/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/shared/Lowering-shared-inl.h" #include "jit/LIR.h" #include "jit/Lowering.h" #include "jit/MIR.h" #include "vm/SymbolType.h" using namespace js; using namespace jit; using mozilla::Maybe; using mozilla::Nothing; using mozilla::Some; bool LIRGeneratorShared::ShouldReorderCommutative(MDefinition* lhs, MDefinition* rhs, MInstruction* ins) { // lhs and rhs are used by the commutative operator. MOZ_ASSERT(lhs->hasDefUses()); MOZ_ASSERT(rhs->hasDefUses()); // Ensure that if there is a constant, then it is in rhs. if (rhs->isConstant()) { return false; } if (lhs->isConstant()) { return true; } // Since clobbering binary operations clobber the left operand, prefer a // non-constant lhs operand with no further uses. To be fully precise, we // should check whether this is the *last* use, but checking hasOneDefUse() // is a decent approximation which doesn't require any extra analysis. bool rhsSingleUse = rhs->hasOneDefUse(); bool lhsSingleUse = lhs->hasOneDefUse(); if (rhsSingleUse) { if (!lhsSingleUse) { return true; } } else { if (lhsSingleUse) { return false; } } // If this is a reduction-style computation, such as // // sum = 0; // for (...) // sum += ...; // // put the phi on the left to promote coalescing. This is fairly specific. if (rhsSingleUse && rhs->isPhi() && rhs->block()->isLoopHeader() && ins == rhs->toPhi()->getLoopBackedgeOperand()) { return true; } return false; } void LIRGeneratorShared::ReorderCommutative(MDefinition** lhsp, MDefinition** rhsp, MInstruction* ins) { MDefinition* lhs = *lhsp; MDefinition* rhs = *rhsp; if (ShouldReorderCommutative(lhs, rhs, ins)) { *rhsp = lhs; *lhsp = rhs; } } void LIRGeneratorShared::definePhiOneRegister(MPhi* phi, size_t lirIndex) { LPhi* lir = current->getPhi(lirIndex); uint32_t vreg = getVirtualRegister(); phi->setVirtualRegister(vreg); lir->setDef(0, LDefinition(vreg, LDefinition::TypeFrom(phi->type()))); annotate(lir); } #ifdef JS_NUNBOX32 void LIRGeneratorShared::definePhiTwoRegisters(MPhi* phi, size_t lirIndex) { LPhi* type = current->getPhi(lirIndex + VREG_TYPE_OFFSET); LPhi* payload = current->getPhi(lirIndex + VREG_DATA_OFFSET); uint32_t typeVreg = getVirtualRegister(); phi->setVirtualRegister(typeVreg); uint32_t payloadVreg = getVirtualRegister(); MOZ_ASSERT(typeVreg + 1 == payloadVreg); type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE)); payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD)); annotate(type); annotate(payload); } #endif void LIRGeneratorShared::lowerTypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { MDefinition* operand = phi->getOperand(inputPosition); LPhi* lir = block->getPhi(lirIndex); lir->setOperand(inputPosition, LUse(operand->virtualRegister(), LUse::ANY)); } LRecoverInfo* LIRGeneratorShared::getRecoverInfo(MResumePoint* rp) { if (cachedRecoverInfo_ && cachedRecoverInfo_->mir() == rp) { return cachedRecoverInfo_; } LRecoverInfo* recoverInfo = LRecoverInfo::New(gen, rp); if (!recoverInfo) { return nullptr; } cachedRecoverInfo_ = recoverInfo; return recoverInfo; } #ifdef DEBUG bool LRecoverInfo::OperandIter::canOptimizeOutIfUnused() { MDefinition* ins = **this; // We check ins->type() in addition to ins->isUnused() because // EliminateDeadResumePointOperands may replace nodes with the constant // MagicValue(JS_OPTIMIZED_OUT). if ((ins->isUnused() || ins->type() == MIRType::MagicOptimizedOut) && (*it_)->isResumePoint()) { return !