/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_mips64_Assembler_mips64_h #define jit_mips64_Assembler_mips64_h #include #include "jit/mips-shared/Assembler-mips-shared.h" #include "jit/mips64/Architecture-mips64.h" namespace js { namespace jit { static constexpr Register CallTempReg4 = a4; static constexpr Register CallTempReg5 = a5; static constexpr Register CallTempNonArgRegs[] = {t0, t1, t2, t3}; static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs); class ABIArgGenerator { unsigned regIndex_; uint32_t stackOffset_; ABIArg current_; public: ABIArgGenerator(); ABIArg next(MIRType argType); ABIArg& current() { return current_; } uint32_t stackBytesConsumedSoFar() const { return stackOffset_; } void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; } }; // These registers may be volatile or nonvolatile. static constexpr Register ABINonArgReg0 = t0; static constexpr Register ABINonArgReg1 = t1; static constexpr Register ABINonArgReg2 = t2; static constexpr Register ABINonArgReg3 = t3; // This register may be volatile or nonvolatile. Avoid f23 which is the // ScratchDoubleReg. static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::f21, FloatRegisters::Double}; // These registers may be volatile or nonvolatile. // Note: these three registers are all guaranteed to be different static constexpr Register ABINonArgReturnReg0 = t0; static constexpr Register ABINonArgReturnReg1 = t1; static constexpr Register ABINonVolatileReg = s0; // This register is guaranteed to be clobberable during the prologue and // epilogue of an ABI call which must preserve both ABI argument, return // and non-volatile registers. static constexpr Register ABINonArgReturnVolatileReg = t0; // TLS pointer argument register for WebAssembly functions. This must not alias // any other register used for passing function arguments or return values. // Preserved by WebAssembly functions. static constexpr Register WasmTlsReg = s5; // Registers used for wasm table calls. These registers must be disjoint // from the ABI argument registers, WasmTlsReg and each other. static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0; static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1; static constexpr Register WasmTableCallSigReg = ABINonArgReg2; static constexpr Register WasmTableCallIndexReg = ABINonArgReg3; // Register used as a scratch along the return path in the fast js -> wasm stub // code. This must not overlap ReturnReg, JSReturnOperand, or WasmTlsReg. It // must be a volatile register. static constexpr Register WasmJitEntryReturnScratch = t1; static constexpr Register InterpreterPCReg = t5; static constexpr Register JSReturnReg = v1; static constexpr Register JSReturnReg_Type = JSReturnReg; static constexpr Register JSReturnReg_Data = JSReturnReg; static constexpr Register64 ReturnReg64(ReturnReg); static constexpr FloatRegister ReturnFloat32Reg = {FloatRegisters::f0, FloatRegisters::Single}; static constexpr FloatRegister ReturnDoubleReg = {FloatRegisters::f0, FloatRegisters::Double}; static constexpr FloatRegister ScratchFloat32Reg = {FloatRegisters::f23, FloatRegisters::Single}; static constexpr FloatRegister ScratchDoubleReg = {FloatRegisters::f23, FloatRegisters::Double}; struct ScratchFloat32Scope : public AutoFloatRegisterScope { explicit ScratchFloat32Scope(MacroAssembler& masm) : AutoFloatRegisterScope(masm, ScratchFloat32Reg) {} }; struct ScratchDoubleScope : public AutoFloatRegisterScope { explicit ScratchDoubleScope(MacroAssembler& masm) : AutoFloatRegisterScope(masm, ScratchDoubleReg) {} }; static constexpr FloatRegister f0 = {FloatRegisters::f0, FloatRegisters::Double}; static constexpr FloatRegister f1 = {FloatRegisters::f1, FloatRegisters::Double}; static constexpr FloatRegister f2 = {FloatRegisters::f2, FloatRegisters::Double}; static constexpr FloatRegister f3 = {FloatRegisters::f3, FloatRegisters::Double}; static constexpr FloatRegister f4 = {FloatRegisters::f4, FloatRegisters::Double}; static constexpr FloatRegister f5 = {FloatRegisters::f5, FloatRegisters::Double}; static constexpr FloatRegister f6 = {FloatRegisters::f6, FloatRegisters::Double}; static constexpr FloatRegister f7 = {FloatRegisters::f7, FloatRegisters::Double}; static constexpr FloatRegister f8 = {FloatRegisters::f8, FloatRegisters::Double}; static constexpr FloatRegister f9 = {FloatRegisters::f9, FloatRegisters::Double}; static constexpr FloatRegister f10 = {FloatRegisters::f10, FloatRegisters::Double}; static constexpr FloatRegister f11 = {FloatRegisters::f11, FloatRegisters::Double}; static constexpr FloatRegister f12 = {FloatRegisters::f12, FloatRegisters::Double}; static constexpr FloatRegister f13 = {FloatRegisters::f13, FloatRegisters::Double}; static constexpr FloatRegister f14 = {FloatRegisters::f14, FloatRegisters::Double}; static constexpr FloatRegister f15 = {FloatRegisters::f15, FloatRegisters::Double}; static constexpr FloatRegister f16 = {FloatRegisters::f16, FloatRegisters::Double}; static constexpr FloatRegister f17 = {FloatRegisters::f17, FloatRegisters::Double}; static constexpr