/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/Bailouts.h" #include "jit/BaselineFrame.h" #include "jit/CalleeToken.h" #include "jit/JitFrames.h" #include "jit/JitRuntime.h" #ifdef JS_ION_PERF # include "jit/PerfSpewer.h" #endif #include "jit/arm64/SharedICHelpers-arm64.h" #include "jit/VMFunctions.h" #include "vm/JitActivation.h" // js::jit::JitActivation #include "vm/JSContext.h" #include "jit/MacroAssembler-inl.h" using namespace js; using namespace js::jit; /* This method generates a trampoline on ARM64 for a c++ function with * the following signature: * bool blah(void* code, int argc, Value* argv, * JSObject* scopeChain, Value* vp) * ...using standard AArch64 calling convention */ void JitRuntime::generateEnterJIT(JSContext* cx, MacroAssembler& masm) { enterJITOffset_ = startTrampolineCode(masm); const Register reg_code = IntArgReg0; // EnterJitData::jitcode. const Register reg_argc = IntArgReg1; // EnterJitData::maxArgc. const Register reg_argv = IntArgReg2; // EnterJitData::maxArgv. const Register reg_osrFrame = IntArgReg3; // EnterJitData::osrFrame. const Register reg_callee = IntArgReg4; // EnterJitData::calleeToken. const Register reg_scope = IntArgReg5; // EnterJitData::scopeChain. const Register reg_osrNStack = IntArgReg6; // EnterJitData::osrNumStackValues. const Register reg_vp = IntArgReg7; // Address of EnterJitData::result. static_assert(OsrFrameReg == IntArgReg3); // During the pushes below, use the normal stack pointer. masm.SetStackPointer64(sp); // Save old frame pointer and return address; set new frame pointer. masm.push(r29, r30); masm.moveStackPtrTo(r29); // Save callee-save integer registers. // Also save x7 (reg_vp) and x30 (lr), for use later. masm.push(r19, r20, r21, r22); masm.push(r23, r24, r25, r26); masm.push(r27, r28, r7, r30); // Save callee-save floating-point registers. // AArch64 ABI specifies that only the lower 64 bits must be saved. masm.push(d8, d9, d10, d11); masm.push(d12, d13, d14, d15); #ifdef DEBUG // Emit stack canaries. masm.movePtr(ImmWord(0xdeadd00d), r23); masm.movePtr(ImmWord(0xdeadd11d), r24); masm.push(r23, r24); #endif // Common code below attempts to push single registers at a time, // which breaks the stack pointer's 16-byte alignment requirement. // Note that movePtr() is invalid because StackPointer is treated as xzr. // // FIXME: After testing, this entire function should be rewritten to not // use the PseudoStackPointer: since the amount of data pushed is // precalculated, we can just allocate the whole frame header at once and // index off sp. This will save a significant number of instructions where // Push() updates sp. masm.Mov(PseudoStackPointer64, sp); masm.SetStackPointer64(PseudoStackPointer64); // Save the stack pointer at this point for Baseline OSR. masm.moveStackPtrTo(BaselineFrameReg); // Remember stack depth without padding and arguments. masm.moveStackPtrTo(r19); // If constructing, include newTarget in argument vector. { Label noNewTarget; Imm32 constructingToken(CalleeToken_FunctionConstructing); masm.branchTest32(Assembler::Zero, reg_callee, constructingToken, &noNewTarget); masm.add32(Imm32(1), reg_argc); masm.bind(&noNewTarget); } // JitFrameLayout is as follows (higher is higher in memory): // N*8 - [ JS argument vector ] (base 16-byte aligned) // 8 - numActualArgs // 8 - calleeToken (16-byte aligned) // 8 - frameDescriptor // 8 - returnAddress (16-byte aligned, pushed by callee) // Touch frame incrementally (a requirement for Windows). // // Use already saved callee-save registers r20 and r21 as temps. // // This has to be done outside the ScratchRegisterScope, as the temps are // under demand inside the touchFrameValues call. // Give sp 16-byte alignment and sync stack pointers. masm.andToStackPtr(Imm32(~0xf)); // We needn't worry about the Gecko Profiler mark because touchFrameValues // touches in large increments. masm.touchFrameValues(reg_argc, r20, r21); // Restore stack pointer, preserved above. masm.moveToStackPtr(r19); // Push the argument vector onto the stack. // WARNING: destructively modifies reg_argv { vixl::UseScratchRegisterScope temps(&masm.asVIXL()); const ARMRegister tmp_argc = temps.AcquireX(); const ARMRegister tmp_sp = temps.AcquireX(); Label noArguments; Label loopHead; masm.movePtr(reg_argc, tmp_argc.asUnsized()); // sp -= 8 // Since we're using PostIndex Str below, this is necessary to avoid // overwriting the Gecko Profiler mark pushed above. masm.subFromStackPtr(Imm32(8)); // sp -= 8 * argc masm.Sub(PseudoStackPointer64, PseudoStackPointer64, Operand(tmp_argc, vixl::SXTX, 3)); // Give sp 16-byte alignment and sync stack pointers. masm.andToStackPtr(Imm32(~0xf)); masm.moveStackPtrTo(tmp_sp.asUnsized()); masm.branchTestPtr(Assembler::Zero, reg_argc, reg_argc, &noArguments); // Begin argument-pushing loop. // This could be optimized using Ldp and Stp. { masm.bind(&loopHead); // Load an argument from argv, then increment argv by 8. masm.Ldr(x24, MemOperand(ARMRegister(reg_argv, 64), Operand(8), vixl::PostIndex)); // Store the argument to tmp_sp, then increment tmp_sp by 8. masm.Str(x24, MemOperand(tmp_sp, Operand(8), vixl::PostIndex)); // Decrement tmp_argc and set the condition codes for the new value. masm.Subs(tmp_argc, tmp_argc, Operand(1)); // Branch if arguments remain. masm.B(&loopHead, vixl::Condition::NonZero); } masm.bind(&noArguments); } masm.checkStackAlignment(); // Push the number of actual arguments and the calleeToken. // The result address is used to store the actual number of arguments // without adding an argument to EnterJIT. { vixl::UseScratchRegisterScope temps(&masm.asVIXL()); MOZ_ASSERT(temps.IsAvailable(ScratchReg64)); // ip0 temps.Exclude(ScratchReg64); masm.unboxInt32(Address(reg_vp, 0x0), ScratchReg64.asUnsized()); masm.push(ScratchReg64.asUnsized(), reg_callee); } masm.checkStackAlignment(); // Calculate the number of bytes pushed so far. masm.subStackPtrFrom(r19); // Push the frameDescriptor. masm.makeFrameDescriptor(r19, FrameType::CppToJSJit, JitFrameLayout::Size()); masm.Push(r19); Label osrReturnPoint; { // Check for Interpreter -> Baseline OSR. Label notOsr; masm.branchTestPtr(Assembler::Zero, OsrFrameReg, OsrFrameReg, ¬Osr); // Push return address and previous frame pointer. { vixl::UseScratchRegisterScope temps(&masm.asVIXL()); MOZ_ASSERT(temps.IsAvailable(ScratchReg2_64)); // ip1 temps.Exclude(ScratchReg2_64); masm.Adr(ScratchReg2_64, &osrReturnPoint); masm.push(ScratchReg2, BaselineFrameReg); // Reserve frame. masm.subFromStackPtr(Imm32(BaselineFrame::Size())); masm.touchFrameValues(reg_osrNStack, ScratchReg2, BaselineFrameReg); } masm.moveStackPtrTo(BaselineFrameReg); // Reserve space for locals and stack values. masm.Lsl(w19, ARMRegister(reg_osrNStack, 32), 3); // w19 = num_stack_values * sizeof(Value). masm.subFromStackPtr(r19); // Enter exit frame. masm.addPtr( Imm32(BaselineFrame::Size() + BaselineFrame::FramePointerOffset), r19); masm.makeFrameDescriptor(r19, FrameType::BaselineJS, ExitFrameLayout::Size()); masm.asVIXL().Push(x19, xzr); // Push xzr for a fake return address. // No GC things to mark: push a bare token. masm.loadJSContext(r19); masm.enterFakeExitFrame(r19, r19, ExitFrameType::Bare); masm.push(BaselineFrameReg, reg_code); // Initialize the frame, including filling in the slots. using Fn = bool (*)(BaselineFrame * frame, InterpreterFrame * interpFrame, uint32_t numStackValues); masm.setupUnalignedABICall(r19); masm.passABIArg(BaselineFrameReg); // BaselineFrame. masm.passABIArg(reg_osrFrame); // InterpreterFrame. masm.passABIArg(reg_osrNStack); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); masm.pop(r19, BaselineFrameReg); MOZ_ASSERT(r19 != ReturnReg); masm.addToStackPtr(Imm32(ExitFrameLayout::SizeWithFooter())); masm.addPtr(Imm32(BaselineFrame::Size()), BaselineFrameReg); Label error; masm.branchIfFalseBool(ReturnReg, &error); masm.jump(r19); // OOM: load error value, discard return address and previous frame // pointer, and return. masm.bind(&error); masm.Add(masm.GetStackPointer64(), BaselineFrameReg64, Operand(2 * sizeof(uintptr_t))); masm.syncStackPtr(); masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); masm.B(&osrReturnPoint); masm.bind(¬Osr); masm.movePtr(reg_scope, R1_); } // Call function. // Since AArch64 doesn't have the pc register available, the callee must push // lr. masm.callJitNoProfiler(reg_code); // Interpreter -> Baseline OSR will return here. masm.bind(&osrReturnPoint); // Return back to SP. masm.Pop(r19); masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(), Operand(x19, vixl::LSR, FRAMESIZE_SHIFT)); masm.syncStackPtr(); masm.SetStackPointer64(sp); #ifdef DEBUG // Check that canaries placed on function entry are still present. masm.pop(r24, r23); Label