(*it_)->toResumePoint()->isObservableOperand(op_); } return true; } #endif #ifdef JS_NUNBOX32 LSnapshot* LIRGeneratorShared::buildSnapshot(MResumePoint* rp, BailoutKind kind) { LRecoverInfo* recoverInfo = getRecoverInfo(rp); if (!recoverInfo) { return nullptr; } LSnapshot* snapshot = LSnapshot::New(gen, recoverInfo, kind); if (!snapshot) { return nullptr; } size_t index = 0; for (LRecoverInfo::OperandIter it(recoverInfo); !it; ++it) { // Check that optimized out operands are in eliminable slots. MOZ_ASSERT(it.canOptimizeOutIfUnused()); MDefinition* ins = *it; if (ins->isRecoveredOnBailout()) { continue; } LAllocation* type = snapshot->typeOfSlot(index); LAllocation* payload = snapshot->payloadOfSlot(index); ++index; if (ins->isBox()) { ins = ins->toBox()->getOperand(0); } // Guards should never be eliminated. MOZ_ASSERT_IF(ins->isUnused(), !ins->isGuard()); // Snapshot operands other than constants should never be // emitted-at-uses. Try-catch support depends on there being no // code between an instruction and the LOsiPoint that follows it. MOZ_ASSERT_IF(!ins->isConstant(), !ins->isEmittedAtUses()); // The register allocation will fill these fields in with actual // register/stack assignments. During code generation, we can restore // interpreter state with the given information. Note that for // constants, including known types, we record a dummy placeholder, // since we can recover the same information, much cleaner, from MIR. if (ins->isConstant() || ins->isUnused()) { *type = LAllocation(); *payload = LAllocation(); } else if (ins->type() != MIRType::Value) { *type = LAllocation(); *payload = use(ins, LUse(LUse::KEEPALIVE)); } else { *type = useType(ins, LUse::KEEPALIVE); *payload = usePayload(ins, LUse::KEEPALIVE); } } return snapshot; } #elif JS_PUNBOX64 LSnapshot* LIRGeneratorShared::buildSnapshot(MResumePoint* rp, BailoutKind kind) { LRecoverInfo* recoverInfo = getRecoverInfo(rp); if (!recoverInfo) { return nullptr; } LSnapshot* snapshot = LSnapshot::New(gen, recoverInfo, kind); if (!snapshot) { return nullptr; } size_t index = 0; for (LRecoverInfo::OperandIter it(recoverInfo); !it; ++it) { // Check that optimized out operands are in eliminable slots. MOZ_ASSERT(it.canOptimizeOutIfUnused()); MDefinition* def = *it; if (def->isRecoveredOnBailout()) { continue; } if (def->isBox()) { def = def->toBox()->getOperand(0); } // Guards should never be eliminated. MOZ_ASSERT_IF(def->isUnused(), !def->isGuard()); // Snapshot operands other than constants should never be // emitted-at-uses. Try-catch support depends on there being no // code between an instruction and the LOsiPoint that follows it. MOZ_ASSERT_IF(!def->isConstant(), !def->isEmittedAtUses()); LAllocation* a = snapshot->getEntry(index++); if (def->isUnused()) { *a = LAllocation(); continue; } *a = useKeepaliveOrConstant(def); } return snapshot; } #endif void LIRGeneratorShared::assignSnapshot(LInstruction* ins, BailoutKind kind) { // assignSnapshot must be called before define/add, since // it may add new instructions for emitted-at-use operands. MOZ_ASSERT(ins->id() == 0); MOZ_ASSERT(kind != BailoutKind::Unknown); LSnapshot* snapshot = buildSnapshot(lastResumePoint_, kind); if (!snapshot) { abort(AbortReason::Alloc, "buildSnapshot failed"); return; } ins->assignSnapshot(snapshot); } void LIRGeneratorShared::assignSafepoint(LInstruction* ins, MInstruction* mir, BailoutKind kind) { MOZ_ASSERT(!osiPoint_); MOZ_ASSERT(!ins->safepoint()); ins->initSafepoint(alloc()); MResumePoint* mrp = mir->resumePoint() ? mir->resumePoint() : lastResumePoint_; LSnapshot* postSnapshot = buildSnapshot(mrp, kind); if (!postSnapshot) { abort(AbortReason::Alloc, "buildSnapshot failed"); return; } osiPoint_ = new (alloc()) LOsiPoint(ins->safepoint(), postSnapshot); if (!lirGraph_.noteNeedsSafepoint(ins)) { abort(AbortReason::Alloc, "noteNeedsSafepoint failed"); return; } } void LIRGeneratorShared::assignWasmSafepoint(LInstruction* ins, MInstruction* mir) { MOZ_ASSERT(!osiPoint_); MOZ_ASSERT(!ins->safepoint()); ins->initSafepoint(alloc()); if (!lirGraph_.noteNeedsSafepoint(ins)) { abort(AbortReason::Alloc, "noteNeedsSafepoint failed"); return; } } #ifdef ENABLE_WASM_SIMD // Specialization analysis for SIMD operations. This is still x86-centric but // generalizes