/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/shared/CodeGenerator-shared-inl.h" #include "mozilla/DebugOnly.h" #include #include "jit/CodeGenerator.h" #include "jit/CompactBuffer.h" #include "jit/CompileInfo.h" #include "jit/InlineScriptTree.h" #include "jit/JitcodeMap.h" #include "jit/JitFrames.h" #include "jit/JitSpewer.h" #include "jit/MacroAssembler.h" #include "jit/MIR.h" #include "jit/MIRGenerator.h" #include "jit/SafepointIndex.h" #include "js/Conversions.h" #include "util/Memory.h" #include "vm/TraceLogging.h" #include "jit/MacroAssembler-inl.h" #include "vm/JSScript-inl.h" using namespace js; using namespace js::jit; using mozilla::BitwiseCast; using mozilla::DebugOnly; namespace js { namespace jit { MacroAssembler& CodeGeneratorShared::ensureMasm(MacroAssembler* masmArg) { if (masmArg) { return *masmArg; } maybeMasm_.emplace(); return *maybeMasm_; } CodeGeneratorShared::CodeGeneratorShared(MIRGenerator* gen, LIRGraph* graph, MacroAssembler* masmArg) : maybeMasm_(), useWasmStackArgumentAbi_(false), masm(ensureMasm(masmArg)), gen(gen), graph(*graph), current(nullptr), snapshots_(), recovers_(), deoptTable_(), #ifdef DEBUG pushedArgs_(0), #endif lastOsiPointOffset_(0), safepoints_(graph->totalSlotCount(), (gen->outerInfo().nargs() + 1) * sizeof(Value)), returnLabel_(), nativeToBytecodeMap_(nullptr), nativeToBytecodeMapSize_(0), nativeToBytecodeTableOffset_(0), nativeToBytecodeNumRegions_(0), nativeToBytecodeScriptList_(nullptr), nativeToBytecodeScriptListLength_(0), #ifdef CHECK_OSIPOINT_REGISTERS checkOsiPointRegisters(JitOptions.checkOsiPointRegisters), #endif frameDepth_(graph->paddedLocalSlotsSize() + graph->argumentsSize()), frameClass_(FrameSizeClass::None()) { if (gen->isProfilerInstrumentationEnabled()) { masm.enableProfilingInstrumentation(); } if (gen->compilingWasm()) { // Since wasm uses the system ABI which does not necessarily use a // regular array where all slots are sizeof(Value), it maintains the max // argument stack depth separately. MOZ_ASSERT(graph->argumentSlotCount() == 0); frameDepth_ += gen->wasmMaxStackArgBytes(); #ifdef ENABLE_WASM_SIMD # if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || \ defined(JS_CODEGEN_ARM64) // On X64/x86 and ARM64, we don't need alignment for Wasm SIMD at this time. # else # error \ "we may need padding so that local slots are SIMD-aligned and the stack must be kept SIMD-aligned too." # endif #endif if (gen->needsStaticStackAlignment()) { // An MWasmCall does not align the stack pointer at calls sites but // instead relies on the a priori stack adjustment. This must be the // last adjustment of frameDepth_. frameDepth_ += ComputeByteAlignment(sizeof(wasm::Frame) + frameDepth_, WasmStackAlignment); } // FrameSizeClass is only used for bailing, which cannot happen in // wasm code. MOZ_ASSERT(frameClass_ == FrameSizeClass::None()); } else { frameClass_ = FrameSizeClass::FromDepth(frameDepth_); } } bool CodeGeneratorShared::generatePrologue() { MOZ_ASSERT(masm.framePushed() == 0); MOZ_ASSERT(!gen->compilingWasm()); #ifdef JS_USE_LINK_REGISTER masm.pushReturnAddress(); #endif // If profiling, save the current frame pointer to a per-thread global field. if (isProfilerInstrumentationEnabled()) { masm.profilerEnterFrame(masm.getStackPointer(), CallTempReg0); } // Ensure that the Ion frame is properly aligned. masm.assertStackAlignment(JitStackAlignment, 0); // Note that this automatically sets MacroAssembler::framePushed(). masm.reserveStack(frameSize()); masm.checkStackAlignment(); if (JS::TraceLoggerSupported()) { emitTracelogIonStart(); } return true; } bool CodeGeneratorShared::generateEpilogue() { MOZ_ASSERT(!gen->compilingWasm()); masm.bind(&returnLabel_); if (JS::TraceLoggerSupported()) { emitTracelogIonStop(); } masm.freeStack(frameSize()); MOZ_ASSERT(masm.framePushed() == 0); // If profiling, reset the per-thread global lastJitFrame to point to // the previous frame. if (isProfilerInstrumentationEnabled()) { masm.profilerExitFrame(); } masm.ret(); // On systems that use a constant pool, this is a good time to emit. masm.flushBuffer(); return true; } bool CodeGeneratorShared::generateOutOfLineCode() { // OOL paths should not attempt to use |current| as it's the last block // instead of the block corresponding to the OOL path. current = nullptr; for (size_t i = 0; i < outOfLineCode_.length(); i++) { // Add native => bytecode mapping entries for OOL sites. // Not enabled