x23OK, x24OK; masm.branchPtr(Assembler::Equal, r23, ImmWord(0xdeadd00d), &x23OK); masm.breakpoint(); masm.bind(&x23OK); masm.branchPtr(Assembler::Equal, r24, ImmWord(0xdeadd11d), &x24OK); masm.breakpoint(); masm.bind(&x24OK); #endif // Restore callee-save floating-point registers. masm.pop(d15, d14, d13, d12); masm.pop(d11, d10, d9, d8); // Restore callee-save integer registers. // Also restore x7 (reg_vp) and x30 (lr). masm.pop(r30, r7, r28, r27); masm.pop(r26, r25, r24, r23); masm.pop(r22, r21, r20, r19); // Store return value (in JSReturnReg = x2 to just-popped reg_vp). masm.storeValue(JSReturnOperand, Address(reg_vp, 0)); // Restore old frame pointer. masm.pop(r30, r29); // Return using the value popped into x30. masm.abiret(); // Reset stack pointer. masm.SetStackPointer64(PseudoStackPointer64); } static void PushRegisterDump(MacroAssembler& masm) { const LiveRegisterSet First28GeneralRegisters = LiveRegisterSet( GeneralRegisterSet(Registers::AllMask & ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28)), FloatRegisterSet(FloatRegisters::NoneMask)); const LiveRegisterSet AllFloatRegisters = LiveRegisterSet(GeneralRegisterSet(Registers::NoneMask), FloatRegisterSet(FloatRegisters::AllMask)); // Push all general-purpose registers. // // The ARM64 ABI does not treat SP as a normal register that can // be pushed. So pushing happens in two phases. // // Registers are pushed in reverse order of code. // First, push the last four registers, passing zero for sp. // Zero is pushed for x28 and x31: the pseudo-SP and SP, respectively. masm.asVIXL().Push(xzr, x30, x29, xzr); // Second, push the first 28 registers that serve no special purpose. masm.PushRegsInMask(First28GeneralRegisters); // Finally, push all floating-point registers, completing the RegisterDump. masm.PushRegsInMask(AllFloatRegisters); } void JitRuntime::generateInvalidator(MacroAssembler& masm, Label* bailoutTail) { invalidatorOffset_ = startTrampolineCode(masm); // The InvalidationBailoutStack saved in r0 must be: // - osiPointReturnAddress_ // - ionScript_ (pushed by CodeGeneratorARM64::generateInvalidateEpilogue()) // - regs_ (pushed here) // - fpregs_ (pushed here) [=r0] PushRegisterDump(masm); masm.moveStackPtrTo(r0); masm.Sub(x1, masm.GetStackPointer64(), Operand(sizeof(size_t))); masm.Sub(x2, masm.GetStackPointer64(), Operand(sizeof(size_t) + sizeof(void*))); masm.moveToStackPtr(r2); using Fn = bool (*)(InvalidationBailoutStack * sp, size_t * frameSizeOut, BaselineBailoutInfo * *info); masm.setupUnalignedABICall(r10); masm.passABIArg(r0); masm.passABIArg(r1); masm.passABIArg(r2); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); masm.pop(r2, r1); masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(), x1); masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(), Operand(sizeof(InvalidationBailoutStack))); masm.syncStackPtr(); masm.jump(bailoutTail); } void JitRuntime::generateArgumentsRectifier(MacroAssembler& masm, ArgumentsRectifierKind kind) { switch (kind) { case ArgumentsRectifierKind::Normal: argumentsRectifierOffset_ = startTrampolineCode(masm); break; case ArgumentsRectifierKind::TrialInlining: trialInliningArgumentsRectifierOffset_ = startTrampolineCode(masm); break; } // Save the return address for later. masm.push(lr); // Load the information that the rectifier needs from the stack. masm.Ldr(w0, MemOperand(masm.GetStackPointer64(), RectifierFrameLayout::offsetOfNumActualArgs())); masm.Ldr(x1, MemOperand(masm.GetStackPointer64(), RectifierFrameLayout::offsetOfCalleeToken())); // Extract a JSFunction pointer from the callee token and keep the // intermediary to avoid later recalculation. masm.And(x5, x1, Operand(CalleeTokenMask)); // Get the arguments from the function object. masm.Ldrh(x6, MemOperand(x5, JSFunction::offsetOfNargs())); static_assert(CalleeToken_FunctionConstructing == 0x1, "Constructing must be low-order bit"); masm.And(x4, x1, Operand(CalleeToken_FunctionConstructing)); masm.Add(x7, x6, x4); // Copy the number of actual arguments into r8. masm.mov(r0, r8); // Calculate the position that our arguments are at before sp gets modified. masm.Add(x3, masm.GetStackPointer64(), Operand(x8, vixl::LSL, 3)); masm.Add(x3, x3, Operand(sizeof(RectifierFrameLayout))); // Pad to a multiple of 16 bytes. This neglects the |this| value, // which will also be pushed, because the rest of the frame will // round off that value. See pushes of |argc|, |callee| and |desc| below. Label noPadding; masm.Tbnz(x7, 0, &noPadding); masm.asVIXL().Push(xzr); masm.Add(x7, x7, Operand(1)); masm.bind(&noPadding); { Label notConstructing; masm.Cbz(x4, ¬Constructing); // new.target lives at the end of the pushed args // NB: The arg vector holder starts at the beginning of the last arg, // add a value to get to argv[argc] masm.loadPtr(Address(r3, sizeof(Value)), r4); masm.Push(r4); masm.bind(¬Constructing); } // Calculate the number of undefineds that need to be pushed. masm.Sub(w2, w6, w8); // Put an undefined in a register so it can be pushed. masm.moveValue(UndefinedValue(), ValueOperand(r4)); // Push undefined N times. { Label undefLoopTop; masm.bind(&undefLoopTop); masm.Push(r4); masm.Subs(w2, w2, Operand(1)); masm.B(&undefLoopTop, Assembler::NonZero); } // Arguments copy loop. Copy for x8 >= 0 to include |this|. { Label copyLoopTop; masm.bind(©LoopTop); masm.Ldr(x4, MemOperand(x3, -sizeof(Value), vixl::PostIndex)); masm.Push(r4); masm.Subs(x8, x8, Operand(1)); masm.B(©LoopTop, Assembler::NotSigned); } // Fix up the size of the stack frame. +1 accounts for |this|. masm.Add(x6, x7, Operand(1)); masm.Lsl(x6, x6, 3); // Make that into a frame descriptor. masm.makeFrameDescriptor(r6, FrameType::Rectifier, JitFrameLayout::Size()); masm.push(r0, // Number of actual arguments. r1, // Callee token. r6); // Frame descriptor. // Call the target function. switch (kind) { case ArgumentsRectifierKind::Normal: masm.loadJitCodeRaw(r5, r3); argumentsRectifierReturnOffset_ = masm.callJitNoProfiler(r3); break; case ArgumentsRectifierKind::TrialInlining: Label noBaselineScript, done; masm.loadBaselineJitCodeRaw(r5, r3, &noBaselineScript); masm.callJitNoProfiler(r3); masm.jump(&done); // See BaselineCacheIRCompiler::emitCallInlinedFunction. masm.bind(&noBaselineScript); masm.loadJitCodeRaw(r5, r3); masm.callJitNoProfiler(r3); masm.bind(&done); break; } // Clean up! // Get the size of the stack frame, and clean up the later fixed frame. masm.Ldr(x4, MemOperand(masm.GetStackPointer64(), 24, vixl::PostIndex)); // Now that the size of the stack frame sans the fixed frame has been loaded, // add that onto the stack pointer. masm.Add(masm.GetStackPointer64(), masm.GetStackPointer64(), Operand(x4, vixl::LSR, FRAMESIZE_SHIFT)); // Pop the return address from earlier and branch. masm.ret(); } static void PushBailoutFrame(MacroAssembler& masm, Register spArg) { // This assumes no SIMD registers, as JS does not support SIMD. // The stack saved in spArg must be (higher entries have higher memory // addresses): // - snapshotOffset_ // - frameSize_ // - regs_ // - fpregs_ (spArg + 0) PushRegisterDump(masm); masm.moveStackPtrTo(spArg); } static void GenerateBailoutThunk(MacroAssembler& masm, Label* bailoutTail) { PushBailoutFrame(masm, r0); // SP % 8 == 4 // STEP 1c: Call the bailout function, giving a pointer to the // structure we just blitted onto the stack. // Make space for the BaselineBailoutInfo* outparam. masm.reserveStack(sizeof(void*)); masm.moveStackPtrTo(r1); using Fn = bool (*)(BailoutStack * sp, BaselineBailoutInfo * *info); masm.setupUnalignedABICall(r2); masm.passABIArg(r0); masm.passABIArg(r1); masm.callWithABI(MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); // Get the bailoutInfo outparam. masm.pop(r2); // Stack is: // [frame] // snapshotOffset // frameSize // [bailoutFrame] // // We want to remove both the bailout frame and the topmost Ion frame's stack. // Remove the bailoutFrame. static const uint32_t BailoutDataSize = sizeof(RegisterDump); masm.addToStackPtr(Imm32(BailoutDataSize)); // Pop the frame, snapshotOffset, and frameSize. vixl::UseScratchRegisterScope temps(&masm.asVIXL()); const ARMRegister scratch64 = temps.AcquireX(); masm.Ldr(scratch64, MemOperand(masm.GetStackPointer64(), 0x0)); masm.addPtr(Imm32(2 * sizeof(void*)), scratch64.asUnsized()); masm.addToStackPtr(scratch64.asUnsized()); // Jump to shared bailout tail. The BailoutInfo pointer has to be in r2. masm.jump(bailoutTail); } JitRuntime::BailoutTable JitRuntime::generateBailoutTable(MacroAssembler& masm, Label* bailoutTail, uint32_t frameClass) { MOZ_CRASH("arm64 does not use bailout tables"); } void JitRuntime::generateBailoutHandler(MacroAssembler& masm, Label* bailoutTail) { bailoutHandlerOffset_ = startTrampolineCode(masm); GenerateBailoutThunk(masm, bailoutTail); } bool