARMRegister(dest, 64), ARMRegister(src.reg, 64)); Clz(ARMRegister(dest, 64), ARMRegister(dest, 64)); } void MacroAssembler::popcnt32(Register src_, Register dest_, Register tmp_) { MOZ_ASSERT(tmp_ != Register::Invalid()); // Equivalent to mozilla::CountPopulation32(). ARMRegister src(src_, 32); ARMRegister dest(dest_, 32); ARMRegister tmp(tmp_, 32); Mov(tmp, src); if (src_ != dest_) { Mov(dest, src); } Lsr(dest, dest, 1); And(dest, dest, 0x55555555); Sub(dest, tmp, dest); Lsr(tmp, dest, 2); And(tmp, tmp, 0x33333333); And(dest, dest, 0x33333333); Add(dest, tmp, dest); Add(dest, dest, Operand(dest, vixl::LSR, 4)); And(dest, dest, 0x0F0F0F0F); Add(dest, dest, Operand(dest, vixl::LSL, 8)); Add(dest, dest, Operand(dest, vixl::LSL, 16)); Lsr(dest, dest, 24); } void MacroAssembler::popcnt64(Register64 src_, Register64 dest_, Register tmp_) { MOZ_ASSERT(tmp_ != Register::Invalid()); // Equivalent to mozilla::CountPopulation64(), though likely more efficient. ARMRegister src(src_.reg, 64); ARMRegister dest(dest_.reg, 64); ARMRegister tmp(tmp_, 64); Mov(tmp, src); if (src_ != dest_) { Mov(dest, src); } Lsr(dest, dest, 1); And(dest, dest, 0x5555555555555555); Sub(dest, tmp, dest); Lsr(tmp, dest, 2); And(tmp, tmp, 0x3333333333333333); And(dest, dest, 0x3333333333333333); Add(dest, tmp, dest); Add(dest, dest, Operand(dest, vixl::LSR, 4)); And(dest, dest, 0x0F0F0F0F0F0F0F0F); Add(dest, dest, Operand(dest, vixl::LSL, 8)); Add(dest, dest, Operand(dest, vixl::LSL, 16)); Add(dest, dest, Operand(dest, vixl::LSL, 32)); Lsr(dest, dest, 56); } // =============================================================== // Branch functions template void MacroAssembler::branch32(Condition cond, Register lhs, Register rhs, L label) { cmp32(lhs, rhs); B(label, cond); } template void MacroAssembler::branch32(Condition cond, Register lhs, Imm32 imm, L label) { if (imm.value == 0 && cond == Assembler::Equal) { Cbz(ARMRegister(lhs, 32), label); } else if (imm.value == 0 && cond == Assembler::NotEqual) { Cbnz(ARMRegister(lhs, 32), label); } else { cmp32(lhs, imm); B(label, cond); } } void MacroAssembler::branch32(Condition cond, Register lhs, const Address& rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs); MOZ_ASSERT(scratch != rhs.base); load32(rhs, scratch); branch32(cond, lhs, scratch, label); } void MacroAssembler::branch32(Condition cond, const Address& lhs, Register rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); MOZ_ASSERT(scratch != rhs); load32(lhs, scratch); branch32(cond, scratch, rhs, label); } void MacroAssembler::branch32(Condition cond, const Address& lhs, Imm32 imm, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); load32(lhs, scratch); branch32(cond, scratch, imm, label); } void MacroAssembler::branch32(Condition cond, const AbsoluteAddress& lhs, Register rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); movePtr(ImmPtr(lhs.addr), scratch); branch32(cond, Address(scratch, 0), rhs, label); } void MacroAssembler::branch32(Condition cond, const AbsoluteAddress& lhs, Imm32 rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); load32(lhs, scratch); branch32(cond, scratch, rhs, label); } void MacroAssembler::branch32(Condition cond, const BaseIndex& lhs, Imm32 rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); MOZ_ASSERT(scratch32.asUnsized() != lhs.base); MOZ_ASSERT(scratch32.asUnsized() != lhs.index); doBaseIndex(scratch32, lhs, vixl::LDR_w); branch32(cond, scratch32.asUnsized(), rhs, label); } void MacroAssembler::branch32(Condition cond, wasm::SymbolicAddress lhs, Imm32 rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); movePtr(lhs, scratch); branch32(cond, Address(scratch, 0), rhs, label); } void MacroAssembler::branch64(Condition cond, Register64 lhs, Imm64 val, Label* success, Label* fail) { if (val.value == 0 && cond == Assembler::Equal) { Cbz(ARMRegister(lhs.reg, 64), success); } else if (val.value == 0 && cond == Assembler::NotEqual) { Cbnz(ARMRegister(lhs.reg, 64), success); } else { Cmp(ARMRegister(lhs.reg, 64), val.value); B(success, cond); } if (fail) { B(fail); } } void MacroAssembler::branch64(Condition cond, Register64 lhs, Register64 rhs, Label* success, Label* fail) { Cmp(ARMRegister(lhs.reg, 64), ARMRegister(rhs.reg, 64)); B(success, cond); if (fail) { B(fail); } } void MacroAssembler::branch64(Condition cond, const Address& lhs, Imm64 val, Label* label) { MOZ_ASSERT(cond == Assembler::NotEqual, "other condition codes not supported"); branchPtr(cond, lhs, ImmWord(val.value), label); } void MacroAssembler::branch64(Condition cond, const Address& lhs, const Address& rhs, Register scratch, Label* label) { MOZ_ASSERT(cond == Assembler::NotEqual, "other condition codes not supported"); MOZ_ASSERT(lhs.base != scratch); MOZ_ASSERT(rhs.base != scratch); loadPtr(rhs, scratch); branchPtr(cond, lhs, scratch, label); } template void MacroAssembler::branchPtr(Condition cond, Register lhs, Register rhs, L label) { Cmp(ARMRegister(lhs, 64), ARMRegister(rhs, 64)); B(label, cond); } void MacroAssembler::branchPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) { if (rhs.value == 0 && cond == Assembler::Equal) { Cbz(ARMRegister(lhs, 64), label); } else if (rhs.value == 0 && cond == Assembler::NotEqual) { Cbnz(ARMRegister(lhs, 64), label); } else { cmpPtr(lhs, rhs); B(label, cond); } } void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmPtr rhs, Label* label) { if (rhs.value == 0 && cond == Assembler::Equal) { Cbz(ARMRegister(lhs, 64), label); } else if (rhs.value == 0 && cond == Assembler::NotEqual) { Cbnz(ARMRegister(lhs, 64), label); } else { cmpPtr(lhs, rhs); B(label, cond); } } void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmGCPtr rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs); movePtr(rhs, scratch); branchPtr(cond, lhs, scratch, label); } void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmWord rhs, Label* label) { if (rhs.value == 0 && cond == Assembler::Equal) { Cbz(ARMRegister(lhs, 64), label); } else if (rhs.value == 0 && cond == Assembler::NotEqual) { Cbnz(ARMRegister(lhs, 64), label); } else { cmpPtr(lhs, rhs); B(label, cond); } } template void MacroAssembler::branchPtr(Condition cond, const Address& lhs, Register rhs, L label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); MOZ_ASSERT(scratch != rhs); loadPtr(lhs, scratch); branchPtr(cond, scratch, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmPtr rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); loadPtr(lhs, scratch); branchPtr(cond, scratch, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmGCPtr rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch1_64 = temps.AcquireX(); const ARMRegister scratch2_64 = temps.AcquireX(); MOZ_ASSERT(scratch1_64.asUnsized() != lhs.base); MOZ_ASSERT(scratch2_64.asUnsized() != lhs.base); movePtr(rhs, scratch1_64.asUnsized()); loadPtr(lhs, scratch2_64.asUnsized()); branchPtr(cond, scratch2_64.asUnsized(), scratch1_64.asUnsized(), label); } void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmWord rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); loadPtr(lhs, scratch); branchPtr(cond, scratch, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const AbsoluteAddress& lhs, Register rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != rhs); loadPtr(lhs, scratch); branchPtr(cond, scratch, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const AbsoluteAddress& lhs, ImmWord rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); loadPtr(lhs, scratch); branchPtr(cond, scratch, rhs, label); } void MacroAssembler::branchPtr(Condition cond, wasm::SymbolicAddress lhs, Register rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != rhs); loadPtr(lhs, scratch); branchPtr(cond, scratch, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const BaseIndex& lhs, ImmWord rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); MOZ_ASSERT(scratch != lhs.index); loadPtr(lhs, scratch); branchPtr(cond, scratch, rhs, label); } void MacroAssembler::branchPrivatePtr(Condition cond, const Address& lhs, Register rhs, Label* label) { branchPtr(cond, lhs, rhs, label); } void MacroAssembler::branchFloat(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs, Label* label) { compareFloat(cond, lhs, rhs); switch (cond) { case DoubleNotEqual: { Label unordered; // not equal *and* ordered branch(Overflow, &unordered); branch(NotEqual, label); bind(&unordered); break; } case DoubleEqualOrUnordered: branch(Overflow, label); branch(Equal, label); break; default: branch(Condition(cond), label); } } void MacroAssembler::branchTruncateFloat32MaybeModUint32(FloatRegister src, Register dest, Label* fail) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); ARMFPRegister src32(src, 32); ARMRegister dest64(dest, 64); MOZ_ASSERT(!scratch64.Is(dest64)); Fcvtzs(dest64, src32); Add(scratch64, dest64, Operand(0x7fffffffffffffff)); Cmn(scratch64, 3); B(fail, Assembler::Above); And(dest64, dest64, Operand(0xffffffff)); } void MacroAssembler::branchTruncateFloat32ToInt32(FloatRegister src, Register dest, Label* fail) { convertFloat32ToInt32(src, dest, fail, false); } void MacroAssembler::branchDouble(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs, Label* label) { compareDouble(cond, lhs, rhs); switch (cond) { case DoubleNotEqual: { Label unordered; // not equal *and* ordered branch(Overflow, &unordered); branch(NotEqual, label); bind(&unordered); break; } case DoubleEqualOrUnordered: branch(Overflow, label); branch(Equal, label); break; default: branch(Condition(cond), label); } } void MacroAssembler::branchTruncateDoubleMaybeModUint32(FloatRegister src, Register dest, Label* fail) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); // An out of range integer will be saturated to the destination size. ARMFPRegister src64(src, 64); ARMRegister dest64(dest, 64); MOZ_ASSERT(!scratch64.Is(dest64)); Fcvtzs(dest64, src64); Add(scratch64, dest64, Operand(0x7fffffffffffffff)); Cmn(scratch64, 3); B(fail, Assembler::Above); And(dest64, dest64, Operand(0xffffffff)); } void MacroAssembler::branchTruncateDoubleToInt32(FloatRegister src, Register dest, Label* fail) { convertDoubleToInt32(src, dest, fail, false); } template void MacroAssembler::branchAdd32(Condition cond, T src, Register dest, Label* label) { adds32(src, dest); B(label, cond); } template void MacroAssembler::branchSub32(Condition cond, T src, Register dest, Label* label) { subs32(src, dest); branch(cond, label); } template void MacroAssembler::branchMul32(Condition cond, T src, Register dest, Label* label) { MOZ_ASSERT(cond == Assembler::Overflow); vixl::UseScratchRegisterScope temps(this); mul32(src, dest, dest, label); } template void MacroAssembler::branchRshift32(Condition cond, T src, Register dest, Label* label) { MOZ_ASSERT(cond == Zero || cond == NonZero); rshift32(src, dest); branch32(cond == Zero ? Equal : NotEqual, dest, Imm32(0), label); } void MacroAssembler::branchNeg32(Condition cond, Register reg, Label* label) { MOZ_ASSERT(cond == Overflow); neg32(reg); B(label, cond); } template void MacroAssembler::branchAddPtr(Condition cond, T src, Register dest, Label* label) { adds64(src, dest); B(label, cond); } template void MacroAssembler::branchSubPtr(Condition cond, T src, Register dest, Label* label) { subs64(src, dest); B(label, cond); } void MacroAssembler::branchMulPtr(Condition cond, Register src, Register dest, Label* label) { MOZ_ASSERT(cond == Assembler::Overflow); vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); const ARMRegister src64(src, 64); const ARMRegister dest64(dest, 64); Smulh(scratch64, dest64, src64); Mul(dest64, dest64, src64); Cmp(scratch64, Operand(dest64, vixl::ASR, 63)); B(label, NotEqual); } void MacroAssembler::decBranchPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) { Subs(ARMRegister(lhs, 64), ARMRegister(lhs, 64), Operand(rhs.value)); B(cond, label); } template void MacroAssembler::branchTest32(Condition cond, Register lhs, Register rhs, L label) { MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned); // The x86-biased front end prefers |test foo, foo| to |cmp foo, #0|. We look // for the former pattern and expand as Cbz/Cbnz when possible. if (lhs == rhs && cond == Zero) { Cbz(ARMRegister(lhs, 32), label); } else if (lhs == rhs && cond == NonZero) { Cbnz(ARMRegister(lhs, 32), label); } else { test32(lhs, rhs); B(label, cond); } } template void MacroAssembler::branchTest32(Condition cond, Register lhs, Imm32 rhs, L label) { MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned); test32(lhs, rhs); B(label, cond); } void MacroAssembler::branchTest32(Condition cond, const Address& lhs, Imm32 rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); load32(lhs, scratch); branchTest32(cond, scratch, rhs, label); } void MacroAssembler::branchTest32(Condition cond, const AbsoluteAddress& lhs, Imm32 rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); load32(lhs, scratch); branchTest32(cond, scratch, rhs, label); } template void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Register rhs, L label) { // See branchTest32. MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned); if (lhs == rhs && cond == Zero) { Cbz(ARMRegister(lhs, 64), label); } else if (lhs == rhs && cond == NonZero) { Cbnz(ARMRegister(lhs, 64), label); } else { Tst(ARMRegister(lhs, 64), Operand(ARMRegister(rhs, 64))); B(label, cond); } } void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) { Tst(ARMRegister(lhs, 64), Operand(rhs.value)); B(label, cond); } void MacroAssembler::branchTestPtr(Condition cond, const Address& lhs, Imm32 rhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const Register scratch = temps.AcquireX().asUnsized(); MOZ_ASSERT(scratch != lhs.base); loadPtr(lhs, scratch); branchTestPtr(cond, scratch, rhs, label); } template void MacroAssembler::branchTest64(Condition cond, Register64 lhs, Register64 rhs, Register temp, L label) { branchTestPtr(cond, lhs.reg, rhs.reg, label); } void MacroAssembler::branchTestUndefined(Condition cond, Register tag, Label* label) { branchTestUndefinedImpl(cond, tag, label); } void MacroAssembler::branchTestUndefined(Condition cond, const Address& address, Label* label) { branchTestUndefinedImpl(cond, address, label); } void MacroAssembler::branchTestUndefined(Condition cond, const BaseIndex& address, Label* label) { branchTestUndefinedImpl(cond, address, label); } void MacroAssembler::branchTestUndefined(Condition cond, const ValueOperand& value, Label* label) { branchTestUndefinedImpl(cond, value, label); } template void MacroAssembler::branchTestUndefinedImpl(Condition cond, const T& t, Label* label) { Condition c = testUndefined(cond, t); B(label, c); } void MacroAssembler::branchTestInt32(Condition cond, Register tag, Label* label) { branchTestInt32Impl(cond, tag, label); } void MacroAssembler::branchTestInt32(Condition cond, const Address& address, Label* label) { branchTestInt32Impl(cond, address, label); } void MacroAssembler::branchTestInt32(Condition cond, const BaseIndex& address, Label* label) { branchTestInt32Impl(cond, address, label); } void MacroAssembler::branchTestInt32(Condition cond, const ValueOperand& value, Label* label) { branchTestInt32Impl(cond, value, label); } template void MacroAssembler::branchTestInt32Impl(Condition cond, const T& t, Label* label) { Condition c = testInt32(cond, t); B(label, c); } void MacroAssembler::branchTestInt32Truthy(bool truthy, const ValueOperand& value, Label* label) { Condition c = testInt32Truthy(truthy, value); B(label, c); } void MacroAssembler::branchTestDouble(Condition cond, Register tag, Label* label) { branchTestDoubleImpl(cond, tag, label); } void MacroAssembler::branchTestDouble(Condition cond, const Address& address, Label* label) { branchTestDoubleImpl(cond, address, label); } void