on wasm yet since it doesn't contain bytecode mappings. if (!gen->compilingWasm()) { if (!addNativeToBytecodeEntry(outOfLineCode_[i]->bytecodeSite())) { return false; } } if (!gen->alloc().ensureBallast()) { return false; } JitSpew(JitSpew_Codegen, "# Emitting out of line code"); masm.setFramePushed(outOfLineCode_[i]->framePushed()); lastPC_ = outOfLineCode_[i]->pc(); outOfLineCode_[i]->bind(&masm); outOfLineCode_[i]->generate(this); } return !masm.oom(); } void CodeGeneratorShared::addOutOfLineCode(OutOfLineCode* code, const MInstruction* mir) { MOZ_ASSERT(mir); addOutOfLineCode(code, mir->trackedSite()); } void CodeGeneratorShared::addOutOfLineCode(OutOfLineCode* code, const BytecodeSite* site) { code->setFramePushed(masm.framePushed()); code->setBytecodeSite(site); MOZ_ASSERT_IF(!gen->compilingWasm(), code->script()->containsPC(code->pc())); masm.propagateOOM(outOfLineCode_.append(code)); } bool CodeGeneratorShared::addNativeToBytecodeEntry(const BytecodeSite* site) { // Skip the table entirely if profiling is not enabled. if (!isProfilerInstrumentationEnabled()) { return true; } // Fails early if the last added instruction caused the macro assembler to // run out of memory as continuity assumption below do not hold. if (masm.oom()) { return false; } MOZ_ASSERT(site); MOZ_ASSERT(site->tree()); MOZ_ASSERT(site->pc()); InlineScriptTree* tree = site->tree(); jsbytecode* pc = site->pc(); uint32_t nativeOffset = masm.currentOffset(); MOZ_ASSERT_IF(nativeToBytecodeList_.empty(), nativeOffset == 0); if (!nativeToBytecodeList_.empty()) { size_t lastIdx = nativeToBytecodeList_.length() - 1; NativeToBytecode& lastEntry = nativeToBytecodeList_[lastIdx]; MOZ_ASSERT(nativeOffset >= lastEntry.nativeOffset.offset()); // If the new entry is for the same inlineScriptTree and same // bytecodeOffset, but the nativeOffset has changed, do nothing. // The same site just generated some more code. if (lastEntry.tree == tree && lastEntry.pc == pc) { JitSpew(JitSpew_Profiling, " => In-place update [%zu-%" PRIu32 "]", lastEntry.nativeOffset.offset(), nativeOffset); return true; } // If the new entry is for the same native offset, then update the // previous entry with the new bytecode site, since the previous // bytecode site did not generate any native code. if (lastEntry.nativeOffset.offset() == nativeOffset) { lastEntry.tree = tree; lastEntry.pc = pc; JitSpew(JitSpew_Profiling, " => Overwriting zero-length native region."); // This overwrite might have made the entry merge-able with a // previous one. If so, merge it. if (lastIdx > 0) { NativeToBytecode& nextToLastEntry = nativeToBytecodeList_[lastIdx - 1]; if (nextToLastEntry.tree == lastEntry.tree && nextToLastEntry.pc == lastEntry.pc) { JitSpew(JitSpew_Profiling, " => Merging with previous region"); nativeToBytecodeList_.erase(&lastEntry); } } dumpNativeToBytecodeEntry(nativeToBytecodeList_.length() - 1); return true; } } // Otherwise, some native code was generated for the previous bytecode site. // Add a new entry for code that is about to be generated. NativeToBytecode entry; entry.nativeOffset = CodeOffset(nativeOffset); entry.tree = tree; entry.pc = pc; if (!nativeToBytecodeList_.append(entry)) { return false; } JitSpew(JitSpew_Profiling, " => Push new entry."); dumpNativeToBytecodeEntry(nativeToBytecodeList_.length() - 1); return true; } void CodeGeneratorShared::dumpNativeToBytecodeEntries() { #ifdef JS_JITSPEW InlineScriptTree* topTree = gen->outerInfo().inlineScriptTree(); JitSpewStart(JitSpew_Profiling, "Native To Bytecode Entries for %s:%u:%u\n", topTree->script()->filename(), topTree->script()->lineno(), topTree->script()->column()); for (unsigned i = 0; i < nativeToBytecodeList_.length(); i++) { dumpNativeToBytecodeEntry(i); } #endif } void CodeGeneratorShared::dumpNativeToBytecodeEntry(uint32_t idx) { #ifdef JS_JITSPEW NativeToBytecode& ref = nativeToBytecodeList_[idx]; InlineScriptTree* tree = ref.tree; JSScript* script = tree->script(); uint32_t nativeOffset = ref.nativeOffset.offset(); unsigned nativeDelta = 0; unsigned pcDelta = 0; if (idx + 1 < nativeToBytecodeList_.length()) { NativeToBytecode* nextRef = &ref + 1; nativeDelta = nextRef->nativeOffset.offset() - nativeOffset; if (nextRef->tree == ref.tree) { pcDelta = nextRef->pc - ref.pc; } } JitSpewStart( JitSpew_Profiling, " %08zx [+%-6u] => %-6ld [%-4u] {%-10s} (%s:%u:%u", ref.nativeOffset.offset(), nativeDelta, (long)(ref.pc - script->code()), pcDelta, CodeName(JSOp(*ref.pc)), script->filename(), script->lineno(), script->column()); for (tree = tree->caller(); tree; tree = tree->caller()) { JitSpewCont(JitSpew_Profiling, " <= %s:%u:%u", tree->script()->filename(), tree->script()->lineno(), tree->script()->column()); } JitSpewCont(JitSpew_Profiling, ")"); JitSpewFin(JitSpew_Profiling); #endif } // see OffsetOfFrameSlot static inline int32_t ToStackIndex(LAllocation* a) { if (a->isStackSlot()) { MOZ_ASSERT(a->toStackSlot()->slot() >= 1); return a->toStackSlot()->slot(); } return -int32_t(sizeof(JitFrameLayout) + a->toArgument()->index()); } void CodeGeneratorShared::encodeAllocation(LSnapshot* snapshot, MDefinition* mir, uint32_t* allocIndex) { if (mir->isBox()) { mir = mir->toBox()->getOperand(0); } MIRType type = mir->isRecoveredOnBailout() ? MIRType::None : mir->isUnused() ? MIRType::MagicOptimizedOut : mir->type(); RValueAllocation alloc; switch (type) { case MIRType::None: { MOZ_ASSERT(mir->isRecoveredOnBailout()); uint32_t index = 0; LRecoverInfo* recoverInfo = snapshot->recoverInfo(); MNode** it = recoverInfo->begin(); MNode** end = recoverInfo->end(); while (it != end && mir != *it) { ++it; ++index; } // This MDefinition is recovered, thus it should be listed in the // LRecoverInfo. MOZ_ASSERT(it != end && mir == *it); // Lambda should have a default value readable for iterating over the // inner frames. MConstant* functionOperand = nullptr; if (mir->isLambda()) { functionOperand = mir->toLambda()->functionOperand(); } else if (mir->isLambdaArrow()) { functionOperand = mir->toLambdaArrow()->functionOperand(); } else if (mir->isFunctionWithProto()) { functionOperand = mir->toFunctionWithProto()->functionOperand(); } if (functionOperand) { uint32_t cstIndex; masm.propagateOOM( graph.addConstantToPool(functionOperand->toJSValue(), &cstIndex)); alloc = RValueAllocation::RecoverInstruction(index, cstIndex); break; } alloc = RValueAllocation::RecoverInstruction(index); break; } case MIRType::Undefined: alloc = RValueAllocation::Undefined(); break; case MIRType::Null: alloc = RValueAllocation::Null(); break; case MIRType::Int32: case MIRType::String: case MIRType::Symbol: case MIRType::BigInt: case MIRType::Object: case MIRType::Boolean: case MIRType::Double: { LAllocation* payload = snapshot->payloadOfSlot(*allocIndex); if (payload->isConstant()) { MConstant* constant = mir->toConstant(); uint32_t index; masm.propagateOOM( graph.addConstantToPool(constant->toJSValue(), &index)); alloc = RValueAllocation::ConstantPool(index); break; } JSValueType valueType = ValueTypeFromMIRType(type); MOZ_DIAGNOSTIC_ASSERT(payload->isMemory() || payload->isRegister()); if (payload->isMemory()) { alloc = RValueAllocation::Typed(valueType, ToStackIndex(payload)); } else if (payload->isGeneralReg()) { alloc = RValueAllocation::Typed(valueType, ToRegister(payload)); } else if (payload->isFloatReg()) { alloc = RValueAllocation::Double(ToFloatRegister(payload)); } else { MOZ_CRASH("Unexpected payload type."); } break; } case MIRType::Float32: case MIRType::Simd128: { LAllocation* payload = snapshot->payloadOfSlot(*allocIndex); if (payload->isConstant()) { MConstant* constant = mir->toConstant(); uint32_t index; masm.propagateOOM( graph.addConstantToPool(constant->toJSValue(), &index)); alloc = RValueAllocation::ConstantPool(index); break; } MOZ_ASSERT(payload->isMemory() || payload->isFloatReg()); if (payload->isFloatReg()) { alloc = RValueAllocation::AnyFloat(ToFloatRegister(payload)); } else { alloc = RValueAllocation::AnyFloat(ToStackIndex(payload)); } break; } case MIRType::MagicOptimizedArguments: case MIRType::MagicOptimizedOut: case MIRType::MagicUninitializedLexical: case MIRType::MagicIsConstructing: { uint32_t index; JSWhyMagic why = JS_GENERIC_MAGIC; switch (type) { case MIRType::MagicOptimizedArguments: why = JS_OPTIMIZED_ARGUMENTS; break; case MIRType::MagicOptimizedOut: why = JS_OPTIMIZED_OUT; break; case MIRType::MagicUninitializedLexical: why = JS_UNINITIALIZED_LEXICAL; break; case MIRType::MagicIsConstructing: why = JS_IS_CONSTRUCTING; break; default: MOZ_CRASH("Invalid Magic MIRType"); } Value v = MagicValue(why); masm.propagateOOM(graph.addConstantToPool(v, &index)); alloc = RValueAllocation::ConstantPool(index); break; } default: { MOZ_ASSERT(mir->type() == MIRType::Value); LAllocation* payload = snapshot->payloadOfSlot(*allocIndex); #ifdef JS_NUNBOX32 LAllocation* type = snapshot->typeOfSlot(*allocIndex); if (type->isRegister()) { if (payload->isRegister()) { alloc = RValueAllocation::Untyped(ToRegister(type), ToRegister(payload)); } else { alloc = RValueAllocation::Untyped(ToRegister(type), ToStackIndex(payload)); } } else { if (payload->isRegister()) { alloc = RValueAllocation::Untyped(ToStackIndex(type), ToRegister(payload)); } else { alloc = RValueAllocation::Untyped(ToStackIndex(type), ToStackIndex(payload)); } } #elif JS_PUNBOX64 if (payload->isRegister()) { alloc = RValueAllocation::Untyped(ToRegister(payload)); } else { alloc = RValueAllocation::Untyped(ToStackIndex(payload)); } #endif break; } } MOZ_DIAGNOSTIC_ASSERT(alloc.valid()); // This set an extra bit as part of the RValueAllocation, such that we know // that recover instruction have to be executed without wrapping the // instruction in a no-op recover instruction. if (mir->isIncompleteObject()) { alloc.setNeedSideEffect(); } masm.propagateOOM(snapshots_.add(alloc)); *allocIndex += mir->isRecoveredOnBailout() ? 0 : 1; } void CodeGeneratorShared::encode(LRecoverInfo* recover) { if (recover->recoverOffset() != INVALID_RECOVER_OFFSET) { return; } uint32_t numInstructions = recover->numInstructions(); JitSpew(JitSpew_IonSnapshots, "Encoding LRecoverInfo %p (frameCount %u, instructions %u)", (void*)recover, recover->mir()->frameCount(), numInstructions); MResumePoint::Mode mode = recover->mir()->mode(); MOZ_ASSERT(mode != MResumePoint::Outer); bool resumeAfter = (mode == MResumePoint::ResumeAfter); RecoverOffset offset = recovers_.startRecover(numInstructions, resumeAfter); for (MNode* insn : *recover) { recovers_.writeInstruction(insn); } recovers_.endRecover(); recover->setRecoverOffset(offset); masm.propagateOOM(!recovers_.oom()); } void CodeGeneratorShared::encode(LSnapshot* snapshot) { if (snapshot->snapshotOffset() != INVALID_SNAPSHOT_OFFSET) { return; } LRecoverInfo* recoverInfo = snapshot->recoverInfo(); encode(recoverInfo); RecoverOffset recoverOffset = recoverInfo->recoverOffset(); MOZ_ASSERT(recoverOffset != INVALID_RECOVER_OFFSET); JitSpew(JitSpew_IonSnapshots, "Encoding LSnapshot %p (LRecover %p)", (void*)snapshot, (void*)recoverInfo); SnapshotOffset offset = snapshots_.startSnapshot(recoverOffset, snapshot->bailoutKind()); #ifdef TRACK_SNAPSHOTS uint32_t pcOpcode = 0; uint32_t lirOpcode = 0; uint32_t lirId = 0; uint32_t mirOpcode = 0; uint32_t mirId = 0; if (LNode* ins = instruction()) { lirOpcode = uint32_t(ins->op()); lirId = ins->id(); if (ins->mirRaw()) { mirOpcode = uint32_t(ins->mirRaw()->op()); mirId = ins->mirRaw()->id(); if (ins->mirRaw()->trackedPc()) { pcOpcode = *ins->mirRaw()->trackedPc(); } } } snapshots_.trackSnapshot(pcOpcode, mirOpcode, mirId, lirOpcode, lirId); #endif uint32_t allocIndex = 0; for (LRecoverInfo::OperandIter it(recoverInfo); !it; ++it) { DebugOnly allocWritten = snapshots_.allocWritten(); encodeAllocation(snapshot, *it, &allocIndex); MOZ_ASSERT_IF(!snapshots_.oom(), allocWritten + 1 == snapshots_.allocWritten()); } MOZ_ASSERT(allocIndex == snapshot->numSlots()); snapshots_.endSnapshot(); snapshot->setSnapshotOffset(offset); masm.propagateOOM(!snapshots_.oom()); } bool CodeGeneratorShared::assignBailoutId(LSnapshot* snapshot) { MOZ_ASSERT(snapshot->snapshotOffset() != INVALID_SNAPSHOT_OFFSET); // Can we not use bailout tables at all? if (!deoptTable_) { return false; } MOZ_ASSERT(frameClass_ != FrameSizeClass::None()); if (snapshot->bailoutId() != INVALID_BAILOUT_ID) { return true; } // Is the bailout table full? if (bailouts_.length() >= BAILOUT_TABLE_SIZE) { return false; } unsigned bailoutId = bailouts_.length(); snapshot->setBailoutId(bailoutId); JitSpew(JitSpew_IonSnapshots, "Assigned snapshot bailout id %u", bailoutId); masm.propagateOOM(bailouts_.append(snapshot->snapshotOffset())); return true; } bool CodeGeneratorShared::encodeSafepoints() { for (CodegenSafepointIndex& index : safepointIndices_) { LSafepoint* safepoint = index.safepoint(); if (!safepoint->encoded()) { safepoints_.encode(safepoint); } } return !safepoints_.oom(); } bool CodeGeneratorShared::createNativeToBytecodeScriptList(JSContext* cx) { js::Vector scriptList; InlineScriptTree* tree = gen->outerInfo().inlineScriptTree(); for (;;) { // Add script from current tree. bool found = false; for (uint32_t i = 0; i < scriptList.length(); i++) { if (scriptList[i] == tree->script()) { found = true; break; } } if (!found) { if (!scriptList.append(tree->script())) { return false; } } // Process rest of tree // If children exist, emit children. if (tree->hasChildren()) { tree = tree->firstChild(); continue; } // Otherwise, find the first tree up the chain (including this one) // that contains a next sibling. while (!tree->hasNextCallee() && tree->hasCaller()) { tree = tree->caller(); } // If we found a sibling, use it. if (tree->hasNextCallee()) { tree = tree->nextCallee(); continue; } // Otherwise, we must have reached the top without finding any siblings. MOZ_ASSERT(tree->isOutermostCaller()); break; } // Allocate array for list. JSScript** data = cx->pod_malloc(scriptList.length()); if (!data) { return false; } for (uint32_t i = 0; i < scriptList.length(); i++) { data[i] = scriptList[i]; } // Success. nativeToBytecodeScriptListLength_ = scriptList.length(); nativeToBytecodeScriptList_ = data; return true; } bool CodeGeneratorShared::generateCompactNativeToBytecodeMap(JSContext* cx, JitCode* code) { MOZ_ASSERT(nativeToBytecodeScriptListLength_ == 0); MOZ_ASSERT(nativeToBytecodeScriptList_ == nullptr); MOZ_ASSERT(nativeToBytecodeMap_ == nullptr); MOZ_ASSERT(nativeToBytecodeMapSize_ == 0); MOZ_ASSERT(nativeToBytecodeTableOffset_ == 0); MOZ_ASSERT(nativeToBytecodeNumRegions_ == 0); if (!createNativeToBytecodeScriptList(cx)) { return false; } MOZ_ASSERT(nativeToBytecodeScriptListLength_ > 0); MOZ_ASSERT(nativeToBytecodeScriptList_ != nullptr); CompactBufferWriter writer; uint32_t tableOffset = 0; uint32_t numRegions = 0; if (!JitcodeIonTable::WriteIonTable( writer, nativeToBytecodeScriptList_, nativeToBytecodeScriptListLength_, &nativeToBytecodeList_[0], &nativeToBytecodeList_[0] + nativeToBytecodeList_.length(), &tableOffset, &numRegions)) { js_free(nativeToBytecodeScriptList_); return false; } MOZ_ASSERT(tableOffset > 0); MOZ_ASSERT(numRegions > 0); // Writer is done, copy it to sized buffer. uint8_t* data = cx->pod_malloc(writer.length()); if (!data) { js_free(nativeToBytecodeScriptList_); return false; } memcpy(data, writer.buffer(), writer.length()); nativeToBytecodeMap_ = data; nativeToBytecodeMapSize_ = writer.length(); nativeToBytecodeTableOffset_ = tableOffset; nativeToBytecodeNumRegions_ = numRegions; verifyCompactNativeToBytecodeMap(code); JitSpew(JitSpew_Profiling, "Compact Native To Bytecode Map [%p-%p]", data, data + nativeToBytecodeMapSize_); return true; } void CodeGeneratorShared::verifyCompactNativeToBytecodeMap(JitCode* code) { #ifdef DEBUG MOZ_ASSERT(nativeToBytecodeScriptListLength_ > 0); MOZ_ASSERT(nativeToBytecodeScriptList_ != nullptr); MOZ_ASSERT(nativeToBytecodeMap_ != nullptr); MOZ_ASSERT(nativeToBytecodeMapSize_ > 0); MOZ_ASSERT(nativeToBytecodeTableOffset_ > 0); MOZ_ASSERT(nativeToBytecodeNumRegions_ > 0); // The pointer to the table must be 4-byte aligned const uint8_t* tablePtr = nativeToBytecodeMap_ + nativeToBytecodeTableOffset_; MOZ_ASSERT(uintptr_t(tablePtr) % sizeof(uint32_t) == 0); // Verify that numRegions was encoded correctly. const JitcodeIonTable* ionTable = reinterpret_cast(tablePtr); MOZ_ASSERT(ionTable->numRegions() == nativeToBytecodeNumRegions_); // Region offset for first region should be at the start of the payload // region. Since the offsets are backward from the start of the table, the // first entry backoffset should be equal to the forward table offset from the // start of the allocated data. MOZ_ASSERT(ionTable->regionOffset(0) == nativeToBytecodeTableOffset_); // Verify each region. for (uint32_t i = 0; i < ionTable->numRegions(); i++) { // Back-offset must point into the payload region preceding the table, not // before it. MOZ_ASSERT(ionTable->regionOffset(i) <= nativeToBytecodeTableOffset_); // Back-offset must point to a later area in the payload region than // previous back-offset. This means that back-offsets decrease // monotonically. MOZ_ASSERT_IF(i > 0, ionTable->regionOffset(i) < ionTable->regionOffset(i - 1)); JitcodeRegionEntry entry = ionTable->regionEntry(i); // Ensure native code offset for region falls within jitcode. MOZ_ASSERT(entry.nativeOffset() <= code->instructionsSize()); // Read out script/pc stack and verify. JitcodeRegionEntry::ScriptPcIterator scriptPcIter = entry.scriptPcIterator(); while (scriptPcIter.hasMore()) { uint32_t scriptIdx = 0, pcOffset = 0; scriptPcIter.readNext(&scriptIdx, &pcOffset); // Ensure scriptIdx refers to a valid script in the list. MOZ_ASSERT(scriptIdx < nativeToBytecodeScriptListLength_); JSScript* script = nativeToBytecodeScriptList_[scriptIdx]; // Ensure pcOffset falls within the script. MOZ_ASSERT(pcOffset < script->length()); } // Obtain the original nativeOffset and pcOffset and script. uint32_t curNativeOffset = entry.nativeOffset(); JSScript* script = nullptr; uint32_t curPcOffset = 0; { uint32_t scriptIdx = 0; scriptPcIter.reset(); scriptPcIter.readNext(&scriptIdx, &curPcOffset); script = nativeToBytecodeScriptList_[scriptIdx]; } // Read out nativeDeltas and pcDeltas and verify. JitcodeRegionEntry::DeltaIterator deltaIter = entry.deltaIterator(); while (deltaIter.hasMore()) { uint32_t nativeDelta = 0; int32_t pcDelta = 0; deltaIter.readNext(&nativeDelta, &pcDelta); curNativeOffset += nativeDelta; curPcOffset = uint32_t(int32_t(curPcOffset) + pcDelta); // Ensure that nativeOffset still falls within jitcode after delta. MOZ_ASSERT(curNativeOffset <= code->instructionsSize()); // Ensure that pcOffset still falls within bytecode after delta. MOZ_ASSERT(curPcOffset < script->length()); } } #endif // DEBUG } void CodeGeneratorShared::markSafepoint(LInstruction* ins) { markSafepointAt(masm.currentOffset(), ins); } void CodeGeneratorShared::markSafepointAt(uint32_t offset, LInstruction* ins) { MOZ_ASSERT_IF( !safepointIndices_.empty() && !masm.oom(), offset - safepointIndices_.back().displacement() >= sizeof(uint32_t)); masm.propagateOOM(safepointIndices_.append( CodegenSafepointIndex(offset, ins->safepoint()))); } void CodeGeneratorShared::ensureOsiSpace() { // For a refresher, an invalidation point is of the form: // 1: call // 2: ... // 3: // // The four bytes *before* instruction 2 are overwritten with an offset. // Callers must ensure that the instruction itself has enough bytes to // support this. // // The bytes *at* instruction 3 are overwritten with an invalidation jump. // jump. These bytes may be in a completely different IR sequence, but // represent the join point of the call out of the function. // // At points where we want to ensure that invalidation won't corrupt an // important instruction, we make sure to pad with nops. if (masm.currentOffset() - lastOsiPointOffset_ < Assembler::PatchWrite_NearCallSize()) { int32_t paddingSize = Assembler::PatchWrite_NearCallSize(); paddingSize -= masm.currentOffset() - lastOsiPointOffset_; for (int32_t i = 0; i < paddingSize; ++i) { masm.nop(); } } MOZ_ASSERT_IF(!masm.oom(), masm.currentOffset() - lastOsiPointOffset_ >= Assembler::PatchWrite_NearCallSize()); lastOsiPointOffset_ = masm.currentOffset(); } uint32_t CodeGeneratorShared::markOsiPoint(LOsiPoint* ins) { encode(ins->snapshot()); ensureOsiSpace(); uint32_t offset = masm.currentOffset(); SnapshotOffset so = ins->snapshot()->snapshotOffset(); masm.propagateOOM(osiIndices_.append(OsiIndex(offset, so))); return offset; } class OutOfLineTruncateSlow : public OutOfLineCodeBase { FloatRegister src_; Register dest_; bool widenFloatToDouble_; wasm::BytecodeOffset bytecodeOffset_; bool preserveTls_; public: OutOfLineTruncateSlow( FloatRegister src, Register dest, bool widenFloatToDouble = false, wasm::BytecodeOffset bytecodeOffset = wasm::BytecodeOffset(), bool preserveTls = false) : src_(src), dest_(dest), widenFloatToDouble_(widenFloatToDouble), bytecodeOffset_(bytecodeOffset), preserveTls_(preserveTls) {} void accept(CodeGeneratorShared* codegen) override { codegen->visitOutOfLineTruncateSlow(this); } FloatRegister src() const { return src_; } Register dest() const { return dest_; } bool widenFloatToDouble() const { return widenFloatToDouble_; } bool preserveTls() const { return preserveTls_; } wasm::BytecodeOffset bytecodeOffset() const { return bytecodeOffset_; } }; OutOfLineCode* CodeGeneratorShared::oolTruncateDouble( FloatRegister src, Register dest, MInstruction* mir, wasm::BytecodeOffset bytecodeOffset, bool preserveTls) { MOZ_ASSERT_IF(IsCompilingWasm(), bytecodeOffset.isValid()); OutOfLineTruncateSlow* ool = new (alloc()) OutOfLineTruncateSlow( src, dest, /* float32 */ false, bytecodeOffset, preserveTls); addOutOfLineCode(ool, mir); return ool; } void CodeGeneratorShared::emitTruncateDouble(FloatRegister src, Register dest, MInstruction* mir) { MOZ_ASSERT(mir->isTruncateToInt32() || mir->isWasmBuiltinTruncateToInt32()); wasm::BytecodeOffset bytecodeOffset = mir->isTruncateToInt32() ? mir->toTruncateToInt32()->bytecodeOffset() : mir->toWasmBuiltinTruncateToInt32()->bytecodeOffset(); OutOfLineCode* ool = oolTruncateDouble(src, dest, mir, bytecodeOffset); masm.branchTruncateDoubleMaybeModUint32(src, dest, ool->entry()); masm.bind(ool->rejoin()); } void CodeGeneratorShared::emitTruncateFloat32(FloatRegister src, Register dest, MInstruction* mir) { MOZ_ASSERT(mir->isTruncateToInt32() || mir->isWasmBuiltinTruncateToInt32()); wasm::BytecodeOffset bytecodeOffset = mir->isTruncateToInt32() ? mir->toTruncateToInt32()->bytecodeOffset() : mir->toWasmBuiltinTruncateToInt32()->bytecodeOffset(); OutOfLineTruncateSlow* ool = new (alloc()) OutOfLineTruncateSlow(src, dest, /* float32 */ true, bytecodeOffset); addOutOfLineCode(ool, mir); masm.branchTruncateFloat32MaybeModUint32(src, dest, ool->entry()); masm.bind(ool->rejoin()); } void CodeGeneratorShared::visitOutOfLineTruncateSlow( OutOfLineTruncateSlow* ool) { FloatRegister src = ool->src(); Register dest = ool->dest(); saveVolatile(dest); masm.outOfLineTruncateSlow(src, dest, ool->widenFloatToDouble(), gen->compilingWasm(), ool->bytecodeOffset()); restoreVolatile(dest); masm.jump(ool->rejoin()); } bool CodeGeneratorShared::omitOverRecursedCheck() const { // If the current function makes no calls (which means it isn't recursive) // and it uses only a small amount of stack space, it doesn't need a // stack overflow check. Note that the actual number here is somewhat // arbitrary, and codegen actually uses small bounded amounts of // additional stack space in some cases too. return frameSize() < MAX_UNCHECKED_LEAF_FRAME_SIZE && !gen->needsOverrecursedCheck(); } void CodeGeneratorShared::emitPreBarrier(Register elements, const LAllocation* index) { if (index->isConstant()) { Address address(elements, ToInt32(index) * sizeof(Value)); masm.guardedCallPreBarrier(address, MIRType::Value); } else { BaseObjectElementIndex address(elements, ToRegister(index)); masm.guardedCallPreBarrier(address, MIRType::Value); } } void CodeGeneratorShared::emitPreBarrier(Address address) { masm.guardedCallPreBarrier(address, MIRType::Value); } void CodeGeneratorShared::jumpToBlock(MBasicBlock* mir) { // Skip past trivial blocks. mir = skipTrivialBlocks(mir); // No jump necessary if we can fall through to the next block. if (isNextBlock(mir->lir())) { return; } masm.jump(mir->lir()->label()); } Label* CodeGeneratorShared::getJumpLabelForBranch(MBasicBlock* block) { // Skip past trivial blocks. return skipTrivialBlocks(block)->lir()->label(); } // This function is not used for MIPS/MIPS64. MIPS has branchToBlock. #if !defined(JS_CODEGEN_MIPS32) && !defined(JS_CODEGEN_MIPS64) void CodeGeneratorShared::jumpToBlock(MBasicBlock* mir, Assembler::Condition cond) { // Skip past trivial blocks. masm.j(cond, skipTrivialBlocks(mir)->lir()->label()); } #endif ReciprocalMulConstants CodeGeneratorShared::computeDivisionConstants( uint32_t d, int maxLog) { MOZ_ASSERT(maxLog >= 2 && maxLog <= 32); // In what follows, 0 < d < 2^maxLog and d is not a power of 2. MOZ_ASSERT(d < (uint64_t(1) << maxLog) && (d & (d - 1)) != 0); // Speeding up division by non power-of-2 constants is possible by // calculating, during compilation, a value M such that high-order // bits of M*n correspond to the result of the division of n by d. // No value of M can serve this purpose for arbitrarily big values // of n but, for optimizing integer division, we're just concerned // with values of n whose absolute value is bounded (by fitting in // an integer type, say). With this in mind, we'll find a constant // M as above that works for -2^maxLog <= n < 2^maxLog; maxLog can // then be 31 for signed division or 32 for unsigned division. // // The original presentation of this technique appears in Hacker's // Delight, a book by Henry S. Warren, Jr.. A proof of correctness // for our version follows; we'll denote maxLog by L in the proof, // for conciseness. // // Formally, for |d| < 2^L, we'll compute two magic values M and s // in the ranges 0 <= M < 2^(L+1) and 0 <= s <= L such that // (M * n) >> (32 + s) = floor(n/d) if 0 <= n < 2^L // (M * n) >> (32 + s) = ceil(n/d) - 1 if -2^L <= n < 0. // // Define p = 32 + s, M = ceil(2^p/d), and assume that s satisfies // M - 2^p/d <= 2^(p-L)/d. (1) // (Observe that p = CeilLog32(d) + L satisfies this, as the right // side of (1) is at least one in this case). Then, // // a) If p <= CeilLog32(d) + L, then M < 2^(L+1) - 1. // Proof: Indeed, M is monotone in p and, for p equal to the above // value, the bounds 2^L > d >= 2^(p-L-1) + 1 