JitRuntime::generateVMWrapper(JSContext* cx, MacroAssembler& masm, const VMFunctionData& f, DynFn nativeFun, uint32_t* wrapperOffset) { *wrapperOffset = startTrampolineCode(masm); // Avoid conflicts with argument registers while discarding the result after // the function call. AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask); static_assert( (Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0, "Wrapper register set must be a superset of the Volatile register set."); // Unlike on other platforms, it is the responsibility of the VM *callee* to // push the return address, while the caller must ensure that the address // is stored in lr on entry. This allows the VM wrapper to work with both // direct calls and tail calls. masm.push(lr); // First argument is the JSContext. Register reg_cx = IntArgReg0; regs.take(reg_cx); // Stack is: // ... frame ... // +12 [args] // +8 descriptor // +0 returnAddress (pushed by this function, caller sets as lr) // // We're aligned to an exit frame, so link it up. masm.loadJSContext(reg_cx); masm.enterExitFrame(reg_cx, regs.getAny(), &f); // Save the current stack pointer as the base for copying arguments. Register argsBase = InvalidReg; if (f.explicitArgs) { // argsBase can't be an argument register. Bad things would happen if // the MoveResolver didn't throw an assertion failure first. argsBase = r8; regs.take(argsBase); masm.Add(ARMRegister(argsBase, 64), masm.GetStackPointer64(), Operand(ExitFrameLayout::SizeWithFooter())); } // Reserve space for any outparameter. Register outReg = InvalidReg; switch (f.outParam) { case Type_Value: outReg = regs.takeAny(); masm.reserveStack(sizeof(Value)); masm.moveStackPtrTo(outReg); break; case Type_Handle: outReg = regs.takeAny(); masm.PushEmptyRooted(f.outParamRootType); masm.moveStackPtrTo(outReg); break; case Type_Int32: case Type_Bool: outReg = regs.takeAny(); masm.reserveStack(sizeof(int64_t)); masm.moveStackPtrTo(outReg); break; case Type_Double: outReg = regs.takeAny(); masm.reserveStack(sizeof(double)); masm.moveStackPtrTo(outReg); break; case Type_Pointer: outReg = regs.takeAny(); masm.reserveStack(sizeof(uintptr_t)); masm.moveStackPtrTo(outReg); break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } if (!generateTLEnterVM(masm, f)) { return false; } masm.setupUnalignedABICall(regs.getAny()); masm.passABIArg(reg_cx); size_t argDisp = 0; // Copy arguments. for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) { switch (f.argProperties(explicitArg)) { case VMFunctionData::WordByValue: masm.passABIArg(MoveOperand(argsBase, argDisp), (f.argPassedInFloatReg(explicitArg) ? MoveOp::DOUBLE : MoveOp::GENERAL)); argDisp += sizeof(void*); break; case VMFunctionData::WordByRef: masm.passABIArg( MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL); argDisp += sizeof(void*); break; case VMFunctionData::DoubleByValue: case VMFunctionData::DoubleByRef: MOZ_CRASH("NYI: AArch64 callVM should not be used with 128bit values."); } } // Copy the semi-implicit outparam, if any. // It is not a C++-abi outparam, which would get passed in the // outparam register, but a real parameter to the function, which // was stack-allocated above. if (outReg != InvalidReg) { masm.passABIArg(outReg); } masm.callWithABI(nativeFun, MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); if (!generateTLExitVM(masm, f)) { return false; } // SP is used to transfer stack across call boundaries. masm.initPseudoStackPtr(); // Test for failure. switch (f.failType()) { case Type_Object: masm.branchTestPtr(Assembler::Zero, r0, r0, masm.failureLabel()); break; case Type_Bool: masm.branchIfFalseBool(r0, masm.failureLabel()); break; case Type_Void: break; default: MOZ_CRASH("unknown failure kind"); } // Load the outparam and free any allocated stack. switch (f.outParam) { case Type_Value: masm.Ldr(ARMRegister(JSReturnReg, 64), MemOperand(masm.GetStackPointer64())); masm.freeStack(sizeof(Value)); break; case Type_Handle: masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand); break; case Type_Int32: masm.Ldr(ARMRegister(ReturnReg, 32), MemOperand(masm.GetStackPointer64())); masm.freeStack(sizeof(int64_t)); break; case Type_Bool: masm.Ldrb(ARMRegister(ReturnReg, 32), MemOperand(masm.GetStackPointer64())); masm.freeStack(sizeof(int64_t)); break; case Type_Double: MOZ_ASSERT(JitOptions.supportsFloatingPoint); masm.Ldr(ARMFPRegister(ReturnDoubleReg, 