fairly easily to other architectures. // Optimization of v8x16.shuffle. The general byte shuffle+blend is very // expensive (equivalent to at least a dozen instructions), and we want to avoid // that if we can. So look for special cases - there are many. // // The strategy is to sort the operation into one of three buckets depending // on the shuffle pattern and inputs: // // - single operand; shuffles on these values are rotations, reversals, // transpositions, and general permutations // - single-operand-with-interesting-constant (especially zero); shuffles on // these values are often byte shift or scatter operations // - dual operand; shuffles on these operations are blends, catenated // shifts, and (in the worst case) general shuffle+blends // // We're not trying to solve the general problem, only to lower reasonably // expressed patterns that express common operations. Producers that produce // dense and convoluted patterns will end up with the general byte shuffle. // Producers that produce simpler patterns that easily map to hardware will // get faster code. // // In particular, these matchers do not try to combine transformations, so a // shuffle that optimally is lowered to rotate + permute32x4 + rotate, say, is // usually going to end up as a general byte shuffle. // Reduce a 0..31 byte mask to a 0..15 word mask if possible and if so return // true, updating *control. static bool ByteMaskToWordMask(SimdConstant* control) { const SimdConstant::I8x16& lanes = control->asInt8x16(); int16_t controlWords[8]; for (int i = 0; i < 16; i += 2) { if (!((lanes[i] & 1) == 0 && lanes[i + 1] == lanes[i] + 1)) { return false; } controlWords[i / 2] = lanes[i] / 2; } *control = SimdConstant::CreateX8(controlWords); return true; } // Reduce a 0..31 byte mask to a 0..7 dword mask if possible and if so return // true, updating *control. static bool ByteMaskToDWordMask(SimdConstant* control) { const SimdConstant::I8x16& lanes = control->asInt8x16(); int32_t controlDWords[4]; for (int i = 0; i < 16; i += 4) { if (!((lanes[i] & 3) == 0 && lanes[i + 1] == lanes[i] + 1 && lanes[i + 2] == lanes[i] + 2 && lanes[i + 3] == lanes[i] + 3)) { return false; } controlDWords[i / 4] = lanes[i] / 4; } *control = SimdConstant::CreateX4(controlDWords); return true; } // Reduce a 0..31 byte mask to a 0..3 qword mask if possible and if so return // true, updating *control. static bool ByteMaskToQWordMask(SimdConstant* control) { const SimdConstant::I8x16& lanes = control->asInt8x16(); int64_t controlQWords[2]; for (int i = 0; i < 16; i += 8) { if (!((lanes[i] & 7) == 0 && lanes[i + 1] == lanes[i] + 1 && lanes[i + 2] == lanes[i] + 2 && lanes[i + 3] == lanes[i] + 3 && lanes[i + 4] == lanes[i] + 4 && lanes[i + 5] == lanes[i] + 5 && lanes[i + 6] == lanes[i] + 6 && lanes[i + 7] == lanes[i] + 7)) { return false; } controlQWords[i / 8] = lanes[i] / 8; } *control = SimdConstant::CreateX2(controlQWords); return true; } // Skip across consecutive values in lanes starting at i, returning the index // after the last element. Lane values must be <= len-1 ("masked"). // // Since every element is a 1-element run, the return value is never the same as // the starting i. template static int ScanIncreasingMasked(const T* lanes, int i) { int len = int(16 / sizeof(T)); MOZ_ASSERT(i < len); MOZ_ASSERT(lanes[i] <= len - 1); i++; while (i < len && lanes[i] == lanes[i - 1] + 1) { MOZ_ASSERT(lanes[i] <= len - 1); i++; } return i; } // Skip across consecutive values in lanes starting at i, returning the index // after the last element. Lane values must be <= len*2-1 ("unmasked"); the // values len-1 and len are not considered consecutive. // // Since every element is a 1-element run, the return value is never the same as // the starting i. template static int ScanIncreasingUnmasked(const T* lanes, int i) { int len = int(16 / sizeof(T)); MOZ_ASSERT(i < len); if (lanes[i] < len) { i++; while (i < len && lanes[i] < len && lanes[i - 1] == lanes[i] - 1) { i++; } } else { i++; while (i < len && lanes[i] >= len && lanes[i - 1] == lanes[i] - 1) { i++; } } return i; } // Skip lanes that equal v starting at i, returning the index just beyond the // last of those. There is no requirement that the initial lanes[i] == v. template static int ScanConstant(const T* lanes, int v, int i) { int len = int(16 / sizeof(T)); MOZ_ASSERT(i <= len); while (i < len && lanes[i] == v) { i++; } return i; } // Mask lane values denoting rhs elements into lhs elements. template static void MaskLanes(T* result, const T* input) { int len = int(16 / sizeof(T)); for (int i = 0; i < len; i++) { result[i] = input[i] & (len - 1); } } // Apply a transformation to each lane value. template static void MapLanes(T* result, const T* input, int (*f)(int)) { int len = int(16 / sizeof(T)); for (int i = 0; i < len; i++) { result[i] = f(input[i]); } } // Recognize an identity permutation, assuming lanes is masked. template static bool IsIdentity(const T* lanes) { return ScanIncreasingMasked(lanes, 0) == int(16 / sizeof(T)); } // Recognize part of an identity permutation starting at start, with // the first value of the permutation expected to be bias. template static bool IsIdentity(const T* lanes, int start, int len, int bias) { if (lanes[start] != bias) { return false; } for (int i = start + 1; i < start + len; i++) { if (lanes[i] != lanes[i - 1] + 1) { return false; } } return true; } // We can permute by dwords if the mask is reducible to a dword mask, and in // this case a single PSHUFD is enough. static bool TryPermute32x4(SimdConstant* control) { SimdConstant tmp = *control; if (!ByteMaskToDWordMask(&tmp)) { return false; } *control = tmp; return true; } // Can we perform a byte rotate right? We can use PALIGNR. The shift count is // just lanes[0], and *control is unchanged. static bool TryRotateRight8x16(SimdConstant* control) { const SimdConstant::I8x16& lanes = control->asInt8x16(); // Look for the first run of consecutive bytes. int i = ScanIncreasingMasked(lanes, 0); // If we reach the end of the vector, the vector must start at 0. if (i == 16) { return lanes[0] == 0; } // Second run must start at source lane zero if (lanes[i] != 0) { return false; } // Second run must end at the end of the lane vector. return ScanIncreasingMasked(lanes, i) == 16; } // We can permute by words if the mask is reducible to a word mask, but the x64 // lowering is only efficient if we can permute the high and low quadwords // separately, possibly after swapping quadwords. static bool TryPermute16x8(SimdConstant* control) { SimdConstant tmp = *control; if (!ByteMaskToWordMask(&tmp)) { return false; } const SimdConstant::I16x8& lanes = tmp.asInt16x8(); SimdConstant::I16x8 mapped; MapLanes(mapped, lanes, [](int x) -> int { return x < 4 ? 0 : 1; }); int i = ScanConstant(mapped, mapped[0], 0); if (i != 4) { return false; } i = ScanConstant(mapped, mapped[4], 4); if (i != 8) { return false; } // Now compute the operation bits. `mapped` holds the adjusted lane mask. memcpy(mapped, lanes, sizeof(mapped)); int16_t op = 0; if (mapped[0] > mapped[4]) { op |= LWasmPermuteSimd128::SWAP_QWORDS; } for (int i = 0; i < 8; i++) { mapped[i] &= 3; } if (!IsIdentity(mapped, 0, 4, 0)) { op |= LWasmPermuteSimd128::PERM_LOW; } if (!IsIdentity(mapped, 4, 4, 0)) { op |= LWasmPermuteSimd128::PERM_HIGH; } MOZ_ASSERT(op != 0); mapped[0] |= op << 8; *control = SimdConstant::CreateX8(mapped); return true; } // A single word lane is copied into all the other lanes: PSHUF*W + PSHUFD. static bool TryBroadcast16x8(SimdConstant* control) { SimdConstant tmp = *control; if (!ByteMaskToWordMask(&tmp)) { return false; } const SimdConstant::I16x8& lanes = tmp.asInt16x8(); if (ScanConstant(lanes, lanes[0], 0) < 8) { return