/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/DebugOnly.h" #include "jit/Bailouts.h" #include "jit/BaselineFrame.h" #include "jit/CalleeToken.h" #include "jit/JitFrames.h" #include "jit/JitRuntime.h" #include "jit/JitSpewer.h" #include "jit/mips-shared/SharedICHelpers-mips-shared.h" #include "jit/mips32/Bailouts-mips32.h" #ifdef JS_ION_PERF # include "jit/PerfSpewer.h" #endif #include "jit/VMFunctions.h" #include "vm/JitActivation.h" // js::jit::JitActivation #include "vm/JSContext.h" #include "vm/Realm.h" #include "jit/MacroAssembler-inl.h" using namespace js; using namespace js::jit; static_assert(sizeof(uintptr_t) == sizeof(uint32_t), "Not 64-bit clean."); struct EnterJITRegs { double f30; double f28; double f26; double f24; double f22; double f20; // non-volatile registers. uintptr_t ra; uintptr_t fp; uintptr_t s7; uintptr_t s6; uintptr_t s5; uintptr_t s4; uintptr_t s3; uintptr_t s2; uintptr_t s1; uintptr_t s0; }; struct EnterJITArgs { // First 4 argumet placeholders void* jitcode; // <- sp points here when function is entered. int maxArgc; Value* maxArgv; InterpreterFrame* fp; // Arguments on stack CalleeToken calleeToken; JSObject* scopeChain; size_t numStackValues; Value* vp; }; static void GenerateReturn(MacroAssembler& masm, int returnCode) { MOZ_ASSERT(masm.framePushed() == sizeof(EnterJITRegs)); // Restore non-volatile registers masm.as_lw(s0, StackPointer, offsetof(EnterJITRegs, s0)); masm.as_lw(s1, StackPointer, offsetof(EnterJITRegs, s1)); masm.as_lw(s2, StackPointer, offsetof(EnterJITRegs, s2)); masm.as_lw(s3, StackPointer, offsetof(EnterJITRegs, s3)); masm.as_lw(s4, StackPointer, offsetof(EnterJITRegs, s4)); masm.as_lw(s5, StackPointer, offsetof(EnterJITRegs, s5)); masm.as_lw(s6, StackPointer, offsetof(EnterJITRegs, s6)); masm.as_lw(s7, StackPointer, offsetof(EnterJITRegs, s7)); masm.as_lw(fp, StackPointer, offsetof(EnterJITRegs, fp)); masm.as_lw(ra, StackPointer, offsetof(EnterJITRegs, ra)); // Restore non-volatile floating point registers masm.as_ldc1(f20, StackPointer, offsetof(EnterJITRegs, f20)); masm.as_ldc1(f22, StackPointer, offsetof(EnterJITRegs, f22)); masm.as_ldc1(f24, StackPointer, offsetof(EnterJITRegs, f24)); masm.as_ldc1(f26, StackPointer, offsetof(EnterJITRegs, f26)); masm.as_ldc1(f28, StackPointer, offsetof(EnterJITRegs, f28)); masm.as_ldc1(f30, StackPointer, offsetof(EnterJITRegs, f30)); masm.freeStack(sizeof(EnterJITRegs)); masm.branch(ra); } static void GeneratePrologue(MacroAssembler& masm) { // Save non-volatile registers. These must be saved by the trampoline, // rather than the JIT'd code, because they are scanned by the conservative // scanner. masm.reserveStack(sizeof(EnterJITRegs)); masm.as_sw(s0, StackPointer, offsetof(EnterJITRegs, s0)); masm.as_sw(s1, StackPointer, offsetof(EnterJITRegs, s1)); masm.as_sw(s2, StackPointer, offsetof(EnterJITRegs, s2)); masm.as_sw(s3, StackPointer, offsetof(EnterJITRegs, s3)); masm.as_sw(s4, StackPointer, offsetof(EnterJITRegs, s4)); masm.as_sw(s5, StackPointer, offsetof(EnterJITRegs, s5)); masm.as_sw(s6, StackPointer, offsetof(EnterJITRegs, s6)); masm.as_sw(s7, StackPointer, offsetof(EnterJITRegs, s7)); masm.as_sw(fp, StackPointer, offsetof(EnterJITRegs, fp)); masm.as_sw(ra, StackPointer, offsetof(EnterJITRegs, ra)); masm.as_sdc1(f20, StackPointer, offsetof(EnterJITRegs, f20)); masm.as_sdc1(f22, StackPointer, offsetof(EnterJITRegs, f22)); masm.as_sdc1(f24, StackPointer, offsetof(EnterJITRegs, f24)); masm.as_sdc1(f26, StackPointer, offsetof(EnterJITRegs, f26)); masm.as_sdc1(f28, StackPointer, offsetof(EnterJITRegs, f28)); masm.as_sdc1(f30, StackPointer, offsetof(EnterJITRegs, f30)); } /* * This method generates a trampoline for a c++ function with the following * signature: * void enter(void* code, int argc, Value* argv, InterpreterFrame* fp, * CalleeToken calleeToken, JSObject* scopeChain, Value* vp) * ...using standard EABI calling convention */ void JitRuntime::generateEnterJIT(JSContext* cx, MacroAssembler& masm) { enterJITOffset_ = startTrampolineCode(masm); const Register reg_code = a0; const Register reg_argc = a1; const Register reg_argv = a2; const mozilla::DebugOnly reg_frame = a3; MOZ_ASSERT(OsrFrameReg == reg_frame); GeneratePrologue(masm); const Address slotToken( sp, sizeof(EnterJITRegs) + offsetof(EnterJITArgs, calleeToken)); const Address slotVp(sp, sizeof(EnterJITRegs) + offsetof(EnterJITArgs, vp)); // Save stack pointer into s4 masm.movePtr(StackPointer, s4); // Load calleeToken into s2. masm.loadPtr(slotToken, s2); // Save stack pointer as baseline frame. masm.movePtr(StackPointer, BaselineFrameReg); // Load the number of actual arguments into s3. masm.loadPtr(slotVp, s3); masm.unboxInt32(Address(s3, 0), s3); /*************************************************************** Loop over argv vector, push arguments onto stack in reverse order ***************************************************************/ // if we are constructing, that also needs to include newTarget { Label