FloatRegister f18 = {FloatRegisters::f18, FloatRegisters::Double}; static constexpr FloatRegister f19 = {FloatRegisters::f19, FloatRegisters::Double}; static constexpr FloatRegister f20 = {FloatRegisters::f20, FloatRegisters::Double}; static constexpr FloatRegister f21 = {FloatRegisters::f21, FloatRegisters::Double}; static constexpr FloatRegister f22 = {FloatRegisters::f22, FloatRegisters::Double}; static constexpr FloatRegister f23 = {FloatRegisters::f23, FloatRegisters::Double}; static constexpr FloatRegister f24 = {FloatRegisters::f24, FloatRegisters::Double}; static constexpr FloatRegister f25 = {FloatRegisters::f25, FloatRegisters::Double}; static constexpr FloatRegister f26 = {FloatRegisters::f26, FloatRegisters::Double}; static constexpr FloatRegister f27 = {FloatRegisters::f27, FloatRegisters::Double}; static constexpr FloatRegister f28 = {FloatRegisters::f28, FloatRegisters::Double}; static constexpr FloatRegister f29 = {FloatRegisters::f29, FloatRegisters::Double}; static constexpr FloatRegister f30 = {FloatRegisters::f30, FloatRegisters::Double}; static constexpr FloatRegister f31 = {FloatRegisters::f31, FloatRegisters::Double}; // MIPS64 CPUs can only load multibyte data that is "naturally" // eight-byte-aligned, sp register should be sixteen-byte-aligned. static constexpr uint32_t ABIStackAlignment = 16; static constexpr uint32_t JitStackAlignment = 16; static constexpr uint32_t JitStackValueAlignment = JitStackAlignment / sizeof(Value); static_assert(JitStackAlignment % sizeof(Value) == 0 && JitStackValueAlignment >= 1, "Stack alignment should be a non-zero multiple of sizeof(Value)"); // TODO this is just a filler to prevent a build failure. The MIPS SIMD // alignment requirements still need to be explored. // TODO Copy the static_asserts from x64/x86 assembler files. static constexpr uint32_t SimdMemoryAlignment = 16; static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment; static const uint32_t WasmTrapInstructionLength = 4; // The offsets are dynamically asserted during // code generation in the prologue/epilogue. static constexpr uint32_t WasmCheckedCallEntryOffset = 0u; static constexpr uint32_t WasmCheckedTailEntryOffset = 16u; static constexpr Scale ScalePointer = TimesEight; class Assembler : public AssemblerMIPSShared { public: Assembler() : AssemblerMIPSShared() {} static uintptr_t GetPointer(uint8_t*); using AssemblerMIPSShared::bind; static void Bind(uint8_t* rawCode, const CodeLabel& label); void processCodeLabels(uint8_t* rawCode); static void TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader); static void TraceDataRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader); void bind(InstImm* inst, uintptr_t branch, uintptr_t target); // Copy the assembly code to the given buffer, and perform any pending // relocations relying on the target address. void executableCopy(uint8_t* buffer); static uint32_t PatchWrite_NearCallSize(); static uint64_t ExtractLoad64Value(Instruction* inst0); static void UpdateLoad64Value(Instruction* inst0, uint64_t value); static void WriteLoad64Instructions(Instruction* inst0, Register reg, uint64_t value); static void PatchWrite_NearCall(CodeLocationLabel start, CodeLocationLabel toCall); static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue, ImmPtr expectedValue); static void PatchDataWithValueCheck(CodeLocationLabel label, PatchedImmPtr newValue, PatchedImmPtr expectedValue); static uint64_t ExtractInstructionImmediate(uint8_t* code); static void ToggleCall(CodeLocationLabel inst_, bool enabled); }; // Assembler static const uint32_t NumIntArgRegs = 8; static const uint32_t NumFloatArgRegs = NumIntArgRegs; static inline bool GetIntArgReg(uint32_t usedArgSlots, Register* out) { if (usedArgSlots < NumIntArgRegs) { *out = Register::FromCode(a0.code() + usedArgSlots); return true; } return false; } static inline bool GetFloatArgReg(uint32_t usedArgSlots, FloatRegister* out) { if (usedArgSlots < NumFloatArgRegs) { *out = FloatRegister::FromCode(f12.code() + usedArgSlots); return true; } return false; } // Get a register in which we plan to put a quantity that will be used as an // integer argument. This differs from GetIntArgReg in that if we have no more // actual argument registers to use we will fall back on using whatever // CallTempReg* don't overlap the argument registers, and only fail once those // run out too. static inline bool GetTempRegForIntArg(uint32_t usedIntArgs, uint32_t usedFloatArgs, Register* out) { // NOTE: We can't properly determine which regs are used if there are // float arguments. If this is needed, we will have to guess. MOZ_ASSERT(usedFloatArgs == 0); if (GetIntArgReg(usedIntArgs, out)) { return true; } // Unfortunately, we have to assume things about the point at which // GetIntArgReg returns false, because we need to know how many registers it // can allocate. usedIntArgs -= NumIntArgRegs; if (usedIntArgs >= NumCallTempNonArgRegs) { return false; } *out = CallTempNonArgRegs[usedIntArgs]; return true; } } // namespace jit } // namespace js #endif /* jit_mips64_Assembler_mips64_h */