MacroAssembler::branchTestDouble(Condition cond, const BaseIndex& address, Label* label) { branchTestDoubleImpl(cond, address, label); } void MacroAssembler::branchTestDouble(Condition cond, const ValueOperand& value, Label* label) { branchTestDoubleImpl(cond, value, label); } template void MacroAssembler::branchTestDoubleImpl(Condition cond, const T& t, Label* label) { Condition c = testDouble(cond, t); B(label, c); } void MacroAssembler::branchTestDoubleTruthy(bool truthy, FloatRegister reg, Label* label) { Fcmp(ARMFPRegister(reg, 64), 0.0); if (!truthy) { // falsy values are zero, and NaN. branch(Zero, label); branch(Overflow, label); } else { // truthy values are non-zero and not nan. // If it is overflow Label onFalse; branch(Zero, &onFalse); branch(Overflow, &onFalse); B(label); bind(&onFalse); } } void MacroAssembler::branchTestNumber(Condition cond, Register tag, Label* label) { branchTestNumberImpl(cond, tag, label); } void MacroAssembler::branchTestNumber(Condition cond, const ValueOperand& value, Label* label) { branchTestNumberImpl(cond, value, label); } template void MacroAssembler::branchTestNumberImpl(Condition cond, const T& t, Label* label) { Condition c = testNumber(cond, t); B(label, c); } void MacroAssembler::branchTestBoolean(Condition cond, Register tag, Label* label) { branchTestBooleanImpl(cond, tag, label); } void MacroAssembler::branchTestBoolean(Condition cond, const Address& address, Label* label) { branchTestBooleanImpl(cond, address, label); } void MacroAssembler::branchTestBoolean(Condition cond, const BaseIndex& address, Label* label) { branchTestBooleanImpl(cond, address, label); } void MacroAssembler::branchTestBoolean(Condition cond, const ValueOperand& value, Label* label) { branchTestBooleanImpl(cond, value, label); } template void MacroAssembler::branchTestBooleanImpl(Condition cond, const T& tag, Label* label) { Condition c = testBoolean(cond, tag); B(label, c); } void MacroAssembler::branchTestBooleanTruthy(bool truthy, const ValueOperand& value, Label* label) { Condition c = testBooleanTruthy(truthy, value); B(label, c); } void MacroAssembler::branchTestString(Condition cond, Register tag, Label* label) { branchTestStringImpl(cond, tag, label); } void MacroAssembler::branchTestString(Condition cond, const Address& address, Label* label) { branchTestStringImpl(cond, address, label); } void MacroAssembler::branchTestString(Condition cond, const BaseIndex& address, Label* label) { branchTestStringImpl(cond, address, label); } void MacroAssembler::branchTestString(Condition cond, const ValueOperand& value, Label* label) { branchTestStringImpl(cond, value, label); } template void MacroAssembler::branchTestStringImpl(Condition cond, const T& t, Label* label) { Condition c = testString(cond, t); B(label, c); } void MacroAssembler::branchTestStringTruthy(bool truthy, const ValueOperand& value, Label* label) { Condition c = testStringTruthy(truthy, value); B(label, c); } void MacroAssembler::branchTestSymbol(Condition cond, Register tag, Label* label) { branchTestSymbolImpl(cond, tag, label); } void MacroAssembler::branchTestSymbol(Condition cond, const Address& address, Label* label) { branchTestSymbolImpl(cond, address, label); } void MacroAssembler::branchTestSymbol(Condition cond, const BaseIndex& address, Label* label) { branchTestSymbolImpl(cond, address, label); } void MacroAssembler::branchTestSymbol(Condition cond, const ValueOperand& value, Label* label) { branchTestSymbolImpl(cond, value, label); } template void MacroAssembler::branchTestSymbolImpl(Condition cond, const T& t, Label* label) { Condition c = testSymbol(cond, t); B(label, c); } void MacroAssembler::branchTestBigInt(Condition cond, Register tag, Label* label) { branchTestBigIntImpl(cond, tag, label); } void MacroAssembler::branchTestBigInt(Condition cond, const Address& address, Label* label) { branchTestBigIntImpl(cond, address, label); } void MacroAssembler::branchTestBigInt(Condition cond, const BaseIndex& address, Label* label) { branchTestBigIntImpl(cond, address, label); } void MacroAssembler::branchTestBigInt(Condition cond, const ValueOperand& value, Label* label) { branchTestBigIntImpl(cond, value, label); } template void MacroAssembler::branchTestBigIntImpl(Condition cond, const T& t, Label* label) { Condition c = testBigInt(cond, t); B(label, c); } void MacroAssembler::branchTestBigIntTruthy(bool truthy, const ValueOperand& value, Label* label) { Condition c = testBigIntTruthy(truthy, value); B(label, c); } void MacroAssembler::branchTestNull(Condition cond, Register tag, Label* label) { branchTestNullImpl(cond, tag, label); } void MacroAssembler::branchTestNull(Condition cond, const Address& address, Label* label) { branchTestNullImpl(cond, address, label); } void MacroAssembler::branchTestNull(Condition cond, const BaseIndex& address, Label* label) { branchTestNullImpl(cond, address, label); } void MacroAssembler::branchTestNull(Condition cond, const ValueOperand& value, Label* label) { branchTestNullImpl(cond, value, label); } template void MacroAssembler::branchTestNullImpl(Condition cond, const T& t, Label* label) { Condition c = testNull(cond, t); B(label, c); } void MacroAssembler::branchTestObject(Condition cond, Register tag, Label* label) { branchTestObjectImpl(cond, tag, label); } void MacroAssembler::branchTestObject(Condition cond, const Address& address, Label* label) { branchTestObjectImpl(cond, address, label); } void MacroAssembler::branchTestObject(Condition cond, const BaseIndex& address, Label* label) { branchTestObjectImpl(cond, address, label); } void MacroAssembler::branchTestObject(Condition cond, const ValueOperand& value, Label* label) { branchTestObjectImpl(cond, value, label); } template void MacroAssembler::branchTestObjectImpl(Condition cond, const T& t, Label* label) { Condition c = testObject(cond, t); B(label, c); } void MacroAssembler::branchTestGCThing(Condition cond, const Address& address, Label* label) { branchTestGCThingImpl(cond, address, label); } void MacroAssembler::branchTestGCThing(Condition cond, const BaseIndex& address, Label* label) { branchTestGCThingImpl(cond, address, label); } void MacroAssembler::branchTestGCThing(Condition cond, const ValueOperand& value, Label* label) { branchTestGCThingImpl(cond, value, label); } template void MacroAssembler::branchTestGCThingImpl(Condition cond, const T& src, Label* label) { Condition c = testGCThing(cond, src); B(label, c); } void MacroAssembler::branchTestPrimitive(Condition cond, Register tag, Label* label) { branchTestPrimitiveImpl(cond, tag, label); } void MacroAssembler::branchTestPrimitive(Condition cond, const ValueOperand& value, Label* label) { branchTestPrimitiveImpl(cond, value, label); } template void MacroAssembler::branchTestPrimitiveImpl(Condition cond, const T& t, Label* label) { Condition c = testPrimitive(cond, t); B(label, c); } void MacroAssembler::branchTestMagic(Condition cond, Register tag, Label* label) { branchTestMagicImpl(cond, tag, label); } void MacroAssembler::branchTestMagic(Condition cond, const Address& address, Label* label) { branchTestMagicImpl(cond, address, label); } void MacroAssembler::branchTestMagic(Condition cond, const BaseIndex& address, Label* label) { branchTestMagicImpl(cond, address, label); } template void MacroAssembler::branchTestMagic(Condition cond, const ValueOperand& value, L label) { branchTestMagicImpl(cond, value, label); } template void MacroAssembler::branchTestMagicImpl(Condition cond, const T& t, L label) { Condition c = testMagic(cond, t); B(label, c); } void MacroAssembler::branchTestMagic(Condition cond, const Address& valaddr, JSWhyMagic why, Label* label) { uint64_t magic = MagicValue(why).asRawBits(); cmpPtr(valaddr, ImmWord(magic)); B(label, cond); } void MacroAssembler::branchToComputedAddress(const