noNewTarget; masm.branchTest32(Assembler::Zero, s2, Imm32(CalleeToken_FunctionConstructing), &noNewTarget); masm.add32(Imm32(1), reg_argc); masm.bind(&noNewTarget); } masm.as_sll(s0, reg_argc, 3); // s0 = argc * 8 masm.addPtr(reg_argv, s0); // s0 = argv + argc * 8 // Loop over arguments, copying them from an unknown buffer onto the Ion // stack so they can be accessed from JIT'ed code. Label header, footer; // If there aren't any arguments, don't do anything masm.ma_b(s0, reg_argv, &footer, Assembler::BelowOrEqual, ShortJump); { masm.bind(&header); masm.subPtr(Imm32(2 * sizeof(uintptr_t)), s0); masm.subPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer); ValueOperand value = ValueOperand(s6, s7); masm.loadValue(Address(s0, 0), value); masm.storeValue(value, Address(StackPointer, 0)); masm.ma_b(s0, reg_argv, &header, Assembler::Above, ShortJump); } masm.bind(&footer); masm.subPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer); masm.storePtr(s3, Address(StackPointer, sizeof(uintptr_t))); // actual arguments masm.storePtr(s2, Address(StackPointer, 0)); // callee token masm.subPtr(StackPointer, s4); masm.makeFrameDescriptor(s4, FrameType::CppToJSJit, JitFrameLayout::Size()); masm.push(s4); // descriptor CodeLabel returnLabel; CodeLabel oomReturnLabel; { // Handle Interpreter -> Baseline OSR. AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); regs.take(OsrFrameReg); regs.take(BaselineFrameReg); regs.take(reg_code); regs.take(ReturnReg); const Address slotNumStackValues( BaselineFrameReg, sizeof(EnterJITRegs) + offsetof(EnterJITArgs, numStackValues)); const Address slotScopeChain( BaselineFrameReg, sizeof(EnterJITRegs) + offsetof(EnterJITArgs, scopeChain)); Label notOsr; masm.ma_b(OsrFrameReg, OsrFrameReg, ¬Osr, Assembler::Zero, ShortJump); Register scratch = regs.takeAny(); Register numStackValues = regs.takeAny(); masm.load32(slotNumStackValues, numStackValues); // Push return address. masm.subPtr(Imm32(sizeof(uintptr_t)), StackPointer); masm.ma_li(scratch, &returnLabel); masm.storePtr(scratch, Address(StackPointer, 0)); // Push previous frame pointer. masm.subPtr(Imm32(sizeof(uintptr_t)), StackPointer); masm.storePtr(BaselineFrameReg, Address(StackPointer, 0)); // Reserve frame. Register framePtr = BaselineFrameReg; masm.subPtr(Imm32(BaselineFrame::Size()), StackPointer); masm.movePtr(StackPointer, framePtr); // Reserve space for locals and stack values. masm.ma_sll(scratch, numStackValues, Imm32(3)); masm.subPtr(scratch, StackPointer); // Enter exit frame. masm.addPtr( Imm32(BaselineFrame::Size() + BaselineFrame::FramePointerOffset), scratch); masm.makeFrameDescriptor(scratch, FrameType::BaselineJS, ExitFrameLayout::Size()); // Push frame descriptor and fake return address. masm.reserveStack(2 * sizeof(uintptr_t)); masm.storePtr( scratch, Address(StackPointer, sizeof(uintptr_t))); // Frame descriptor masm.storePtr(zero, Address(StackPointer, 0)); // fake return address // No GC things to mark, push a bare token. masm.loadJSContext(scratch); masm.enterFakeExitFrame(scratch, scratch, ExitFrameType::Bare); masm.reserveStack(2 * sizeof(uintptr_t)); masm.storePtr(framePtr, Address(StackPointer, sizeof(uintptr_t))); // BaselineFrame masm.storePtr(reg_code, Address(StackPointer, 0)); // jitcode using Fn = bool (*)(BaselineFrame * frame, InterpreterFrame * interpFrame, uint32_t numStackValues); masm.setupUnalignedABICall(scratch); masm.passABIArg(BaselineFrameReg); // BaselineFrame masm.passABIArg(OsrFrameReg); // InterpreterFrame masm.passABIArg(numStackValues); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); regs.add(OsrFrameReg); regs.take(JSReturnOperand); Register jitcode = regs.takeAny(); masm.loadPtr(Address(StackPointer, 0), jitcode); masm.loadPtr(Address(StackPointer, sizeof(uintptr_t)), framePtr); masm.freeStack(2 * sizeof(uintptr_t)); Label error; masm.freeStack(ExitFrameLayout::SizeWithFooter()); masm.addPtr(Imm32(BaselineFrame::Size()), framePtr); masm.branchIfFalseBool(ReturnReg, &error); // If OSR-ing, then emit instrumentation for setting lastProfilerFrame // if profiler instrumentation is enabled. { Label skipProfilingInstrumentation; Register realFramePtr = numStackValues; AbsoluteAddress addressOfEnabled( cx->runtime()->geckoProfiler().addressOfEnabled()); masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation); masm.ma_addu(realFramePtr, framePtr, Imm32(sizeof(void*))); masm.profilerEnterFrame(realFramePtr, scratch); masm.bind(&skipProfilingInstrumentation); } masm.jump(jitcode); // OOM: load error value, discard return address and previous frame // pointer and return. masm.bind(&error); masm.movePtr(framePtr, StackPointer); masm.addPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer); masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); masm.ma_li(scratch, &oomReturnLabel); masm.jump(scratch); masm.bind(¬Osr); // Load the scope chain in R1. MOZ_ASSERT(R1.scratchReg() != reg_code); masm.loadPtr(slotScopeChain, R1.scratchReg()); } // The call will push the return address on the stack, thus we check that // the stack would be aligned