64), MemOperand(masm.GetStackPointer64())); masm.freeStack(sizeof(double)); break; case Type_Pointer: masm.Ldr(ARMRegister(ReturnReg, 64), MemOperand(masm.GetStackPointer64())); masm.freeStack(sizeof(uintptr_t)); break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } // Until C++ code is instrumented against Spectre, prevent speculative // execution from returning any private data. if (f.returnsData() && JitOptions.spectreJitToCxxCalls) { masm.speculationBarrier(); } masm.leaveExitFrame(); masm.retn(Imm32(sizeof(ExitFrameLayout) + f.explicitStackSlots() * sizeof(void*) + f.extraValuesToPop * sizeof(Value))); return true; } uint32_t JitRuntime::generatePreBarrier(JSContext* cx, MacroAssembler& masm, MIRType type) { uint32_t offset = startTrampolineCode(masm); static_assert(PreBarrierReg == r1); Register temp1 = r2; Register temp2 = r3; Register temp3 = r4; masm.push(temp1); masm.push(temp2); masm.push(temp3); Label noBarrier; masm.emitPreBarrierFastPath(cx->runtime(), type, temp1, temp2, temp3, &noBarrier); // Call into C++ to mark this GC thing. masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); LiveRegisterSet regs = LiveRegisterSet(GeneralRegisterSet(Registers::VolatileMask), FloatRegisterSet(FloatRegisters::VolatileMask)); // Also preserve the return address. regs.add(lr); masm.PushRegsInMask(regs); masm.movePtr(ImmPtr(cx->runtime()), r3); masm.setupUnalignedABICall(r0); masm.passABIArg(r3); masm.passABIArg(PreBarrierReg); masm.callWithABI(JitMarkFunction(type)); // Pop the volatile regs and restore LR. masm.PopRegsInMask(regs); masm.abiret(); masm.bind(&noBarrier); masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); masm.abiret(); return offset; } void JitRuntime::generateExceptionTailStub(MacroAssembler& masm, Label* profilerExitTail) { exceptionTailOffset_ = startTrampolineCode(masm); masm.bind(masm.failureLabel()); masm.handleFailureWithHandlerTail(profilerExitTail); } void JitRuntime::generateBailoutTailStub(MacroAssembler& masm, Label* bailoutTail) { bailoutTailOffset_ = startTrampolineCode(masm); masm.bind(bailoutTail); masm.generateBailoutTail(r1, r2); } void JitRuntime::generateProfilerExitFrameTailStub(MacroAssembler& masm, Label* profilerExitTail) { profilerExitFrameTailOffset_ = startTrampolineCode(masm); masm.bind(profilerExitTail); Register scratch1 = r8; Register scratch2 = r9; Register scratch3 = r10; Register scratch4 = r11; // // The code generated below expects that the current stack pointer points // to an Ion or Baseline frame, at the state it would be immediately // before a ret(). Thus, after this stub's business is done, it executes // a ret() and returns directly to the caller script, on behalf of the // callee script that jumped to this code. // // Thus the expected stack is: // // StackPointer ----+ // v // ..., ActualArgc, CalleeToken, Descriptor, ReturnAddr // MEM-HI MEM-LOW // // // The generated jitcode is responsible for overwriting the // jitActivation->lastProfilingFrame field with a pointer to the previous // Ion or Baseline jit-frame that was pushed before this one. It is also // responsible for overwriting jitActivation->lastProfilingCallSite with // the return address into that frame. The frame could either be an // immediate "caller" frame, or it could be a frame in a previous // JitActivation (if the current frame was entered from C++, and the C++ // was entered by some caller jit-frame further down the stack). // // So this jitcode is responsible for "walking up" the jit stack, finding // the previous Ion or Baseline JS frame, and storing its address and the // return address into the appropriate fields on the current jitActivation. // // There are a fixed number of different path types that can lead to the // current frame, which is either a baseline or ion frame: // // // ^ // | // ^--- Ion // | // ^--- Baseline Stub <---- Baseline // | // ^--- Argument Rectifier // | ^ // | | // | ^--- Ion // | | // | ^--- Baseline Stub <---- Baseline // | // ^--- Entry Frame (From C++) // Register actReg = scratch4; masm.loadJSContext(actReg); masm.loadPtr(Address(actReg, offsetof(JSContext, profilingActivation_)), actReg); Address lastProfilingFrame(actReg, JitActivation::offsetOfLastProfilingFrame()); Address lastProfilingCallSite(actReg, JitActivation::offsetOfLastProfilingCallSite()); #ifdef DEBUG // Ensure that frame we are exiting is current lastProfilingFrame { masm.loadPtr(lastProfilingFrame, scratch1); Label checkOk; masm.branchPtr(Assembler::Equal, scratch1, ImmWord(0), &checkOk); masm.branchStackPtr(Assembler::Equal, scratch1, &checkOk); masm.assumeUnreachable( "Mismatch between stored lastProfilingFrame and current stack " "pointer."); masm.bind(&checkOk); } #endif // Load the frame descriptor into |scratch1|, figure out what to do depending // on its type. masm.loadPtr( Address(masm.getStackPointer(), JitFrameLayout::offsetOfDescriptor()), scratch1); // Going into the conditionals, we will have: // FrameDescriptor.size in scratch1 // FrameDescriptor.type in scratch2 masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1, scratch2); masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1); // Handling of each case is dependent on FrameDescriptor.type Label handle_IonJS; Label handle_BaselineStub; Label handle_Rectifier; Label handle_IonICCall; Label handle_Entry; Label end; masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::IonJS), &handle_IonJS); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::BaselineJS), &handle_IonJS); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::BaselineStub), &handle_BaselineStub); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::Rectifier), &handle_Rectifier); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::IonICCall), &handle_IonICCall); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::CppToJSJit), &handle_Entry); // The WasmToJSJit is just another kind of entry. masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::WasmToJSJit), &handle_Entry); masm.assumeUnreachable( "Invalid caller frame type when exiting from Ion frame."); // // FrameType::IonJS // // Stack layout: // ... // Ion-Descriptor // Prev-FP ---> Ion-ReturnAddr // ... previous frame data ... |- Descriptor.Size // ... arguments ... | // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // masm.bind(&handle_IonJS); { // |scratch1| contains Descriptor.size // returning directly to an IonJS frame. Store return addr to frame // in lastProfilingCallSite. masm.loadPtr(Address(masm.getStackPointer(), JitFrameLayout::offsetOfReturnAddress()), scratch2); masm.storePtr(scratch2, lastProfilingCallSite); // Store return frame in lastProfilingFrame. // scratch2 := masm.getStackPointer() + Descriptor.size*1 + // JitFrameLayout::Size(); masm.Add(ARMRegister(scratch2, 64), masm.GetStackPointer64(), ARMRegister(scratch1, 64)); masm.syncStackPtr(); masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2, scratch2); masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // // FrameType::BaselineStub // // Look past the stub and store the frame pointer to // the baselineJS frame prior to it. // // Stack layout: // ... // BL-Descriptor // Prev-FP ---> BL-ReturnAddr // +-----> BL-PrevFramePointer // | ... BL-FrameData ... // | BLStub-Descriptor // | BLStub-ReturnAddr // | BLStub-StubPointer | // +------ BLStub-SavedFramePointer |- Descriptor.Size // ... arguments ... | // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // // We take advantage of the fact that the stub frame saves the frame // pointer pointing to the baseline frame, so a bunch of calculation can // be avoided. // masm.bind(&handle_BaselineStub); { masm.Add(ARMRegister(scratch3, 64), masm.GetStackPointer64(), ARMRegister(scratch1, 64)); masm.syncStackPtr(); Address stubFrameReturnAddr( scratch3, JitFrameLayout::Size() + BaselineStubFrameLayout::offsetOfReturnAddress()); masm.loadPtr(stubFrameReturnAddr, scratch2); masm.storePtr(scratch2, lastProfilingCallSite); Address stubFrameSavedFramePtr( scratch3, JitFrameLayout::Size() - (2 * sizeof(void*))); masm.loadPtr(stubFrameSavedFramePtr, scratch2); masm.addPtr(Imm32(sizeof(void*)), scratch2); // Skip past BL-PrevFramePtr. masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // // FrameType::Rectifier // // The rectifier frame can be preceded by either an IonJS, a BaselineStub, // or a CppToJSJit/WasmToJSJit frame. // // Stack layout if caller of rectifier was Ion or CppToJSJit/WasmToJSJit: // // Ion-Descriptor // Ion-ReturnAddr // ... ion frame data ... |- Rect-Descriptor.Size // < COMMON LAYOUT > // // Stack layout if caller of rectifier was Baseline: // // BL-Descriptor // Prev-FP ---> BL-ReturnAddr // +-----> BL-SavedFramePointer // | ... baseline frame data ... // | BLStub-Descriptor // | BLStub-ReturnAddr // | BLStub-StubPointer | // +------ BLStub-SavedFramePointer |- Rect-Descriptor.Size // ... args to rectifier ... | // < COMMON LAYOUT > // // Common stack layout: // // ActualArgc | // CalleeToken |- IonRectitiferFrameLayout::Size() // Rect-Descriptor | // Rect-ReturnAddr | // ... rectifier data & args ... |- Descriptor.Size // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // masm.bind(&handle_Rectifier); { // scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size(); masm.Add(ARMRegister(scratch2, 64), masm.GetStackPointer64(), ARMRegister(scratch1, 64)); masm.syncStackPtr(); masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2); masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfDescriptor()), scratch3); masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3, scratch1); masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch3); // Now |scratch1| contains Rect-Descriptor.Size // and |scratch2| points to Rectifier frame // and |scratch3| contains Rect-Descriptor.Type masm.assertRectifierFrameParentType(scratch3); // Check for either Ion or BaselineStub frame. Label notIonFrame; masm.branch32(Assembler::NotEqual, scratch3, Imm32(FrameType::IonJS), ¬IonFrame); // Handle Rectifier <- IonJS // scratch3 := RectFrame[ReturnAddr] masm.loadPtr( Address(scratch2, RectifierFrameLayout::offsetOfReturnAddress()), scratch3); masm.storePtr(scratch3, lastProfilingCallSite); // scratch3 := RectFrame + Rect-Descriptor.Size + // RectifierFrameLayout::Size() masm.addPtr(scratch2, scratch1, scratch3); masm.addPtr(Imm32(RectifierFrameLayout::Size()), scratch3); masm.storePtr(scratch3, lastProfilingFrame); masm.ret(); masm.bind(¬IonFrame); // Check for either BaselineStub or a CppToJSJit/WasmToJSJit entry // frame. masm.branch32(Assembler::NotEqual, scratch3, Imm32(FrameType::BaselineStub), &handle_Entry); // Handle Rectifier <- BaselineStub <- BaselineJS masm.addPtr(scratch2, scratch1, scratch3); Address stubFrameReturnAddr( scratch3, RectifierFrameLayout::Size() + BaselineStubFrameLayout::offsetOfReturnAddress()); masm.loadPtr(stubFrameReturnAddr, scratch2); masm.storePtr(scratch2, lastProfilingCallSite); Address stubFrameSavedFramePtr( scratch3, RectifierFrameLayout::Size() - (2 * sizeof(void*))); masm.loadPtr(stubFrameSavedFramePtr, scratch2); masm.addPtr(Imm32(sizeof(void*)), scratch2); masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // FrameType::IonICCall // // The caller is always an IonJS frame. // // Ion-Descriptor // Ion-ReturnAddr // ... ion frame data ... |- CallFrame-Descriptor.Size // StubCode | // ICCallFrame-Descriptor |- IonICCallFrameLayout::Size() // ICCallFrame-ReturnAddr | // ... call frame data & args ... |- Descriptor.Size // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | masm.bind(&handle_IonICCall); { // scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size() masm.Add(ARMRegister(scratch2, 64), masm.GetStackPointer64(), ARMRegister(scratch1, 64)); masm.syncStackPtr(); masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2); // scratch3 := ICCallFrame-Descriptor.Size masm.loadPtr(Address(scratch2, IonICCallFrameLayout::offsetOfDescriptor()), scratch3); #ifdef DEBUG // Assert previous frame is an IonJS frame. masm.movePtr(scratch3, scratch1); masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1); { Label checkOk; masm.branch32(Assembler::Equal, scratch1, Imm32(FrameType::IonJS), &checkOk); masm.assumeUnreachable("IonICCall frame must be preceded by IonJS frame"); masm.bind(&checkOk); } #endif masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3); // lastProfilingCallSite := ICCallFrame-ReturnAddr masm.loadPtr( Address(scratch2, IonICCallFrameLayout::offsetOfReturnAddress()), scratch1); masm.storePtr(scratch1, lastProfilingCallSite); // lastProfilingFrame := ICCallFrame + ICCallFrame-Descriptor.Size + // IonICCallFrameLayout::Size() masm.addPtr(scratch2, scratch3, scratch1); masm.addPtr(Imm32(IonICCallFrameLayout::Size()), scratch1); masm.storePtr(scratch1, lastProfilingFrame); masm.ret(); } // // FrameType::CppToJSJit / FrameType::WasmToJSJit // // If at an entry frame, store null into both fields. // A fast-path wasm->jit transition frame is an entry frame from the point // of view of the JIT. // masm.bind(&handle_Entry); { masm.movePtr(ImmPtr(nullptr), scratch1); masm.storePtr(scratch1, lastProfilingCallSite); masm.storePtr(scratch1, lastProfilingFrame); masm.ret(); } }