BaseIndex& addr) { vixl::UseScratchRegisterScope temps(&this->asVIXL()); const ARMRegister scratch64 = temps.AcquireX(); loadPtr(addr, scratch64.asUnsized()); Br(scratch64); } void MacroAssembler::cmp32Move32(Condition cond, Register lhs, Register rhs, Register src, Register dest) { cmp32(lhs, rhs); Csel(ARMRegister(dest, 32), ARMRegister(src, 32), ARMRegister(dest, 32), cond); } void MacroAssembler::cmp32Move32(Condition cond, Register lhs, const Address& rhs, Register src, Register dest) { MOZ_CRASH("NYI"); } void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs, Register rhs, Register src, Register dest) { cmpPtr(lhs, rhs); Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64), cond); } void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs, const Address& rhs, Register src, Register dest) { MOZ_CRASH("NYI"); } void MacroAssembler::cmp32Load32(Condition cond, Register lhs, const Address& rhs, const Address& src, Register dest) { MOZ_CRASH("NYI"); } void MacroAssembler::cmp32Load32(Condition cond, Register lhs, Register rhs, const Address& src, Register dest) { MOZ_CRASH("NYI"); } void MacroAssembler::cmp32MovePtr(Condition cond, Register lhs, Imm32 rhs, Register src, Register dest) { cmp32(lhs, rhs); Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64), cond); } void MacroAssembler::cmp32LoadPtr(Condition cond, const Address& lhs, Imm32 rhs, const Address& src, Register dest) { // ARM64 does not support conditional loads, so we use a branch with a CSel // (to prevent Spectre attacks). vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); // Can't use branch32() here, because it may select Cbz/Cbnz which don't // affect condition flags. Label done; cmp32(lhs, rhs); B(&done, Assembler::InvertCondition(cond)); loadPtr(src, scratch64.asUnsized()); Csel(ARMRegister(dest, 64), scratch64, ARMRegister(dest, 64), cond); bind(&done); } void MacroAssembler::test32LoadPtr(Condition cond, const Address& addr, Imm32 mask, const Address& src, Register dest) { MOZ_ASSERT(cond == Assembler::Zero || cond == Assembler::NonZero); // ARM64 does not support conditional loads, so we use a branch with a CSel // (to prevent Spectre attacks). vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch64 = temps.AcquireX(); Label done; branchTest32(Assembler::InvertCondition(cond), addr, mask, &done); loadPtr(src, scratch64.asUnsized()); Csel(ARMRegister(dest, 64), scratch64, ARMRegister(dest, 64), cond); bind(&done); } void MacroAssembler::test32MovePtr(Condition cond, const Address& addr, Imm32 mask, Register src, Register dest) { MOZ_ASSERT(cond == Assembler::Zero || cond == Assembler::NonZero); test32(addr, mask); Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64), cond); } void MacroAssembler::spectreMovePtr(Condition cond, Register src, Register dest) { Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64), cond); } void MacroAssembler::spectreZeroRegister(Condition cond, Register, Register dest) { Csel(ARMRegister(dest, 64), ARMRegister(dest, 64), vixl::xzr, Assembler::InvertCondition(cond)); } void MacroAssembler::spectreBoundsCheck32(Register index, Register length, Register maybeScratch, Label* failure) { MOZ_ASSERT(length != maybeScratch); MOZ_ASSERT(index != maybeScratch); branch32(Assembler::BelowOrEqual, length, index, failure); if (JitOptions.spectreIndexMasking) { Csel(ARMRegister(index, 32), ARMRegister(index, 32), vixl::wzr, Assembler::Above); } } void MacroAssembler::spectreBoundsCheck32(Register index, const Address& length, Register maybeScratch, Label* failure) { MOZ_ASSERT(index != length.base); MOZ_ASSERT(length.base != maybeScratch); MOZ_ASSERT(index != maybeScratch); branch32(Assembler::BelowOrEqual, length, index, failure); if (JitOptions.spectreIndexMasking) { Csel(ARMRegister(index, 32), ARMRegister(index, 32), vixl::wzr, Assembler::Above); } } void MacroAssembler::spectreBoundsCheckPtr(Register index, Register length, Register maybeScratch, Label* failure) { MOZ_ASSERT(length != maybeScratch); MOZ_ASSERT(index != maybeScratch); branchPtr(Assembler::BelowOrEqual, length, index, failure); if (JitOptions.spectreIndexMasking) { Csel(ARMRegister(index, 64), ARMRegister(index, 64), vixl::xzr, Assembler::Above); } } void MacroAssembler::spectreBoundsCheckPtr(Register index, const Address& length, Register maybeScratch, Label* failure) { MOZ_ASSERT(index != length.base); MOZ_ASSERT(length.base != maybeScratch); MOZ_ASSERT(index != maybeScratch); branchPtr(Assembler::BelowOrEqual, length, index, failure); if (JitOptions.spectreIndexMasking) { Csel(ARMRegister(index, 64), ARMRegister(index, 64), vixl::xzr, Assembler::Above); } } // ======================================================================== // Memory access primitives. void MacroAssembler::storeUncanonicalizedDouble(FloatRegister src, const Address& dest) { Str(ARMFPRegister(src, 64), toMemOperand(dest)); } void MacroAssembler::storeUncanonicalizedDouble(FloatRegister src, const BaseIndex& dest) { doBaseIndex(ARMFPRegister(src, 64), dest, vixl::STR_d); } void MacroAssembler::storeUncanonicalizedFloat32(FloatRegister src, const Address& addr) { Str(ARMFPRegister(src, 32), toMemOperand(addr)); } void MacroAssembler::storeUncanonicalizedFloat32(FloatRegister src, const BaseIndex& addr) { doBaseIndex(ARMFPRegister(src, 32), addr, vixl::STR_s); } void MacroAssembler::memoryBarrier(MemoryBarrierBits barrier) { if (barrier == MembarStoreStore) { Dmb(vixl::InnerShareable, vixl::BarrierWrites); } else if (barrier == MembarLoadLoad) { Dmb(vixl::InnerShareable, vixl::BarrierReads); } else if (barrier) { Dmb(vixl::InnerShareable, vixl::BarrierAll); } } // =============================================================== // Clamping functions. void MacroAssembler::clampIntToUint8(Register reg) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch32 = temps.AcquireW(); const ARMRegister reg32(reg, 32); MOZ_ASSERT(!scratch32.Is(reg32)); Cmp(reg32, Operand(reg32, vixl::UXTB)); Csel(reg32, reg32, vixl::wzr, Assembler::GreaterThanOrEqual); Mov(scratch32, Operand(0xff)); Csel(reg32, reg32, scratch32, Assembler::LessThanOrEqual); } void MacroAssembler::fallibleUnboxPtr(const ValueOperand& src, Register dest, JSValueType type, Label* fail) { MOZ_ASSERT(type == JSVAL_TYPE_OBJECT || type == JSVAL_TYPE_STRING || type == JSVAL_TYPE_SYMBOL || type == JSVAL_TYPE_BIGINT); // dest := src XOR mask // fail if dest >> JSVAL_TAG_SHIFT != 0 const ARMRegister src64(src.valueReg(), 64); const ARMRegister dest64(dest, 64); Eor(dest64, src64, Operand(JSVAL_TYPE_TO_SHIFTED_TAG(type))); Cmp(vixl::xzr, Operand(dest64, vixl::LSR, JSVAL_TAG_SHIFT)); j(Assembler::NotEqual, fail); } void MacroAssembler::fallibleUnboxPtr(const Address& src, Register dest, JSValueType type, Label* fail) { loadValue(src, ValueOperand(dest)); fallibleUnboxPtr(ValueOperand(dest), dest, type, fail); } void MacroAssembler::fallibleUnboxPtr(const BaseIndex& src, Register dest, JSValueType type, Label* fail) { loadValue(src, ValueOperand(dest)); fallibleUnboxPtr(ValueOperand(dest), dest, type, fail); } //}}} check_macroassembler_style // Wasm SIMD static inline ARMFPRegister SimdReg(FloatRegister r) { MOZ_ASSERT(r.isSimd128()); return ARMFPRegister(r, 128); } static inline ARMFPRegister Simd16B(FloatRegister r) { return SimdReg(r).V16B(); } static inline ARMFPRegister Simd8B(FloatRegister r) { return SimdReg(r).V8B(); } static inline ARMFPRegister Simd8H(FloatRegister r) { return SimdReg(r).V8H(); } static inline ARMFPRegister Simd4H(FloatRegister r) { return SimdReg(r).V4H(); } static inline ARMFPRegister Simd4S(FloatRegister r) { return SimdReg(r).V4S(); } static inline ARMFPRegister Simd2S(FloatRegister r) { return SimdReg(r).V2S(); } static inline ARMFPRegister Simd2D(FloatRegister r) { return SimdReg(r).V2D(); } static inline ARMFPRegister Simd1D(FloatRegister r) { return SimdReg(r).V1D(); } //{{{ check_macroassembler_style // Moves void MacroAssembler::moveSimd128(FloatRegister src, FloatRegister dest) { Mov(SimdReg(dest), SimdReg(src)); } void MacroAssembler::zeroSimd128(FloatRegister dest) { // Unclear what the best code is here, xor is just what we do on x86. // Alternatives would be `FMOV dest.4s, #0` and `FMOV dest, xzr`. Eor(SimdReg(dest), SimdReg(dest), SimdReg(dest)); } void MacroAssembler::loadConstantSimd128(const SimdConstant& v, FloatRegister dest) { // Movi does not yet generate good code for many cases, bug 1664397. SimdConstant c = SimdConstant::CreateX2((const int64_t*)v.bytes()); Movi(SimdReg(dest), c.asInt64x2()[1], c.asInt64x2()[0]); } // Splat void MacroAssembler::splatX16(Register src, FloatRegister dest) { Dup(Simd16B(dest), ARMRegister(src, 32)); } void MacroAssembler::splatX8(Register src, FloatRegister dest) { Dup(Simd8H(dest), ARMRegister(src, 32)); } void MacroAssembler::splatX4(Register src, FloatRegister dest) { Dup(Simd4S(dest), ARMRegister(src, 32)); } void MacroAssembler::splatX4(FloatRegister src, FloatRegister dest) { Dup(Simd4S(dest), ARMFPRegister(src), 0); } void MacroAssembler::splatX2(Register64 src, FloatRegister dest) { Dup(Simd2D(dest), ARMRegister(src.reg, 64)); } void MacroAssembler::splatX2(FloatRegister src, FloatRegister dest) { Dup(Simd2D(dest), ARMFPRegister(src), 0); } // Extract lane as scalar. Float extraction does not canonicalize the value. void MacroAssembler::extractLaneInt8x16(uint32_t lane, FloatRegister src, Register dest_) { MOZ_ASSERT(lane < 16); ARMRegister dest(dest_, 32); Umov(dest, Simd4S(src), lane / 4); Sbfx(dest, dest, (lane % 4) * 8, 8); } void MacroAssembler::unsignedExtractLaneInt8x16(uint32_t lane, FloatRegister src, Register dest_) { MOZ_ASSERT(lane < 16); ARMRegister dest(dest_, 32); Umov(dest, Simd4S(src), lane / 4); Ubfx(dest, dest, (lane % 4) * 8, 8); } void MacroAssembler::extractLaneInt16x8(uint32_t lane, FloatRegister src, Register dest_) { MOZ_ASSERT(lane < 8); ARMRegister dest(dest_, 32); Umov(dest, Simd4S(src), lane / 2); Sbfx(dest, dest, (lane % 2) * 16, 16); } void MacroAssembler::unsignedExtractLaneInt16x8(uint32_t lane, FloatRegister src, Register dest_) { MOZ_ASSERT(lane < 8); ARMRegister dest(dest_, 32); Umov(dest, Simd4S(src), lane / 2); Ubfx(dest, dest, (lane % 2) * 16, 16); } void MacroAssembler::extractLaneInt32x4(uint32_t lane, FloatRegister src, Register dest_) { MOZ_ASSERT(lane < 4); ARMRegister dest(dest_, 32); Umov(dest, Simd4S(src), lane); } void MacroAssembler::extractLaneInt64x2(uint32_t lane, FloatRegister src, Register64 dest_) { MOZ_ASSERT(lane < 2); ARMRegister dest(dest_.reg, 64); Umov(dest, Simd2D(src), lane); } void MacroAssembler::extractLaneFloat32x4(uint32_t lane, FloatRegister src, FloatRegister dest) { MOZ_ASSERT(lane < 4); Mov(ARMFPRegister(dest).V4S(), 0, Simd4S(src), lane); } void MacroAssembler::extractLaneFloat64x2(uint32_t lane, FloatRegister src, FloatRegister dest) { MOZ_ASSERT(lane < 2); Mov(ARMFPRegister(dest).V2D(), 0, Simd2D(src), lane); } // Replace lane value void MacroAssembler::replaceLaneInt8x16(unsigned lane, Register rhs, FloatRegister lhsDest) { MOZ_ASSERT(lane < 16); Mov(Simd16B(lhsDest), lane, ARMRegister(rhs, 32)); } void MacroAssembler::replaceLaneInt16x8(unsigned lane, Register rhs, FloatRegister lhsDest) { MOZ_ASSERT(lane < 8); Mov(Simd8H(lhsDest), lane, ARMRegister(rhs, 32)); } void MacroAssembler::replaceLaneInt32x4(unsigned lane, Register rhs, FloatRegister lhsDest) { MOZ_ASSERT(lane < 4); Mov(Simd4S(lhsDest), lane, ARMRegister(rhs, 32)); } void MacroAssembler::replaceLaneInt64x2(unsigned lane, Register64 rhs, FloatRegister lhsDest) { MOZ_ASSERT(lane < 2); Mov(Simd2D(lhsDest), lane, ARMRegister(rhs.reg, 64)); } void MacroAssembler::replaceLaneFloat32x4(unsigned lane, FloatRegister rhs, FloatRegister lhsDest) { MOZ_ASSERT(lane < 4); Mov(Simd4S(lhsDest), lane, ARMFPRegister(rhs).V4S(), 0); } void MacroAssembler::replaceLaneFloat64x2(unsigned lane, FloatRegister rhs, FloatRegister lhsDest) { MOZ_ASSERT(lane < 2); Mov(Simd2D(lhsDest), lane, ARMFPRegister(rhs).V2D(), 0); } // Shuffle - blend and permute with immediate indices, and its many // specializations. Lane values other than those mentioned are illegal. // lane values 0..31 void MacroAssembler::shuffleInt8x16(const uint8_t lanes[16], FloatRegister rhs, FloatRegister lhsDest) { // The general solution generates ho-hum code. Realistic programs will use // patterns that can be specialized, and this will be much better. That will // be handled by bug 1656834, so don't worry about it here. // Set scratch to the lanevalue when it selects from lhs or ~lanevalue when it // selects from rhs. ScratchSimd128Scope scratch(*this); int8_t idx[16]; for (unsigned i = 0; i < 16; i++) { idx[i] = lanes[i] < 16 ? lanes[i] : ~(lanes[i] - 16); } loadConstantSimd128(SimdConstant::CreateX16(idx), scratch); Tbl(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(scratch)); Not(Simd16B(scratch), Simd16B(scratch)); Tbx(Simd16B(lhsDest), Simd16B(rhs), Simd16B(scratch)); } // Swizzle - permute with variable indices. `rhs` holds the lanes parameter. void MacroAssembler::swizzleInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Tbl(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } // Integer Add void MacroAssembler::addInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Add(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::addInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Add(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::addInt32x4(FloatRegister rhs, FloatRegister lhsDest) { Add(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::addInt64x2(FloatRegister rhs, FloatRegister lhsDest) { Add(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Integer Subtract void MacroAssembler::subInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Sub(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::subInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Sub(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::subInt32x4(FloatRegister rhs, FloatRegister lhsDest) { Sub(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::subInt64x2(FloatRegister rhs, FloatRegister lhsDest) { Sub(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Integer Multiply void MacroAssembler::mulInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Mul(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::mulInt32x4(FloatRegister rhs, FloatRegister lhsDest) { Mul(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } // Integer Negate void MacroAssembler::negInt8x16(FloatRegister src, FloatRegister dest) { Neg(Simd16B(dest), Simd16B(src)); } void MacroAssembler::negInt16x8(FloatRegister src, FloatRegister dest) { Neg(Simd8H(dest), Simd8H(src)); } void MacroAssembler::negInt32x4(FloatRegister src, FloatRegister dest) { Neg(Simd4S(dest), Simd4S(src)); } void MacroAssembler::negInt64x2(FloatRegister src, FloatRegister dest) { Neg(Simd2D(dest), Simd2D(src)); } // Saturating integer add void MacroAssembler::addSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Sqadd(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::unsignedAddSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Uqadd(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::addSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Sqadd(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::unsignedAddSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Uqadd(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } // Saturating integer subtract void MacroAssembler::subSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Sqsub(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::unsignedSubSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Uqsub(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::subSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Sqsub(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::unsignedSubSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Uqsub(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } // Lane-wise