once the call is complete. masm.assertStackAlignment(JitStackAlignment, sizeof(uintptr_t)); // Call the function with pushing return address to stack. masm.callJitNoProfiler(reg_code); { // Interpreter -> Baseline OSR will return here. masm.bind(&returnLabel); masm.addCodeLabel(returnLabel); masm.bind(&oomReturnLabel); masm.addCodeLabel(oomReturnLabel); } // Pop arguments off the stack. // s0 <- 8*argc (size of all arguments we pushed on the stack) masm.pop(s0); masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), s0); masm.addPtr(s0, StackPointer); // Store the returned value into the slotVp masm.loadPtr(slotVp, s1); masm.storeValue(JSReturnOperand, Address(s1, 0)); // Restore non-volatile registers and return. GenerateReturn(masm, ShortJump); } void JitRuntime::generateInvalidator(MacroAssembler& masm, Label* bailoutTail) { invalidatorOffset_ = startTrampolineCode(masm); // NOTE: Members ionScript_ and osiPointReturnAddress_ of // InvalidationBailoutStack are already on the stack. static const uint32_t STACK_DATA_SIZE = sizeof(InvalidationBailoutStack) - 2 * sizeof(uintptr_t); // Stack has to be alligned here. If not, we will have to fix it. masm.checkStackAlignment(); // Make room for data on stack. masm.subPtr(Imm32(STACK_DATA_SIZE), StackPointer); // Save general purpose registers for (uint32_t i = 0; i < Registers::Total; i++) { Address address = Address(StackPointer, InvalidationBailoutStack::offsetOfRegs() + i * sizeof(uintptr_t)); masm.storePtr(Register::FromCode(i), address); } // Save floating point registers // We can use as_sd because stack is alligned. for (uint32_t i = 0; i < FloatRegisters::TotalDouble; i++) { masm.as_sdc1( FloatRegister::FromIndex(i, FloatRegister::Double), StackPointer, InvalidationBailoutStack::offsetOfFpRegs() + i * sizeof(double)); } // Pass pointer to InvalidationBailoutStack structure. masm.movePtr(StackPointer, a0); // Reserve place for return value and BailoutInfo pointer masm.subPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer); // Pass pointer to return value. masm.ma_addu(a1, StackPointer, Imm32(sizeof(uintptr_t))); // Pass pointer to BailoutInfo masm.movePtr(StackPointer, a2); using Fn = bool (*)(InvalidationBailoutStack * sp, size_t * frameSizeOut, BaselineBailoutInfo * *info); masm.setupAlignedABICall(); masm.passABIArg(a0); masm.passABIArg(a1); masm.passABIArg(a2); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); masm.loadPtr(Address(StackPointer, 0), a2); masm.loadPtr(Address(StackPointer, sizeof(uintptr_t)), a1); // Remove the return address, the IonScript, the register state // (InvaliationBailoutStack) and the space that was allocated for the // return value. masm.addPtr(Imm32(sizeof(InvalidationBailoutStack) + 2 * sizeof(uintptr_t)), StackPointer); // remove the space that this frame was using before the bailout // (computed by InvalidationBailout) masm.addPtr(a1, StackPointer); // Jump to shared bailout tail. The BailoutInfo pointer has to be in r2. masm.jump(bailoutTail); } void JitRuntime::generateArgumentsRectifier(MacroAssembler& masm, ArgumentsRectifierKind kind) { switch (kind) { case ArgumentsRectifierKind::Normal: argumentsRectifierOffset_ = startTrampolineCode(masm); break; case ArgumentsRectifierKind::TrialInlining: trialInliningArgumentsRectifierOffset_ = startTrampolineCode(masm); break; } masm.pushReturnAddress(); Register numActArgsReg = t6; Register calleeTokenReg = t7; Register numArgsReg = t5; // Load the number of actual arguments into numActArgsReg masm.loadPtr( Address(StackPointer, RectifierFrameLayout::offsetOfNumActualArgs()), numActArgsReg); // Load the number of |undefined|s to push into t1. masm.loadPtr( Address(StackPointer, RectifierFrameLayout::offsetOfCalleeToken()), calleeTokenReg); // Copy the number of actual arguments into s3. masm.mov(numActArgsReg, s3); masm.mov(calleeTokenReg, numArgsReg); masm.andPtr(Imm32(CalleeTokenMask), numArgsReg); masm.load16ZeroExtend(Address(numArgsReg, JSFunction::offsetOfNargs()), numArgsReg); masm.as_subu(t1, numArgsReg, s3); // Get the topmost argument. masm.ma_sll(t0, s3, Imm32(3)); // t0 <- nargs * 8 masm.as_addu(t2, sp, t0); // t2 <- sp + nargs * 8 masm.addPtr(Imm32(sizeof(RectifierFrameLayout)), t2); { Label notConstructing; masm.branchTest32(Assembler::Zero, calleeTokenReg, Imm32(CalleeToken_FunctionConstructing), ¬Constructing); // Add sizeof(Value) to overcome |this| masm.subPtr(Imm32(sizeof(Value)), StackPointer); masm.load32(Address(t2, NUNBOX32_TYPE_OFFSET + sizeof(Value)), t0); masm.store32(t0, Address(StackPointer, NUNBOX32_TYPE_OFFSET)); masm.load32(Address(t2, NUNBOX32_PAYLOAD_OFFSET + sizeof(Value)), t0); masm.store32(t0, Address(StackPointer, NUNBOX32_PAYLOAD_OFFSET)); // Include the newly pushed newTarget value in the frame size // calculated below. masm.add32(Imm32(1), numArgsReg); masm.bind(¬Constructing); } // Push undefined. masm.moveValue(UndefinedValue(), ValueOperand(t3, t4)); { Label undefLoopTop; masm.bind(&undefLoopTop); masm.subPtr(Imm32(sizeof(Value)), StackPointer); masm.storeValue(ValueOperand(t3, t4), Address(StackPointer, 