/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/mips-shared/Lowering-mips-shared.h" #include "mozilla/MathAlgorithms.h" #include "jit/Lowering.h" #include "jit/MIR.h" #include "jit/shared/Lowering-shared-inl.h" using namespace js; using namespace js::jit; using mozilla::FloorLog2; LAllocation LIRGeneratorMIPSShared::useByteOpRegister(MDefinition* mir) { return useRegister(mir); } LAllocation LIRGeneratorMIPSShared::useByteOpRegisterAtStart(MDefinition* mir) { return useRegisterAtStart(mir); } LAllocation LIRGeneratorMIPSShared::useByteOpRegisterOrNonDoubleConstant( MDefinition* mir) { return useRegisterOrNonDoubleConstant(mir); } LDefinition LIRGeneratorMIPSShared::tempByteOpRegister() { return temp(); } // x = !y void LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input) { ins->setOperand(0, useRegister(input)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } // z = x+y void LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setOperand(0, useRegister(lhs)); ins->setOperand(1, useRegisterOrConstant(rhs)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } void LIRGeneratorMIPSShared::lowerForALUInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); ins->setInt64Operand(INT64_PIECES, lhs != rhs ? useInt64OrConstant(rhs) : useInt64OrConstantAtStart(rhs)); defineInt64ReuseInput(ins, mir, 0); } void LIRGeneratorMIPSShared::lowerForMulInt64(LMulI64* ins, MMul* mir, MDefinition* lhs, MDefinition* rhs) { bool needsTemp = false; bool cannotAliasRhs = false; bool reuseInput = true; #ifdef JS_CODEGEN_MIPS32 needsTemp = true; cannotAliasRhs = true; if (rhs->isConstant()) { int64_t constant = rhs->toConstant()->toInt64(); int32_t shift = mozilla::FloorLog2(constant); // See special cases in CodeGeneratorMIPSShared::visitMulI64 if (constant >= -1 && constant <= 2) { needsTemp = false; } if (int64_t(1) << shift == constant) { needsTemp = false; } if (mozilla::IsPowerOfTwo(static_cast(constant + 1)) || mozilla::IsPowerOfTwo(static_cast(constant - 1))) reuseInput = false; } #endif ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); ins->setInt64Operand(INT64_PIECES, (lhs != rhs || cannotAliasRhs) ? useInt64OrConstant(rhs) : useInt64OrConstantAtStart(rhs)); if (needsTemp) { ins->setTemp(0, temp()); } if (reuseInput) { defineInt64ReuseInput(ins, mir, 0); } else { defineInt64(ins, mir); } } template void LIRGeneratorMIPSShared::lowerForShiftInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { #ifdef JS_CODEGEN_MIPS32 if (mir->isRotate()) { if (!rhs->isConstant()) { ins->setTemp(0, temp()); } ins->setInt64Operand(0, useInt64Register(lhs)); } else { ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); } #else ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); #endif static_assert(LShiftI64::Rhs == INT64_PIECES, "Assume Rhs is located at INT64_PIECES."); static_assert(LRotateI64::Count == INT64_PIECES, "Assume Count is located at INT64_PIECES."); ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs)); #ifdef JS_CODEGEN_MIPS32 if (mir->isRotate()) { defineInt64(ins, mir); } else { defineInt64ReuseInput(ins, mir, 0); } #else defineInt64ReuseInput(ins, mir, 0); #endif } template void LIRGeneratorMIPSShared::lowerForShiftInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); template void LIRGeneratorMIPSShared::lowerForShiftInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input) { ins->setOperand(0, useRegister(input)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } template void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setOperand(0, useRegister(lhs)); ins->setOperand(1, useRegister(rhs)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } template void LIRGeneratorMIPSShared::lowerForFPU( LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); template void LIRGeneratorMIPSShared::lowerForFPU( LInstructionHelper<1, 2, 1>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); void LIRGeneratorMIPSShared::lowerForBitAndAndBranch(LBitAndAndBranch* baab, MInstruction* mir, MDefinition* lhs, MDefinition* rhs) { baab->setOperand(0, useRegisterAtStart(lhs)); baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); add(baab, mir); } void LIRGeneratorMIPSShared::lowerWasmBuiltinTruncateToInt32( MWasmBuiltinTruncateToInt32* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); if (opd->type() == MIRType::Double) { define(new (alloc()) LWasmBuiltinTruncateDToInt32( useRegister(opd), useFixed(ins->tls(), WasmTlsReg), LDefinition::BogusTemp()), ins); return; } define(new (alloc()) LWasmBuiltinTruncateFToInt32( useRegister(opd), useFixed(ins->tls(), WasmTlsReg), LDefinition::BogusTemp()), ins); } void LIRGeneratorMIPSShared::lowerForShift(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setOperand(0, useRegister(lhs)); ins->setOperand(1, useRegisterOrConstant(rhs)); define(ins, mir); } void LIRGeneratorMIPSShared::lowerDivI(MDiv* div) { if (div->isUnsigned()) { lowerUDiv(div); return; } // Division instructions are slow. Division by constant denominators can be // rewritten to use other instructions. if (div->rhs()->isConstant()) { int32_t rhs = div->rhs()->toConstant()->toInt32(); // Check for division by a positive power of two, which is an easy and // important case to optimize. Note that other optimizations are also // possible; division by negative powers of two can be optimized in a // similar manner as positive powers of two, and division by other // constants can be optimized by a reciprocal multiplication technique. int32_t shift = FloorLog2(rhs); if (rhs > 0 && 1 << shift == rhs) { LDivPowTwoI* lir = new (alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp()); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); return; } } LDivI* lir = new (alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); } void LIRGeneratorMIPSShared::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs) { LMulI* lir = new (alloc()) LMulI; if (mul->fallible()) { assignSnapshot(lir, mul->bailoutKind()); } lowerForALU(lir, mul, lhs, rhs); } void LIRGeneratorMIPSShared::lowerModI(MMod* mod) { if (mod->isUnsigned()) { lowerUMod(mod); return; } if (mod->rhs()->isConstant()) { int32_t rhs = mod->rhs()->toConstant()->toInt32(); int32_t shift = FloorLog2(rhs); if (rhs > 0 && 1 << shift == rhs) { LModPowTwoI* lir = new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); return; } else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { LModMaskI* lir = new (alloc()) LModMaskI(useRegister(mod->lhs()), temp(LDefinition::GENERAL), temp(LDefinition::GENERAL), shift + 1); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); return; } } LModI* lir = new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()), temp(LDefinition::GENERAL)); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); } void LIRGenerator::visitPowHalf(MPowHalf* ins) { MDefinition* input = ins->input(); MOZ_ASSERT(input->type() == MIRType::Double); LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input)); defineReuseInput(lir, ins, 0); } LTableSwitch* LIRGeneratorMIPSShared::newLTableSwitch( const LAllocation& in, const LDefinition& inputCopy, MTableSwitch* tableswitch) { return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch); } LTableSwitchV* LIRGeneratorMIPSShared::newLTableSwitchV( MTableSwitch* tableswitch) { return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(), tempDouble(), temp(), tableswitch); } void LIRGeneratorMIPSShared::lowerUrshD(MUrsh* mir) { MDefinition* lhs = mir->lhs(); MDefinition* rhs = mir->rhs(); MOZ_ASSERT(lhs->type() == MIRType::Int32); MOZ_ASSERT(rhs->type() == MIRType::Int32); LUrshD* lir = new (alloc()) LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); define(lir, mir); } void LIRGeneratorMIPSShared::lowerPowOfTwoI(MPow* mir) { int32_t base = mir->input()->toConstant()->toInt32(); MDefinition* power = mir->power(); auto* lir = new (alloc()) LPowOfTwoI(base, useRegister(power)); assignSnapshot(lir, mir->bailoutKind()); define(lir, mir); } void LIRGeneratorMIPSShared::lowerBigIntLsh(MBigIntLsh* ins) { auto* lir = new (alloc()) LBigIntLsh( useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGeneratorMIPSShared::lowerBigIntRsh(MBigIntRsh* ins) { auto* lir = new (alloc()) LBigIntRsh( useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGenerator::visitWasmNeg(MWasmNeg* ins) { if (ins->type() == MIRType::Int32) { define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins); } else if (ins->type() == MIRType::Float32) { define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins); } else { MOZ_ASSERT(ins->type() == MIRType::Double); define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins); } } void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) { auto* lir = new (alloc()) LWasmHeapBase(LAllocation()); define(lir, ins); } void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); LAllocation ptr; #ifdef JS_CODEGEN_MIPS32 if (ins->type() == MIRType::Int64) { ptr = useRegister(base); } else { ptr = useRegisterAtStart(base); } #else ptr = useRegisterAtStart(base); #endif if (IsUnaligned(ins->access())) { if (ins->type() == MIRType::Int64) { auto* lir = new (alloc()) LWasmUnalignedLoadI64(ptr, temp()); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } defineInt64(lir, ins); return; } auto* lir = new (alloc()) LWasmUnalignedLoad(ptr, temp()); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } define(lir, ins); return; } if (ins->type() == MIRType::Int64) { #ifdef JS_CODEGEN_MIPS32 if (ins->access().isAtomic()) { auto* lir = new (alloc()) LWasmAtomicLoadI64(ptr); defineInt64(lir, ins); return; } #endif auto* lir = new (alloc()) LWasmLoadI64(ptr); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } defineInt64(lir, ins); return; } auto* lir = new (alloc()) LWasmLoad(ptr); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } define(lir, ins); } void LIRGenerator::visitWasmStore(MWasmStore* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); MDefinition* value = ins->value(); if (IsUnaligned(ins->access())) { LAllocation baseAlloc = useRegisterAtStart(base); if (ins->access().type() == Scalar::Int64) { LInt64Allocation valueAlloc = useInt64RegisterAtStart(value); auto* lir = new (alloc()) LWasmUnalignedStoreI64(baseAlloc, valueAlloc, temp()); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } add(lir, ins); return; } LAllocation valueAlloc = useRegisterAtStart(value); auto* lir = new (alloc()) LWasmUnalignedStore(baseAlloc, valueAlloc, temp()); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } add(lir, ins); return; } if (ins->access().type() == Scalar::Int64) { #ifdef JS_CODEGEN_MIPS32 if (ins->access().isAtomic()) { auto* lir = new (alloc()) LWasmAtomicStoreI64( useRegister(base), useInt64Register(value), temp()); add(lir, ins); return; } #endif LAllocation baseAlloc = useRegisterAtStart(base); LInt64Allocation valueAlloc = useInt64RegisterAtStart(value); auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } add(lir, ins); return; } LAllocation baseAlloc = useRegisterAtStart(base); LAllocation valueAlloc = useRegisterAtStart(value); auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc); if (ins->access().offset()) { lir->setTemp(0, tempCopy(base, 0)); } add(lir, ins); } void LIRGeneratorMIPSShared::lowerUDiv(MDiv* div) { MDefinition* lhs = div->getOperand(0); MDefinition* rhs = div->getOperand(1); LUDivOrMod* lir = new (alloc()) LUDivOrMod; lir->setOperand(0, useRegister(lhs)); lir->setOperand(1, useRegister(rhs)); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); } void LIRGeneratorMIPSShared::lowerUMod(MMod* mod) { MDefinition* lhs = mod->getOperand(0); MDefinition* rhs = mod->getOperand(1); LUDivOrMod* lir = new (alloc()) LUDivOrMod; lir->setOperand(0, useRegister(lhs)); lir->setOperand(1, useRegister(rhs)); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); } void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToDouble* lir = new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input())); define(lir, ins); } void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToFloat32* lir = new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input())); define(lir, ins); } void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) { MOZ_ASSERT(ins->access().offset() == 0); MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); LAllocation baseAlloc; LAllocation limitAlloc; // For MIPS it is best to keep the 'base' in a register if a bounds check // is needed. if (base->isConstant() && !ins->needsBoundsCheck()) { // A bounds check is only skipped for a positive index. MOZ_ASSERT(base->toConstant()->toInt32() >= 0); baseAlloc = LAllocation(base->toConstant()); } else { baseAlloc = useRegisterAtStart(base); if (ins->needsBoundsCheck()) { MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); limitAlloc = useRegisterAtStart(boundsCheckLimit); } } define(new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc), ins); } void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) { MOZ_ASSERT(ins->access().offset() == 0); MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); LAllocation baseAlloc; LAllocation limitAlloc; if (base->isConstant() && !ins->needsBoundsCheck()) { MOZ_ASSERT(base->toConstant()->toInt32() >= 0); baseAlloc = LAllocation(base->toConstant()); } else { baseAlloc = useRegisterAtStart(base); if (ins->needsBoundsCheck()) { MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); limitAlloc = useRegisterAtStart(boundsCheckLimit); } } add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()), limitAlloc), ins); } void LIRGenerator::visitSubstr(MSubstr* ins) { LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()), useRegister(ins->begin()), useRegister(ins->length()), temp(), temp(), tempByteOpRegister()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGenerator::visitCompareExchangeTypedArrayElement( MCompareExchangeTypedArrayElement* ins) { MOZ_ASSERT(ins->arrayType() != Scalar::Float32); MOZ_ASSERT(ins->arrayType() != Scalar::Float64); MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::Int32); const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrConstant(ins->index()); // If the target is a floating register then we need a temp at the // CodeGenerator level for creating the result. const LAllocation newval = useRegister(ins->newval()); const LAllocation oldval = useRegister(ins->oldval()); LDefinition outTemp = LDefinition::BogusTemp(); LDefinition valueTemp = LDefinition::BogusTemp(); LDefinition offsetTemp = LDefinition::BogusTemp(); LDefinition maskTemp = LDefinition::BogusTemp(); if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { outTemp = temp(); } if (Scalar::byteSize(ins->arrayType()) < 4) { valueTemp = temp(); offsetTemp = temp(); maskTemp = temp(); } LCompareExchangeTypedArrayElement* lir = new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, newval, outTemp, valueTemp, offsetTemp, maskTemp); define(lir, ins); } void LIRGenerator::visitAtomicExchangeTypedArrayElement( MAtomicExchangeTypedArrayElement* ins) { MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32); MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::Int32); const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrConstant(ins->index()); // If the target is a floating register then we need a temp at the // CodeGenerator level for creating the result. const LAllocation value = useRegister(ins->value()); LDefinition outTemp = LDefinition::BogusTemp(); LDefinition valueTemp = LDefinition::BogusTemp(); LDefinition offsetTemp = LDefinition::BogusTemp(); LDefinition maskTemp = LDefinition::BogusTemp(); if (ins->arrayType() == Scalar::Uint32) { MOZ_ASSERT(ins->type() == MIRType::Double); outTemp = temp(); } if (Scalar::byteSize(ins->arrayType()) < 4) { valueTemp = temp(); offsetTemp = temp(); maskTemp = temp(); } LAtomicExchangeTypedArrayElement* lir = new (alloc()) LAtomicExchangeTypedArrayElement( elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp); define(lir, ins); } void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { MOZ_ASSERT(ins->base()->type() == MIRType::Int32); if (ins->access().type() == Scalar::Int64) { auto* lir = new (alloc()) LWasmCompareExchangeI64( useRegister(ins->base()), useInt64Register(ins->oldValue()), useInt64Register(ins->newValue())); defineInt64(lir, ins); return; } LDefinition valueTemp = LDefinition::BogusTemp(); LDefinition offsetTemp = LDefinition::BogusTemp(); LDefinition maskTemp = LDefinition::BogusTemp(); if (ins->access().byteSize() < 4) { valueTemp = temp(); offsetTemp = temp(); maskTemp = temp(); } LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap( useRegister(ins->base()), useRegister(ins->oldValue()), useRegister(ins->newValue()), valueTemp, offsetTemp, maskTemp); define(lir, ins); } void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { MOZ_ASSERT(ins->base()->type() == MIRType::Int32); if (ins->access().type() == Scalar::Int64) { auto* lir = new (alloc()) LWasmAtomicExchangeI64( useRegister(ins->base()), useInt64Register(ins->value())); defineInt64(lir, ins); return; } LDefinition valueTemp = LDefinition::BogusTemp(); LDefinition offsetTemp = LDefinition::BogusTemp(); LDefinition maskTemp = LDefinition::BogusTemp(); if (ins->access().byteSize() < 4) { valueTemp = temp(); offsetTemp = temp(); maskTemp = temp(); } LWasmAtomicExchangeHeap* lir = new (alloc()) LWasmAtomicExchangeHeap( useRegister(ins->base()), useRegister(ins->value()), valueTemp, offsetTemp, maskTemp); define(lir, ins); } void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { MOZ_ASSERT(ins->base()->type() == MIRType::Int32); if (ins->access().type() == Scalar::Int64) { auto* lir = new (alloc()) LWasmAtomicBinopI64( useRegister(ins->base()), useInt64Register(ins->value())); lir->setTemp(0, temp()); #ifdef JS_CODEGEN_MIPS32 lir->setTemp(1, temp()); #endif defineInt64(lir, ins); return; } LDefinition valueTemp = LDefinition::BogusTemp(); LDefinition offsetTemp = LDefinition::BogusTemp(); LDefinition maskTemp = LDefinition::BogusTemp(); if (ins->access().byteSize() < 4) { valueTemp = temp(); offsetTemp = temp(); maskTemp = temp(); } if (!ins->hasUses()) { LWasmAtomicBinopHeapForEffect* lir = new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(ins->base()), useRegister(ins->value()), valueTemp, offsetTemp, maskTemp); add(lir, ins); return; } LWasmAtomicBinopHeap* lir = new (alloc()) LWasmAtomicBinopHeap(useRegister(ins->base()), useRegister(ins->value()), valueTemp, offsetTemp, maskTemp); define(lir, ins); } void LIRGenerator::visitAtomicTypedArrayElementBinop( MAtomicTypedArrayElementBinop* ins) { MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped); MOZ_ASSERT(ins->arrayType() != Scalar::Float32); MOZ_ASSERT(ins->arrayType() != Scalar::Float64); MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::Int32); const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrConstant(ins->index()); const LAllocation value = useRegister(ins->value()); LDefinition valueTemp = LDefinition::BogusTemp(); LDefinition offsetTemp = LDefinition::BogusTemp(); LDefinition maskTemp = LDefinition::BogusTemp(); if (Scalar::byteSize(ins->arrayType()) < 4) { valueTemp = temp(); offsetTemp = temp(); maskTemp = temp(); } if (!ins->hasUses()) { LAtomicTypedArrayElementBinopForEffect* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect( elements, index, value, valueTemp, offsetTemp, maskTemp); add(lir, ins); return; } // For a Uint32Array with a known double result we need a temp for // the intermediate output. LDefinition outTemp = LDefinition::BogusTemp(); if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { outTemp = temp(); } LAtomicTypedArrayElementBinop* lir = new (alloc()) LAtomicTypedArrayElementBinop( elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp); define(lir, ins); } void LIRGenerator::visitCopySign(MCopySign* ins) { MDefinition* lhs = ins->lhs(); MDefinition* rhs = ins->rhs(); MOZ_ASSERT(IsFloatingPointType(lhs->type())); MOZ_ASSERT(lhs->type() == rhs->type()); MOZ_ASSERT(lhs->type() == ins->type()); LInstructionHelper<1, 2, 2>* lir; if (lhs->type() == MIRType::Double) { lir = new (alloc()) LCopySignD(); } else { lir = new (alloc()) LCopySignF(); } lir->setTemp(0, temp()); lir->setTemp(1, temp()); lir->setOperand(0, useRegisterAtStart(lhs)); lir->setOperand(1, useRegister(rhs)); defineReuseInput(lir, ins, 0); } void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { defineInt64( new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins); } void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { defineInt64(new (alloc()) LSignExtendInt64(useInt64RegisterAtStart(ins->input())), ins); } void LIRGenerator::visitWasmBitselectSimd128(MWasmBitselectSimd128* ins) { MOZ_CRASH("bitselect NYI"); } void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) { MOZ_CRASH("binary SIMD NYI"); } bool MWasmBinarySimd128::specializeForConstantRhs() { // Probably many we want to do here return false; } void LIRGenerator::visitWasmBinarySimd128WithConstant( MWasmBinarySimd128WithConstant* ins) { MOZ_CRASH("binary SIMD with constant NYI"); } void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) { MOZ_CRASH("shift SIMD NYI"); } void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) { MOZ_CRASH("shuffle SIMD NYI"); } void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) { MOZ_CRASH("replace-lane SIMD NYI"); } void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) { MOZ_CRASH("scalar-to-SIMD NYI"); } void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) { MOZ_CRASH("unary SIMD NYI"); } void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) { MOZ_CRASH("reduce-SIMD NYI"); }