integer minimum void MacroAssembler::minInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Smin(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::unsignedMinInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Umin(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::minInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Smin(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::unsignedMinInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Umin(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::minInt32x4(FloatRegister rhs, FloatRegister lhsDest) { Smin(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::unsignedMinInt32x4(FloatRegister rhs, FloatRegister lhsDest) { Umin(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } // Lane-wise integer maximum void MacroAssembler::maxInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Smax(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::unsignedMaxInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Umax(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::maxInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Smax(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::unsignedMaxInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Umax(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::maxInt32x4(FloatRegister rhs, FloatRegister lhsDest) { Smax(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::unsignedMaxInt32x4(FloatRegister rhs, FloatRegister lhsDest) { Umax(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } // Lane-wise integer rounding average void MacroAssembler::unsignedAverageInt8x16(FloatRegister rhs, FloatRegister lhsDest) { Urhadd(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::unsignedAverageInt16x8(FloatRegister rhs, FloatRegister lhsDest) { Urhadd(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } // Lane-wise integer absolute value void MacroAssembler::absInt8x16(FloatRegister src, FloatRegister dest) { Abs(Simd16B(dest), Simd16B(src)); } void MacroAssembler::absInt16x8(FloatRegister src, FloatRegister dest) { Abs(Simd8H(dest), Simd8H(src)); } void MacroAssembler::absInt32x4(FloatRegister src, FloatRegister dest) { Abs(Simd4S(dest), Simd4S(src)); } // Left shift by variable scalar void MacroAssembler::leftShiftInt8x16(Register rhs, FloatRegister lhsDest) { vixl::UseScratchRegisterScope temps(this); ARMRegister scratch = temps.AcquireW(); And(scratch, ARMRegister(rhs, 32), 7); ScratchSimd128Scope vscratch(*this); Dup(Simd16B(vscratch), scratch); Sshl(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(vscratch)); } void MacroAssembler::leftShiftInt16x8(Register rhs, FloatRegister lhsDest) { vixl::UseScratchRegisterScope temps(this); ARMRegister scratch = temps.AcquireW(); And(scratch, ARMRegister(rhs, 32), 15); ScratchSimd128Scope vscratch(*this); Dup(Simd8H(vscratch), scratch); Sshl(Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(vscratch)); } void MacroAssembler::leftShiftInt32x4(Register rhs, FloatRegister lhsDest) { vixl::UseScratchRegisterScope temps(this); ARMRegister scratch = temps.AcquireW(); And(scratch, ARMRegister(rhs, 32), 31); ScratchSimd128Scope vscratch(*this); Dup(Simd4S(vscratch), scratch); Sshl(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(vscratch)); } void MacroAssembler::leftShiftInt64x2(Register rhs, FloatRegister lhsDest) { vixl::UseScratchRegisterScope temps(this); ARMRegister scratch = temps.AcquireX(); And(scratch, ARMRegister(rhs, 64), 63); ScratchSimd128Scope vscratch(*this); Dup(Simd2D(vscratch), scratch); Sshl(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(vscratch)); } // Right shift by variable scalar void MacroAssembler::rightShiftInt8x16(Register rhs, FloatRegister lhsDest, FloatRegister temp) { MacroAssemblerCompat::rightShiftInt8x16(rhs, lhsDest, temp, /* isUnsigned */ false); } void MacroAssembler::unsignedRightShiftInt8x16(Register rhs, FloatRegister lhsDest, FloatRegister temp) { MacroAssemblerCompat::rightShiftInt8x16(rhs, lhsDest, temp, /* isUnsigned */ true); } void MacroAssembler::rightShiftInt16x8(Register rhs, FloatRegister lhsDest, FloatRegister temp) { MacroAssemblerCompat::rightShiftInt16x8(rhs, lhsDest, temp, /* isUnsigned */ false); } void MacroAssembler::unsignedRightShiftInt16x8(Register rhs, FloatRegister lhsDest, FloatRegister temp) { MacroAssemblerCompat::rightShiftInt16x8(rhs, lhsDest, temp, /* isUnsigned */ true); } void MacroAssembler::rightShiftInt32x4(Register rhs, FloatRegister lhsDest, FloatRegister temp) { MacroAssemblerCompat::rightShiftInt32x4(rhs, lhsDest, temp, /* isUnsigned */ false); } void MacroAssembler::unsignedRightShiftInt32x4(Register rhs, FloatRegister lhsDest, FloatRegister temp) { MacroAssemblerCompat::rightShiftInt32x4(rhs, lhsDest, temp, /* isUnsigned */ true); } // Bitwise and, or, xor, not void MacroAssembler::bitwiseAndSimd128(FloatRegister rhs, FloatRegister lhsDest) { And(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::bitwiseOrSimd128(FloatRegister rhs, FloatRegister lhsDest) { Orr(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::bitwiseXorSimd128(FloatRegister rhs, FloatRegister lhsDest) { Eor(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::bitwiseNotSimd128(FloatRegister src, FloatRegister dest) { Not(Simd16B(dest), Simd16B(src)); } // Bitwise AND with complement: dest = ~lhs & rhs, note this is not what Wasm // wants but what the x86 hardware offers. Hence the name. Since arm64 has // dest = lhs & ~rhs we just swap operands. void MacroAssembler::bitwiseNotAndSimd128(FloatRegister rhs, FloatRegister lhsDest) { Bic(Simd16B(lhsDest), Simd16B(rhs), Simd16B(lhsDest)); } // Bitwise select void MacroAssembler::bitwiseSelectSimd128(FloatRegister onTrue, FloatRegister onFalse, FloatRegister maskDest) { Bsl(Simd16B(maskDest), Simd16B(onTrue), Simd16B(onFalse)); } // Any lane true, ie, any bit set void MacroAssembler::anyTrueSimd128(FloatRegister src, Register dest_) { ScratchSimd128Scope scratch_(*this); ARMFPRegister scratch(Simd1D(scratch_)); ARMRegister dest(dest_, 64); Addp(scratch, Simd2D(src)); Umov(dest, scratch, 0); Cmp(dest, Operand(0)); Cset(dest, Assembler::NonZero); } // All lanes true void MacroAssembler::allTrueInt8x16(FloatRegister src, Register dest_) { ScratchSimd128Scope scratch(*this); ARMRegister dest(dest_, 64); Cmeq(Simd16B(scratch), Simd16B(src), 0); Addp(Simd1D(scratch), Simd2D(scratch)); Umov(dest, Simd1D(scratch), 0); Cmp(dest, Operand(0)); Cset(dest, Assembler::Zero); } void MacroAssembler::allTrueInt16x8(FloatRegister src, Register dest_) { ScratchSimd128Scope scratch(*this); ARMRegister dest(dest_, 64); Cmeq(Simd8H(scratch), Simd8H(src), 0); Addp(Simd1D(scratch), Simd2D(scratch)); Umov(dest, Simd1D(scratch), 0); Cmp(dest, Operand(0)); Cset(dest, Assembler::Zero); } void MacroAssembler::allTrueInt32x4(FloatRegister src, Register dest_) { ScratchSimd128Scope scratch(*this); ARMRegister dest(dest_, 64); Cmeq(Simd4S(scratch), Simd4S(src), 0); Addp(Simd1D(scratch), Simd2D(scratch)); Umov(dest, Simd1D(scratch), 0); Cmp(dest, Operand(0)); Cset(dest, Assembler::Zero); } // Bitmask, ie extract and compress high bits of all lanes // // There's no direct support for this on the chip. These implementations come // from the writeup that added the instruction to the SIMD instruction set. // Generally, shifting and masking is used to isolate the sign bit of each // element in the right position, then a horizontal add creates the result. For // 8-bit elements an intermediate step is needed to assemble the bits of the // upper and lower 8 bytes into 8 halfwords. void MacroAssembler::bitmaskInt8x16(FloatRegister src, Register dest, FloatRegister