0)); masm.sub32(Imm32(1), t1); masm.ma_b(t1, t1, &undefLoopTop, Assembler::NonZero, ShortJump); } // Push arguments, |nargs| + 1 times (to include |this|). { Label copyLoopTop, initialSkip; masm.ma_b(&initialSkip, ShortJump); masm.bind(©LoopTop); masm.subPtr(Imm32(sizeof(Value)), t2); masm.sub32(Imm32(1), s3); masm.bind(&initialSkip); MOZ_ASSERT(sizeof(Value) == 2 * sizeof(uint32_t)); // Read argument and push to stack. masm.subPtr(Imm32(sizeof(Value)), StackPointer); masm.load32(Address(t2, NUNBOX32_TYPE_OFFSET), t0); masm.store32(t0, Address(StackPointer, NUNBOX32_TYPE_OFFSET)); masm.load32(Address(t2, NUNBOX32_PAYLOAD_OFFSET), t0); masm.store32(t0, Address(StackPointer, NUNBOX32_PAYLOAD_OFFSET)); masm.ma_b(s3, s3, ©LoopTop, Assembler::NonZero, ShortJump); } // translate the framesize from values into bytes masm.ma_addu(t0, numArgsReg, Imm32(1)); masm.lshiftPtr(Imm32(3), t0); // Construct sizeDescriptor. masm.makeFrameDescriptor(t0, FrameType::Rectifier, JitFrameLayout::Size()); // Construct JitFrameLayout. masm.subPtr(Imm32(3 * sizeof(uintptr_t)), StackPointer); // Push actual arguments. masm.storePtr(numActArgsReg, Address(StackPointer, 2 * sizeof(uintptr_t))); // Push callee token. masm.storePtr(calleeTokenReg, Address(StackPointer, sizeof(uintptr_t))); // Push frame descriptor. masm.storePtr(t0, Address(StackPointer, 0)); // Call the target function. masm.andPtr(Imm32(CalleeTokenMask), calleeTokenReg); switch (kind) { case ArgumentsRectifierKind::Normal: masm.loadJitCodeRaw(calleeTokenReg, t1); argumentsRectifierReturnOffset_ = masm.callJitNoProfiler(t1); break; case ArgumentsRectifierKind::TrialInlining: Label noBaselineScript, done; masm.loadBaselineJitCodeRaw(calleeTokenReg, t1, &noBaselineScript); masm.callJitNoProfiler(t1); masm.jump(&done); // See BaselineCacheIRCompiler::emitCallInlinedFunction. masm.bind(&noBaselineScript); masm.loadJitCodeRaw(calleeTokenReg, t1); masm.callJitNoProfiler(t1); masm.bind(&done); break; } // arg1 // ... // argN // num actual args // callee token // sizeDescriptor <- sp now // return address // Remove the rectifier frame. // t0 <- descriptor with FrameType. masm.loadPtr(Address(StackPointer, 0), t0); masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), t0); // t0 <- descriptor. // Discard descriptor, calleeToken and number of actual arguments. masm.addPtr(Imm32(3 * sizeof(uintptr_t)), StackPointer); // arg1 // ... // argN <- sp now; t0 <- frame descriptor // num actual args // callee token // sizeDescriptor // return address // Discard pushed arguments. masm.addPtr(t0, StackPointer); masm.ret(); } // NOTE: Members snapshotOffset_ and padding_ of BailoutStack // are not stored in PushBailoutFrame(). static const uint32_t bailoutDataSize = sizeof(BailoutStack) - 2 * sizeof(uintptr_t); static const uint32_t bailoutInfoOutParamSize = 2 * sizeof(uintptr_t); /* There are two different stack layouts when doing bailout. They are * represented via class BailoutStack. * * - First case is when bailout is done trough bailout table. In this case * table offset is stored in $ra (look at JitRuntime::generateBailoutTable()) * and thunk code should save it on stack. In this case frameClassId_ cannot * be NO_FRAME_SIZE_CLASS_ID. Members snapshotOffset_ and padding_ are not on * the stack. * * - Other case is when bailout is done via out of line code (lazy bailout). * In this case frame size is stored in $ra (look at * CodeGeneratorMIPS::generateOutOfLineCode()) and thunk code should save it * on stack. Other difference is that members snapshotOffset_ and padding_ are * pushed to the stack by CodeGeneratorMIPS::visitOutOfLineBailout(). Field * frameClassId_ is forced to be NO_FRAME_SIZE_CLASS_ID * (See: JitRuntime::generateBailoutHandler). */ static void PushBailoutFrame(MacroAssembler& masm, uint32_t frameClass, Register spArg) { // Make sure that alignment is proper. masm.checkStackAlignment(); // Make room for data. masm.subPtr(Imm32(bailoutDataSize), StackPointer); // Save general purpose registers. for (uint32_t i = 0; i < Registers::Total; i++) { uint32_t off = BailoutStack::offsetOfRegs() + i * sizeof(uintptr_t); masm.storePtr(Register::FromCode(i), Address(StackPointer, off)); } #ifdef ENABLE_WASM_SIMD // What to do for SIMD? # error "Needs more careful logic if SIMD is enabled" #endif // Save floating point registers // We can use as_sdc1 because stack is alligned. for (uint32_t i = 0; i < FloatRegisters::TotalDouble; i++) { masm.as_sdc1(FloatRegister::FromIndex(i, FloatRegister::Double), StackPointer, BailoutStack::offsetOfFpRegs() + i * sizeof(double)); } // Store the frameSize_ or tableOffset_ stored in ra // See: JitRuntime::generateBailoutTable() // See: CodeGeneratorMIPS::generateOutOfLineCode() masm.storePtr(ra, Address(StackPointer, BailoutStack::offsetOfFrameSize())); // Put frame class to stack masm.storePtr(ImmWord(frameClass), Address(StackPointer, BailoutStack::offsetOfFrameClass())); // Put pointer to BailoutStack