readily imply that // 2^p / d < 2^p/(d - 1) * (d - 1)/d // <= 2^(L+1) * (1 - 1/d) < 2^(L+1) - 2. // The claim follows by applying the ceiling function. // // b) For any 0 <= n < 2^L, floor(Mn/2^p) = floor(n/d). // Proof: Put x = floor(Mn/2^p); it's the unique integer for which // Mn/2^p - 1 < x <= Mn/2^p. (2) // Using M >= 2^p/d on the LHS and (1) on the RHS, we get // n/d - 1 < x <= n/d + n/(2^L d) < n/d + 1/d. // Since x is an integer, it's not in the interval (n/d, (n+1)/d), // and so n/d - 1 < x <= n/d, which implies x = floor(n/d). // // c) For any -2^L <= n < 0, floor(Mn/2^p) + 1 = ceil(n/d). // Proof: The proof is similar. Equation (2) holds as above. Using // M > 2^p/d (d isn't a power of 2) on the RHS and (1) on the LHS, // n/d + n/(2^L d) - 1 < x < n/d. // Using n >= -2^L and summing 1, // n/d - 1/d < x + 1 < n/d + 1. // Since x + 1 is an integer, this implies n/d <= x + 1 < n/d + 1. // In other words, x + 1 = ceil(n/d). // // Condition (1) isn't necessary for the existence of M and s with // the properties above. Hacker's Delight provides a slightly less // restrictive condition when d >= 196611, at the cost of a 3-page // proof of correctness, for the case L = 31. // // Note that, since d*M - 2^p = d - (2^p)%d, (1) can be written as // 2^(p-L) >= d - (2^p)%d. // In order to avoid overflow in the (2^p) % d calculation, we can // compute it as (2^p-1) % d + 1, where 2^p-1 can then be computed // without overflow as UINT64_MAX >> (64-p). // We now compute the least p >= 32 with the property above... int32_t p = 32; while ((uint64_t(1) << (p - maxLog)) + (UINT64_MAX >> (64 - p)) % d + 1 < d) { p++; } // ...and the corresponding M. For either the signed (L=31) or the // unsigned (L=32) case, this value can be too large (cf. item a). // Codegen can still multiply by M by multiplying by (M - 2^L) and // adjusting the value afterwards, if this is the case. ReciprocalMulConstants rmc; rmc.multiplier = (UINT64_MAX >> (64 - p)) / d + 1; rmc.shiftAmount = p - 32; return rmc; } #ifdef JS_TRACE_LOGGING void CodeGeneratorShared::emitTracelogScript(bool isStart) { if (!TraceLogTextIdEnabled(TraceLogger_Scripts)) { return; } Label done; AllocatableRegisterSet regs(RegisterSet::Volatile()); Register logger = regs.takeAnyGeneral(); Register script = regs.takeAnyGeneral(); masm.Push(logger); masm.loadTraceLogger(logger); masm.branchTestPtr(Assembler::Zero, logger, logger, &done); Address enabledAddress(logger, TraceLoggerThread::offsetOfEnabled()); masm.branch32(Assembler::Equal, enabledAddress, Imm32(0), &done); masm.Push(script); CodeOffset patchScript = masm.movWithPatch(ImmWord(0), script); masm.propagateOOM(patchableTLScripts_.append(patchScript)); if (isStart) { masm.tracelogStartId(logger, script); } else { masm.tracelogStopId(logger, script); } masm.Pop(script); masm.bind(&done); masm.Pop(logger); } void CodeGeneratorShared::emitTracelogTree(bool isStart, uint32_t textId) { if (!TraceLogTextIdEnabled(textId)) { return; } Label done; AllocatableRegisterSet regs(RegisterSet::Volatile()); Register logger = regs.takeAnyGeneral(); masm.Push(logger); masm.loadTraceLogger(logger); masm.branchTestPtr(Assembler::Zero, logger, logger, &done); Address enabledAddress(logger, TraceLoggerThread::offsetOfEnabled()); masm.branch32(Assembler::Equal, enabledAddress, Imm32(0), &done); if (isStart) { masm.tracelogStartId(logger, textId); } else { masm.tracelogStopId(logger, textId); } masm.bind(&done); masm.Pop(logger); } void CodeGeneratorShared::emitTracelogTree(bool isStart, const char* text, TraceLoggerTextId enabledTextId) { if (!TraceLogTextIdEnabled(enabledTextId)) { return; } Label done; AllocatableRegisterSet regs(RegisterSet::Volatile()); Register loggerReg = regs.takeAnyGeneral(); Register eventReg = regs.takeAnyGeneral(); masm.Push(loggerReg); masm.loadTraceLogger(loggerReg); masm.branchTestPtr(Assembler::Zero, loggerReg, loggerReg, &done); Address enabledAddress(loggerReg, TraceLoggerThread::offsetOfEnabled()); masm.branch32(Assembler::Equal, enabledAddress, Imm32(0), &done); masm.Push(eventReg); PatchableTLEvent patchEvent(masm.movWithPatch(ImmWord(0), eventReg), text); masm.propagateOOM(patchableTLEvents_.append(std::move(patchEvent))); if (isStart) { masm.tracelogStartId(loggerReg, eventReg); } else { masm.tracelogStopId(loggerReg, eventReg); } masm.Pop(eventReg); masm.bind(&done); masm.Pop(loggerReg); } #endif } // namespace jit } // namespace js