temp) { ScratchSimd128Scope scratch(*this); int8_t values[] = {1, 2, 4, 8, 16, 32, 64, -128, 1, 2, 4, 8, 16, 32, 64, -128}; loadConstantSimd128(SimdConstant::CreateX16(values), temp); Sshr(Simd16B(scratch), Simd16B(src), 7); And(Simd16B(scratch), Simd16B(scratch), Simd16B(temp)); Ext(Simd16B(temp), Simd16B(scratch), Simd16B(scratch), 8); Zip1(Simd16B(temp), Simd16B(scratch), Simd16B(temp)); Addv(ARMFPRegister(temp, 16), Simd8H(temp)); Mov(ARMRegister(dest, 32), Simd8H(temp), 0); } void MacroAssembler::bitmaskInt16x8(FloatRegister src, Register dest, FloatRegister temp) { ScratchSimd128Scope scratch(*this); int16_t values[] = {1, 2, 4, 8, 16, 32, 64, 128}; loadConstantSimd128(SimdConstant::CreateX8(values), temp); Sshr(Simd8H(scratch), Simd8H(src), 15); And(Simd16B(scratch), Simd16B(scratch), Simd16B(temp)); Addv(ARMFPRegister(scratch, 16), Simd8H(scratch)); Mov(ARMRegister(dest, 32), Simd8H(scratch), 0); } void MacroAssembler::bitmaskInt32x4(FloatRegister src, Register dest, FloatRegister temp) { ScratchSimd128Scope scratch(*this); int32_t values[] = {1, 2, 4, 8}; loadConstantSimd128(SimdConstant::CreateX4(values), temp); Sshr(Simd4S(scratch), Simd4S(src), 31); And(Simd16B(scratch), Simd16B(scratch), Simd16B(temp)); Addv(ARMFPRegister(scratch, 32), Simd4S(scratch)); Mov(ARMRegister(dest, 32), Simd4S(scratch), 0); } // Comparisons (integer and floating-point) void MacroAssembler::compareInt8x16(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { compareSimd128Int(cond, Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs)); } void MacroAssembler::compareInt16x8(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { compareSimd128Int(cond, Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); } void MacroAssembler::compareInt32x4(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { compareSimd128Int(cond, Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::compareFloat32x4(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { compareSimd128Float(cond, Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::compareFloat64x2(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { compareSimd128Float(cond, Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Load void MacroAssembler::loadUnalignedSimd128(const Address& src, FloatRegister dest) { Ldr(ARMFPRegister(dest, 128), toMemOperand(src)); } // Store void MacroAssembler::storeUnalignedSimd128(FloatRegister src, const Address& dest) { Str(ARMFPRegister(src, 128), toMemOperand(dest)); } // Floating point negation void MacroAssembler::negFloat32x4(FloatRegister src, FloatRegister dest) { Fneg(Simd4S(dest), Simd4S(src)); } void MacroAssembler::negFloat64x2(FloatRegister src, FloatRegister dest) { Fneg(Simd2D(dest), Simd2D(src)); } // Floating point absolute value void MacroAssembler::absFloat32x4(FloatRegister src, FloatRegister dest) { Fabs(Simd4S(dest), Simd4S(src)); } void MacroAssembler::absFloat64x2(FloatRegister src, FloatRegister dest) { Fabs(Simd2D(dest), Simd2D(src)); } // NaN-propagating minimum void MacroAssembler::minFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { Fmin(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::minFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { Fmin(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // NaN-propagating maximum void MacroAssembler::maxFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { Fmax(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::maxFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { Fmax(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Floating add void MacroAssembler::addFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { Fadd(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::addFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { Fadd(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Floating subtract void MacroAssembler::subFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { Fsub(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::subFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { Fsub(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Floating division void MacroAssembler::divFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { Fdiv(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::divFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { Fdiv(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Floating Multiply void MacroAssembler::mulFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { Fmul(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs)); } void MacroAssembler::mulFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { Fmul(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs)); } // Floating square root void MacroAssembler::sqrtFloat32x4(FloatRegister src, FloatRegister dest) { Fsqrt(Simd4S(dest), Simd4S(src)); } void MacroAssembler::sqrtFloat64x2(FloatRegister src, FloatRegister dest) { Fsqrt(Simd2D(dest), Simd2D(src)); } // Integer to floating point with rounding void MacroAssembler::convertInt32x4ToFloat32x4(FloatRegister src, FloatRegister dest) { Scvtf(Simd4S(dest), Simd4S(src)); } void MacroAssembler::unsignedConvertInt32x4ToFloat32x4(FloatRegister src, FloatRegister dest) { Ucvtf(Simd4S(dest), Simd4S(src)); } // Floating point to integer with saturation void MacroAssembler::truncSatFloat32x4ToInt32x4(FloatRegister src, FloatRegister dest) { Fcvtzs(Simd4S(dest), Simd4S(src)); } void MacroAssembler::unsignedTruncSatFloat32x4ToInt32x4(FloatRegister src, FloatRegister dest, FloatRegister temp) { Fcvtzu(Simd4S(dest), Simd4S(src)); } // Integer to integer narrowing void MacroAssembler::narrowInt16x8(FloatRegister rhs, FloatRegister lhsDest) { ScratchSimd128Scope scratch(*this); if (rhs == lhsDest) { Mov(scratch, SimdReg(rhs)); rhs = scratch; } Sqxtn(Simd8B(lhsDest), Simd8H(lhsDest)); Sqxtn2(Simd16B(lhsDest), Simd8H(rhs)); } void MacroAssembler::unsignedNarrowInt16x8(FloatRegister rhs, FloatRegister lhsDest) { ScratchSimd128Scope scratch(*this); if (rhs == lhsDest) { Mov(scratch, SimdReg(rhs)); rhs = scratch; } Sqxtun(Simd8B(lhsDest), Simd8H(lhsDest)); Sqxtun2(Simd16B(lhsDest), Simd8H(rhs)); } void MacroAssembler::narrowInt32x4(FloatRegister rhs, FloatRegister lhsDest) { ScratchSimd128Scope scratch(*this); if (rhs == lhsDest) { Mov(scratch, SimdReg(rhs)); rhs = scratch; } Sqxtn(Simd4H(lhsDest), Simd4S(lhsDest)); Sqxtn2(Simd8H(lhsDest), Simd4S(rhs)); } void MacroAssembler::unsignedNarrowInt32x4(FloatRegister rhs, FloatRegister lhsDest) { ScratchSimd128Scope scratch(*this); if (rhs == lhsDest) { Mov(scratch, SimdReg(rhs)); rhs = scratch; } Sqxtun(Simd4H(lhsDest), Simd4S(lhsDest)); Sqxtun2(Simd8H(lhsDest), Simd4S(rhs)); } // Integer to integer widening void MacroAssembler::widenLowInt8x16(FloatRegister src, FloatRegister dest) { Sshll(Simd8H(dest), Simd8B(src), 0); } void MacroAssembler::widenHighInt8x16(FloatRegister src, FloatRegister dest) { Sshll2(Simd8H(dest), Simd16B(src), 0); } void MacroAssembler::unsignedWidenLowInt8x16(FloatRegister src, FloatRegister dest) { Ushll(Simd8H(dest), Simd8B(src), 0); } void MacroAssembler::unsignedWidenHighInt8x16(FloatRegister src, FloatRegister dest) { Ushll2(Simd8H(dest), Simd16B(src), 0); } void MacroAssembler::widenLowInt16x8(FloatRegister src, FloatRegister dest) { Sshll(Simd4S(dest), Simd4H(src), 0); } void MacroAssembler::widenHighInt16x8(FloatRegister src, FloatRegister dest) { Sshll2(Simd4S(dest), Simd8H(src), 0); } void MacroAssembler::unsignedWidenLowInt16x8(FloatRegister src, FloatRegister dest) { Ushll(Simd4S(dest), Simd4H(src), 0); } void MacroAssembler::unsignedWidenHighInt16x8(FloatRegister src, FloatRegister dest) { Ushll2(Simd4S(dest), Simd8H(src), 0); } void MacroAssembler::widenLowInt32x4(FloatRegister src, FloatRegister dest) { Sshll(Simd2D(dest), Simd2S(src), 0); } void MacroAssembler::unsignedWidenLowInt32x4(FloatRegister src, FloatRegister