as first argument to the Bailout() masm.movePtr(StackPointer, spArg); } static void GenerateBailoutThunk(MacroAssembler& masm, uint32_t frameClass, Label* bailoutTail) { PushBailoutFrame(masm, frameClass, a0); // Put pointer to BailoutInfo masm.subPtr(Imm32(bailoutInfoOutParamSize), StackPointer); masm.storePtr(ImmPtr(nullptr), Address(StackPointer, 0)); masm.movePtr(StackPointer, a1); using Fn = bool (*)(BailoutStack * sp, BaselineBailoutInfo * *info); masm.setupAlignedABICall(); masm.passABIArg(a0); masm.passABIArg(a1); masm.callWithABI(MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); // Get BailoutInfo pointer masm.loadPtr(Address(StackPointer, 0), a2); // Remove both the bailout frame and the topmost Ion frame's stack. if (frameClass == NO_FRAME_SIZE_CLASS_ID) { // Load frameSize from stack masm.loadPtr(Address(StackPointer, bailoutInfoOutParamSize + BailoutStack::offsetOfFrameSize()), a1); // Remove complete BailoutStack class and data after it masm.addPtr(Imm32(sizeof(BailoutStack) + bailoutInfoOutParamSize), StackPointer); // Remove frame size srom stack masm.addPtr(a1, StackPointer); } else { uint32_t frameSize = FrameSizeClass::FromClass(frameClass).frameSize(); // Remove the data this fuction added and frame size. masm.addPtr(Imm32(bailoutDataSize + bailoutInfoOutParamSize + frameSize), StackPointer); } // Jump to shared bailout tail. The BailoutInfo pointer has to be in a2. masm.jump(bailoutTail); } JitRuntime::BailoutTable JitRuntime::generateBailoutTable(MacroAssembler& masm, Label* bailoutTail, uint32_t frameClass) { uint32_t offset = startTrampolineCode(masm); Label bailout; for (size_t i = 0; i < BAILOUT_TABLE_SIZE; i++) { // Calculate offset to the end of table int32_t offset = (BAILOUT_TABLE_SIZE - i) * BAILOUT_TABLE_ENTRY_SIZE; // We use the 'ra' as table offset later in GenerateBailoutThunk masm.as_bal(BOffImm16(offset)); masm.nop(); } masm.bind(&bailout); GenerateBailoutThunk(masm, frameClass, bailoutTail); return BailoutTable(offset, masm.currentOffset() - offset); } void JitRuntime::generateBailoutHandler(MacroAssembler& masm, Label* bailoutTail) { bailoutHandlerOffset_ = startTrampolineCode(masm); GenerateBailoutThunk(masm, NO_FRAME_SIZE_CLASS_ID, bailoutTail); } bool JitRuntime::generateVMWrapper(JSContext* cx, MacroAssembler& masm, const VMFunctionData& f, DynFn nativeFun, uint32_t* wrapperOffset) { *wrapperOffset = startTrampolineCode(masm); // Avoid conflicts with argument registers while discarding the result after // the function call. AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask); static_assert( (Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0, "Wrapper register set should be a superset of Volatile register set."); // The context is the first argument; a0 is the first argument register. Register cxreg = a0; regs.take(cxreg); // If it isn't a tail call, then the return address needs to be saved if (f.expectTailCall == NonTailCall) { masm.pushReturnAddress(); } // We're aligned to an exit frame, so link it up. masm.loadJSContext(cxreg); masm.enterExitFrame(cxreg, regs.getAny(), &f); // Save the base of the argument set stored on the stack. Register argsBase = InvalidReg; if (f.explicitArgs) { argsBase = t1; // Use temporary register. regs.take(argsBase); masm.ma_addu(argsBase, StackPointer, Imm32(ExitFrameLayout::SizeWithFooter())); } uint32_t framePushedBeforeAlignStack = masm.framePushed(); masm.alignStackPointer(); masm.setFramePushed(0); // Reserve space for the outparameter. Reserve sizeof(Value) for every // case so that stack stays aligned. uint32_t outParamSize = 0; switch (f.outParam) { case Type_Value: outParamSize = sizeof(Value); masm.reserveStack(outParamSize); break; case Type_Handle: { uint32_t pushed = masm.framePushed(); masm.PushEmptyRooted(f.outParamRootType); outParamSize = masm.framePushed() - pushed; } break; case Type_Bool: case Type_Int32: MOZ_ASSERT(sizeof(uintptr_t) == sizeof(uint32_t)); [[fallthrough]]; case Type_Pointer: outParamSize = sizeof(uintptr_t); masm.reserveStack(outParamSize); break; case Type_Double: outParamSize = sizeof(double); masm.reserveStack(outParamSize); break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } uint32_t outParamOffset = 0; if (f.outParam != Type_Void) { // Make sure that stack is double aligned after outParam. MOZ_ASSERT(outParamSize <= sizeof(double)); outParamOffset += sizeof(double) - outParamSize; } // Reserve stack for double sized args that are copied to be aligned. outParamOffset += f.doubleByRefArgs() * sizeof(double); Register doubleArgs = t0; masm.reserveStack(outParamOffset); masm.movePtr(StackPointer, doubleArgs); if (!generateTLEnterVM(masm, f)) { return false; } masm.setupAlignedABICall(); masm.passABIArg(cxreg); size_t argDisp = 0; size_t doubleArgDisp = 0; // Copy any arguments. for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) { switch (f.argProperties(explicitArg)) { case VMFunctionData::WordByValue: masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); argDisp += sizeof(uint32_t); break; case VMFunctionData::DoubleByValue: // Values should be passed by reference, not by value, so we // assert that the argument is a double-precision float. MOZ_ASSERT(f.argPassedInFloatReg(explicitArg)); masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::DOUBLE); argDisp += sizeof(double); break; case VMFunctionData::WordByRef: masm.passABIArg( MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL); argDisp += sizeof(uint32_t); break; case VMFunctionData::DoubleByRef: // Copy double sized argument to aligned place. masm.ma_ldc1WordAligned(ScratchDoubleReg, argsBase, argDisp); masm.as_sdc1(ScratchDoubleReg, doubleArgs, doubleArgDisp); masm.passABIArg(MoveOperand(doubleArgs, doubleArgDisp, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL); doubleArgDisp += sizeof(double); argDisp += sizeof(double); break; } } MOZ_ASSERT_IF(f.outParam != Type_Void, doubleArgDisp + sizeof(double) == outParamOffset + outParamSize); // Copy the implicit outparam, if any. if (f.outParam != Type_Void) { masm.passABIArg( MoveOperand(doubleArgs, outParamOffset, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL); } masm.callWithABI(nativeFun, MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); if (!generateTLExitVM(masm, f)) { return false; } // Test for failure. switch (f.failType()) { case Type_Object: masm.branchTestPtr(Assembler::Zero, v0, v0, masm.failureLabel()); break; case Type_Bool: // Called functions return bools, which are 0/false and non-zero/true masm.branchIfFalseBool(v0, masm.failureLabel()); break; case Type_Void: break; default: MOZ_CRASH("unknown failure kind"); } masm.freeStack(outParamOffset); // Load the outparam and free any allocated stack. switch (f.outParam) { case Type_Handle: masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand); break; case Type_Value: masm.loadValue(Address(StackPointer, 0), JSReturnOperand); masm.freeStack(sizeof(Value)); break; case Type_Int32: MOZ_ASSERT(sizeof(uintptr_t) == sizeof(uint32_t)); [[fallthrough]]; case Type_Pointer: masm.load32(Address(StackPointer, 0), ReturnReg); masm.freeStack(sizeof(uintptr_t)); break; case Type_Bool: masm.load8ZeroExtend(Address(StackPointer, 0), ReturnReg); masm.freeStack(sizeof(uintptr_t)); break; case Type_Double: if (JitOptions.supportsFloatingPoint) { masm.as_ldc1(ReturnDoubleReg, StackPointer, 0); } else { masm.assumeUnreachable( "Unable to load into float reg, with no FP support."); } masm.freeStack(sizeof(double)); break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } masm.restoreStackPointer(); masm.setFramePushed(framePushedBeforeAlignStack); masm.leaveExitFrame(); masm.retn(Imm32(sizeof(ExitFrameLayout) + f.explicitStackSlots() * sizeof(uintptr_t) + f.extraValuesToPop * sizeof(Value))); return true; } uint32_t JitRuntime::generatePreBarrier(JSContext* cx, MacroAssembler& masm, MIRType type) { uint32_t offset = startTrampolineCode(masm); MOZ_ASSERT(PreBarrierReg == a1); Register temp1 = a0; Register temp2 = a2; Register temp3 = a3; masm.push(temp1); masm.push(temp2); masm.push(temp3); Label noBarrier; masm.emitPreBarrierFastPath(cx->runtime(), type, temp1, temp2, temp3, &noBarrier); // Call into C++ to mark this GC thing. masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); LiveRegisterSet save; if (JitOptions.supportsFloatingPoint) { save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask), FloatRegisterSet(FloatRegisters::VolatileMask)); } else { save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask), FloatRegisterSet()); } save.add(ra); masm.PushRegsInMask(save); masm.movePtr(ImmPtr(cx->runtime()), a0); masm.setupUnalignedABICall(a2); masm.passABIArg(a0); masm.passABIArg(a1); masm.callWithABI(JitMarkFunction(type)); save.take(AnyRegister(ra)); masm.PopRegsInMask(save); masm.ret(); masm.bind(&noBarrier); masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); masm.abiret(); return offset; } void JitRuntime::generateExceptionTailStub(MacroAssembler& masm, Label* profilerExitTail) { exceptionTailOffset_ = startTrampolineCode(masm); masm.bind(masm.failureLabel()); masm.handleFailureWithHandlerTail(profilerExitTail); } void JitRuntime::generateBailoutTailStub(MacroAssembler& masm, Label* bailoutTail) { bailoutTailOffset_ = startTrampolineCode(masm); masm.bind(bailoutTail); masm.generateBailoutTail(a1, a2); } void JitRuntime::generateProfilerExitFrameTailStub(MacroAssembler& masm, Label* profilerExitTail) { profilerExitFrameTailOffset_ = startTrampolineCode(masm); masm.bind(profilerExitTail); Register scratch1 = t0; Register scratch2 = t1; Register scratch3 = t2; Register scratch4 = t3; // // The code generated below expects that the current stack pointer points // to an Ion or Baseline frame, at the state it would be immediately // before a ret(). Thus, after this stub's business is done, it executes // a ret() and returns directly to the caller script, on behalf of the // callee script that jumped to this code. // // Thus the expected stack is: // // StackPointer ----+ // v // ..., ActualArgc, CalleeToken, Descriptor, ReturnAddr // MEM-HI MEM-LOW // // // The generated jitcode is responsible for overwriting the // jitActivation->lastProfilingFrame field with a pointer to the previous // Ion or Baseline jit-frame that was pushed before this one. It is also // responsible for overwriting jitActivation->lastProfilingCallSite with // the return address into that frame. The frame could either be an // immediate "caller" frame, or it could be a frame in a previous // JitActivation (if the current frame was entered from C++, and the C++ // was entered by some caller jit-frame further down the stack). // // So this jitcode is responsible for "walking up" the jit stack, finding // the previous Ion or Baseline JS frame, and storing its address and the // return address into the appropriate fields on the current jitActivation. // // There are a fixed number of different path types that can lead to the // current frame, which is either a baseline or ion frame: // // // ^ // | // ^--- Ion // | // ^--- Baseline Stub <---- Baseline // | // ^--- Argument Rectifier // | ^ // | | // | ^--- Ion // | | // | ^--- Baseline Stub <---- Baseline // | // ^--- Entry Frame (From C++) // Register actReg = scratch4; masm.loadJSContext(actReg); masm.loadPtr(Address(actReg, offsetof(JSContext, profilingActivation_)), actReg); Address lastProfilingFrame(actReg, JitActivation::offsetOfLastProfilingFrame()); Address lastProfilingCallSite(actReg, JitActivation::offsetOfLastProfilingCallSite()); #ifdef DEBUG // Ensure that frame we are exiting is current lastProfilingFrame { masm.loadPtr(lastProfilingFrame, scratch1); Label checkOk; masm.branchPtr(Assembler::Equal, scratch1, ImmWord(0), &checkOk); masm.branchPtr(Assembler::Equal, StackPointer, scratch1, &checkOk); masm.assumeUnreachable( "Mismatch between stored lastProfilingFrame and current stack " "pointer."); masm.bind(&checkOk); } #endif // Load the frame descriptor into |scratch1|, figure out what to do depending // on its type. masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfDescriptor()), scratch1); // Going into the conditionals, we will have: // FrameDescriptor.size in scratch1 // FrameDescriptor.type in scratch2 masm.ma_and(scratch2, scratch1, Imm32((1 << FRAMETYPE_BITS) - 1)); masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1); // Handling of each case is dependent on FrameDescriptor.type Label handle_IonJS; Label handle_BaselineStub; Label handle_Rectifier; Label handle_IonICCall; Label handle_Entry; Label end; masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::IonJS), &handle_IonJS); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::BaselineJS), &handle_IonJS); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::BaselineStub), &handle_BaselineStub); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::Rectifier), &handle_Rectifier); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::IonICCall), &handle_IonICCall); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::CppToJSJit), &handle_Entry); // The WasmToJSJit is just another kind of entry. masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::WasmToJSJit), &handle_Entry); masm.assumeUnreachable( "Invalid caller frame type when exiting from Ion frame."); // // FrameType::IonJS // // Stack layout: // ... // Ion-Descriptor // Prev-FP ---> Ion-ReturnAddr // ... previous frame data ... |- Descriptor.Size // ... arguments ... | // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // masm.bind(&handle_IonJS); { // |scratch1| contains Descriptor.size // returning directly to an IonJS frame. Store return addr to frame // in lastProfilingCallSite. masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfReturnAddress()), scratch2); masm.storePtr(scratch2, lastProfilingCallSite); // Store return frame in lastProfilingFrame. // scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size(); masm.as_addu(scratch2, StackPointer, scratch1); masm.ma_addu(scratch2, scratch2, Imm32(JitFrameLayout::Size())); masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // // FrameType::BaselineStub // // Look past the stub and store the frame pointer to // the baselineJS frame prior to it. // // Stack layout: // ... // BL-Descriptor // Prev-FP ---> BL-ReturnAddr // +-----> BL-PrevFramePointer // | ... BL-FrameData ... // | BLStub-Descriptor // | BLStub-ReturnAddr // | BLStub-StubPointer | // +------ BLStub-SavedFramePointer |- Descriptor.Size // ... arguments ... | // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // // We take advantage of the fact that the stub frame saves the frame // pointer pointing to the baseline frame, so a bunch of calculation can // be avoided. // masm.bind(&handle_BaselineStub); { masm.as_addu(scratch3, StackPointer, scratch1); Address stubFrameReturnAddr( scratch3, JitFrameLayout::Size() + BaselineStubFrameLayout::offsetOfReturnAddress()); masm.loadPtr(stubFrameReturnAddr, scratch2); masm.storePtr(scratch2, lastProfilingCallSite); Address stubFrameSavedFramePtr( scratch3, JitFrameLayout::Size() - (2 * sizeof(void*))); masm.loadPtr(stubFrameSavedFramePtr, scratch2); masm.addPtr(Imm32(sizeof(void*)), scratch2); // Skip past BL-PrevFramePtr masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // // FrameType::Rectifier // // The rectifier frame can be preceded by either an IonJS, a BaselineStub, // or a CppToJSJit/WasmToJSJit frame. // // Stack layout if caller of rectifier was Ion or CppToJSJit/WasmToJSJit: // // Ion-Descriptor // Ion-ReturnAddr // ... ion frame data ... |- Rect-Descriptor.Size // < COMMON LAYOUT > // // Stack layout if caller of rectifier was Baseline: // // BL-Descriptor // Prev-FP ---> BL-ReturnAddr // +-----> BL-SavedFramePointer // | ... baseline frame data ... // | BLStub-Descriptor // | BLStub-ReturnAddr // | BLStub-StubPointer | // +------ BLStub-SavedFramePointer |- Rect-Descriptor.Size // ... args to rectifier ... | // < COMMON LAYOUT > // // Common stack layout: // // ActualArgc | // CalleeToken |- IonRectitiferFrameLayout::Size() // Rect-Descriptor | // Rect-ReturnAddr | // ... rectifier data & args ... |- Descriptor.Size // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // masm.bind(&handle_Rectifier); { // scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size(); masm.as_addu(scratch2, StackPointer, scratch1); masm.add32(Imm32(JitFrameLayout::Size()), scratch2); masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfDescriptor()), scratch3); masm.ma_srl(scratch1, scratch3, Imm32(FRAMESIZE_SHIFT)); masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch3); // Now |scratch1| contains Rect-Descriptor.Size // and |scratch2| points to Rectifier frame // and |scratch3| contains Rect-Descriptor.Type masm.assertRectifierFrameParentType(scratch3); // Check for either Ion or BaselineStub frame. Label notIonFrame; masm.branch32(Assembler::NotEqual, scratch3, Imm32(FrameType::IonJS), ¬IonFrame); // Handle Rectifier <- IonJS // scratch3 := RectFrame[ReturnAddr] masm.loadPtr( Address(scratch2, RectifierFrameLayout::offsetOfReturnAddress()), scratch3); masm.storePtr(scratch3, lastProfilingCallSite); // scratch3 := RectFrame + Rect-Descriptor.Size + // RectifierFrameLayout::Size() masm.as_addu(scratch3, scratch2, scratch1); masm.add32(Imm32(RectifierFrameLayout::Size()), scratch3); masm.storePtr(scratch3, lastProfilingFrame); masm.ret(); masm.bind(¬IonFrame); // Check for either BaselineStub or a CppToJSJit/WasmToJSJit entry // frame. masm.branch32(Assembler::NotEqual, scratch3, Imm32(FrameType::BaselineStub), &handle_Entry); // Handle Rectifier <- BaselineStub <- BaselineJS masm.as_addu(scratch3, scratch2, scratch1); Address stubFrameReturnAddr( scratch3, RectifierFrameLayout::Size() + BaselineStubFrameLayout::offsetOfReturnAddress()); masm.loadPtr(stubFrameReturnAddr, scratch2); masm.storePtr(scratch2, lastProfilingCallSite); Address stubFrameSavedFramePtr( scratch3, RectifierFrameLayout::Size() - (2 * sizeof(void*))); masm.loadPtr(stubFrameSavedFramePtr, scratch2); masm.addPtr(Imm32(sizeof(void*)), scratch2); masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // FrameType::IonICCall // // The caller is always an IonJS frame. // // Ion-Descriptor // Ion-ReturnAddr // ... ion frame data ... |- CallFrame-Descriptor.Size // StubCode | // ICCallFrame-Descriptor |- IonICCallFrameLayout::Size() // ICCallFrame-ReturnAddr | // ... call frame data & args ... |- Descriptor.Size // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | masm.bind(&handle_IonICCall); { // scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size() masm.as_addu(scratch2, StackPointer, scratch1); masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2); // scratch3 := ICCallFrame-Descriptor.Size masm.loadPtr(Address(scratch2, IonICCallFrameLayout::offsetOfDescriptor()), scratch3); #ifdef DEBUG // Assert previous frame is an IonJS frame. masm.movePtr(scratch3, scratch1); masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1); { Label checkOk; masm.branch32(Assembler::Equal, scratch1, Imm32(FrameType::IonJS), &checkOk); masm.assumeUnreachable("IonICCall frame must be preceded by IonJS frame"); masm.bind(&checkOk); } #endif masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3); // lastProfilingCallSite := ICCallFrame-ReturnAddr masm.loadPtr( Address(scratch2, IonICCallFrameLayout::offsetOfReturnAddress()), scratch1); masm.storePtr(scratch1, lastProfilingCallSite); // lastProfilingFrame := ICCallFrame + ICCallFrame-Descriptor.Size + // IonICCallFrameLayout::Size() masm.as_addu(scratch1, scratch2, scratch3); masm.addPtr(Imm32(IonICCallFrameLayout::Size()), scratch1); masm.storePtr(scratch1, lastProfilingFrame); masm.ret(); } // // FrameType::CppToJSJit / FrameType::WasmToJSJit // // If at an entry frame, store null into both fields. // A fast-path wasm->jit transition frame is an entry frame from the point // of view of the JIT. // masm.bind(&handle_Entry); { masm.movePtr(ImmPtr(nullptr), scratch1); masm.storePtr(scratch1, lastProfilingCallSite); masm.storePtr(scratch1, lastProfilingFrame); masm.ret(); } }