dest) { Ushll(Simd2D(dest), Simd2S(src), 0); } // Compare-based minimum/maximum (experimental as of August, 2020) // https://github.com/WebAssembly/simd/pull/122 void MacroAssembler::pseudoMinFloat32x4(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { // Shut up the linter by using the same names as in the declaration, then // aliasing here. FloatRegister rhs = rhsOrRhsDest; FloatRegister lhsDest = lhsOrLhsDest; ScratchSimd128Scope scratch(*this); Fcmgt(Simd4S(scratch), Simd4S(lhsDest), Simd4S(rhs)); Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest)); Mov(SimdReg(lhsDest), scratch); } void MacroAssembler::pseudoMinFloat64x2(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { FloatRegister rhs = rhsOrRhsDest; FloatRegister lhsDest = lhsOrLhsDest; ScratchSimd128Scope scratch(*this); Fcmgt(Simd2D(scratch), Simd2D(lhsDest), Simd2D(rhs)); Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest)); Mov(SimdReg(lhsDest), scratch); } void MacroAssembler::pseudoMaxFloat32x4(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { FloatRegister rhs = rhsOrRhsDest; FloatRegister lhsDest = lhsOrLhsDest; ScratchSimd128Scope scratch(*this); Fcmgt(Simd4S(scratch), Simd4S(rhs), Simd4S(lhsDest)); Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest)); Mov(SimdReg(lhsDest), scratch); } void MacroAssembler::pseudoMaxFloat64x2(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { FloatRegister rhs = rhsOrRhsDest; FloatRegister lhsDest = lhsOrLhsDest; ScratchSimd128Scope scratch(*this); Fcmgt(Simd2D(scratch), Simd2D(rhs), Simd2D(lhsDest)); Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest)); Mov(SimdReg(lhsDest), scratch); } // Widening/pairwise integer dot product (experimental as of August, 2020) // https://github.com/WebAssembly/simd/pull/127 void MacroAssembler::widenDotInt16x8(FloatRegister rhs, FloatRegister lhsDest) { ScratchSimd128Scope scratch(*this); Smull(Simd4S(scratch), Simd4H(lhsDest), Simd4H(rhs)); Smull2(Simd4S(lhsDest), Simd8H(lhsDest), Simd8H(rhs)); Addp(Simd4S(lhsDest), Simd4S(scratch), Simd4S(lhsDest)); } // Floating point rounding (experimental as of August, 2020) // https://github.com/WebAssembly/simd/pull/232 void MacroAssembler::ceilFloat32x4(FloatRegister src, FloatRegister dest) { Frintp(Simd4S(dest), Simd4S(src)); } void MacroAssembler::ceilFloat64x2(FloatRegister src, FloatRegister dest) { Frintp(Simd2D(dest), Simd2D(src)); } void MacroAssembler::floorFloat32x4(FloatRegister src, FloatRegister dest) { Frintm(Simd4S(dest), Simd4S(src)); } void MacroAssembler::floorFloat64x2(FloatRegister src, FloatRegister dest) { Frintm(Simd2D(dest), Simd2D(src)); } void MacroAssembler::truncFloat32x4(FloatRegister src, FloatRegister dest) { Frintz(Simd4S(dest), Simd4S(src)); } void MacroAssembler::truncFloat64x2(FloatRegister src, FloatRegister dest) { Frintz(Simd2D(dest), Simd2D(src)); } void MacroAssembler::nearestFloat32x4(FloatRegister src, FloatRegister dest) { Frintn(Simd4S(dest), Simd4S(src)); } void MacroAssembler::nearestFloat64x2(FloatRegister src, FloatRegister dest) { Frintn(Simd2D(dest), Simd2D(src)); } //}}} check_macroassembler_style // =============================================================== void MacroAssemblerCompat::addToStackPtr(Register src) { Add(GetStackPointer64(), GetStackPointer64(), ARMRegister(src, 64)); } void MacroAssemblerCompat::addToStackPtr(Imm32 imm) { Add(GetStackPointer64(), GetStackPointer64(), Operand(imm.value)); } void MacroAssemblerCompat::addToStackPtr(const Address& src) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); Ldr(scratch, toMemOperand(src)); Add(GetStackPointer64(), GetStackPointer64(), scratch); } void MacroAssemblerCompat::addStackPtrTo(Register dest) { Add(ARMRegister(dest, 64), ARMRegister(dest, 64), GetStackPointer64()); } void MacroAssemblerCompat::subFromStackPtr(Register src) { Sub(GetStackPointer64(), GetStackPointer64(), ARMRegister(src, 64)); syncStackPtr(); } void MacroAssemblerCompat::subFromStackPtr(Imm32 imm) { Sub(GetStackPointer64(), GetStackPointer64(), Operand(imm.value)); syncStackPtr(); } void MacroAssemblerCompat::subStackPtrFrom(Register dest) { Sub(ARMRegister(dest, 64), ARMRegister(dest, 64), GetStackPointer64()); } void MacroAssemblerCompat::andToStackPtr(Imm32 imm) { if (sp.Is(GetStackPointer64())) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); Mov(scratch, sp); And(sp, scratch, Operand(imm.value)); // syncStackPtr() not needed since our SP is the real SP. } else { And(GetStackPointer64(), GetStackPointer64(), Operand(imm.value)); syncStackPtr(); } } void MacroAssemblerCompat::andStackPtrTo(Register dest) { And(ARMRegister(dest, 64), ARMRegister(dest, 64), GetStackPointer64()); } void MacroAssemblerCompat::moveToStackPtr(Register src) { Mov(GetStackPointer64(), ARMRegister(src, 64)); syncStackPtr(); } void MacroAssemblerCompat::moveStackPtrTo(Register dest) { Mov(ARMRegister(dest, 64), GetStackPointer64()); } void MacroAssemblerCompat::loadStackPtr(const Address& src) { if (sp.Is(GetStackPointer64())) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); Ldr(scratch, toMemOperand(src)); Mov(sp, scratch); // syncStackPtr() not needed since our SP is the real SP. } else { Ldr(GetStackPointer64(), toMemOperand(src)); syncStackPtr(); } } void MacroAssemblerCompat::storeStackPtr(const Address& dest) { if (sp.Is(GetStackPointer64())) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); Mov(scratch, sp); Str(scratch, toMemOperand(dest)); } else { Str(GetStackPointer64(), toMemOperand(dest)); } } void MacroAssemblerCompat::branchTestStackPtr(Condition cond, Imm32 rhs, Label* label) { if (sp.Is(GetStackPointer64())) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); Mov(scratch, sp); Tst(scratch, Operand(rhs.value)); } else { Tst(GetStackPointer64(), Operand(rhs.value)); } B(label, cond); } void MacroAssemblerCompat::branchStackPtr(Condition cond, Register rhs_, Label* label) { ARMRegister rhs(rhs_, 64); if (sp.Is(GetStackPointer64())) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); Mov(scratch, sp); Cmp(scratch, rhs); } else { Cmp(GetStackPointer64(), rhs); } B(label, cond); } void MacroAssemblerCompat::branchStackPtrRhs(Condition cond, Address lhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); Ldr(scratch, toMemOperand(lhs)); // Cmp disallows SP as the rhs, so flip the operands and invert the // condition. Cmp(GetStackPointer64(), scratch); B(label, Assembler::InvertCondition(cond)); } void MacroAssemblerCompat::branchStackPtrRhs(Condition cond, AbsoluteAddress lhs, Label* label) { vixl::UseScratchRegisterScope temps(this); const ARMRegister scratch = temps.AcquireX(); loadPtr(lhs, scratch.asUnsized()); // Cmp disallows SP as the rhs, so flip the operands and invert the // condition. Cmp(GetStackPointer64(), scratch); B(label, Assembler::InvertCondition(cond)); } // If source is a double, load into dest. // If source is int32, convert to double and store in dest. // Else, branch to failure. void MacroAssemblerCompat::ensureDouble(const ValueOperand& source, FloatRegister dest, Label* failure) { Label isDouble, done; { ScratchTagScope tag(asMasm(), source); splitTagForTest(source, tag); asMasm().branchTestDouble(Assembler::Equal, tag, &isDouble); asMasm().branchTestInt32(Assembler::NotEqual, tag, failure); } convertInt32ToDouble(source.valueReg(), dest); jump(&done); bind(&isDouble); unboxDouble(source, dest); bind(&done); } void MacroAssemblerCompat::unboxValue(const ValueOperand& src, AnyRegister dest, JSValueType type) { if (dest.isFloat()) { Label notInt32, end; asMasm().branchTestInt32(Assembler::NotEqual, src, ¬Int32); convertInt32ToDouble(src.valueReg(), dest.fpu()); jump(&end); bind(¬Int32); unboxDouble(src, dest.fpu()); bind(&end); } else { unboxNonDouble(src, dest.gpr(), type); } } } // namespace jit } // namespace js #endif /* jit_arm64_MacroAssembler_arm64_inl_h */