false; } *control = tmp; return true; } // A single byte lane is copied int all the other lanes: PUNPCK*BW + PSHUF*W + // PSHUFD. static bool TryBroadcast8x16(SimdConstant* control) { const SimdConstant::I8x16& lanes = control->asInt8x16(); if (ScanConstant(lanes, lanes[0], 0) < 16) { return false; } return true; } // Look for permutations of a single operand. static LWasmPermuteSimd128::Op AnalyzePermute(SimdConstant* control) { // Lane indices are input-agnostic for single-operand permutations. SimdConstant::I8x16 controlBytes; MaskLanes(controlBytes, control->asInt8x16()); // Get rid of no-ops immediately, so nobody else needs to check. if (IsIdentity(controlBytes)) { return LWasmPermuteSimd128::MOVE; } // Default control is the masked bytes. *control = SimdConstant::CreateX16(controlBytes); // Analysis order matters here and is architecture-dependent or even // microarchitecture-dependent: ideally the cheapest implementation first. // The Intel manual says that the cost of a PSHUFB is about five other // operations, so make that our cutoff. // // Word, dword, and qword reversals are handled optimally by general permutes. // // Byte reversals are probably best left to PSHUFB, no alternative rendition // seems to reliably go below five instructions. (Discuss.) // // Word swaps within doublewords and dword swaps within quadwords are handled // optimally by general permutes. // // Dword and qword broadcasts are handled by dword permute. if (TryPermute32x4(control)) { return LWasmPermuteSimd128::PERMUTE_32x4; } if (TryRotateRight8x16(control)) { return LWasmPermuteSimd128::ROTATE_RIGHT_8x16; } if (TryPermute16x8(control)) { return LWasmPermuteSimd128::PERMUTE_16x8; } if (TryBroadcast16x8(control)) { return LWasmPermuteSimd128::BROADCAST_16x8; } if (TryBroadcast8x16(control)) { return LWasmPermuteSimd128::BROADCAST_8x16; } // TODO: (From v8) Unzip and transpose generally have renditions that slightly // beat a general permute (three or four instructions) // // TODO: (From MacroAssemblerX86Shared::ShuffleX4): MOVLHPS and MOVHLPS can be // used when merging two values. // // TODO: Byteswap is MOV + PSLLW + PSRLW + POR, a small win over PSHUFB. // The default operation is to permute bytes with the default control. return LWasmPermuteSimd128::PERMUTE_8x16; } // Can we shift the bytes left or right by a constant? A shift is a run of // lanes from the rhs (which is zero) on one end and a run of values from the // lhs on the other end. static Maybe TryShift8x16(SimdConstant* control) { const SimdConstant::I8x16& lanes = control->asInt8x16(); // Represent all zero lanes by 16 SimdConstant::I8x16 zeroesMasked; MapLanes(zeroesMasked, lanes, [](int x) -> int { return x >= 16 ? 16 : x; }); int i = ScanConstant(zeroesMasked, 16, 0); int shiftLeft = i; if (shiftLeft > 0 && lanes[shiftLeft] != 0) { return Nothing(); } i = ScanIncreasingUnmasked(zeroesMasked, i); int shiftRight = 16 - i; if (shiftRight > 0 && lanes[i - 1] != 15) { return Nothing(); } i = ScanConstant(zeroesMasked, 16, i); if (i < 16 || (shiftRight > 0 && shiftLeft > 0) || (shiftRight == 0 && shiftLeft == 0)) { return Nothing(); } if (shiftRight) { *control = SimdConstant::SplatX16(shiftRight); return Some(LWasmPermuteSimd128::SHIFT_RIGHT_8x16); } *control = SimdConstant::SplatX16(shiftLeft); return Some(LWasmPermuteSimd128::SHIFT_LEFT_8x16); } static Maybe AnalyzeShuffleWithZero( SimdConstant* control) { Maybe op; op = TryShift8x16(control); if (op) { return op; } // TODO: Optimization opportunity? A byte-blend-with-zero is just a CONST; // PAND. This may beat the general byte blend code below. return Nothing(); } // Concat: if the result is the suffix (high bytes) of the rhs in front of a // prefix (low bytes) of the lhs then this is PALIGNR; ditto if the operands are // swapped. static Maybe TryConcatRightShift8x16( SimdConstant* control, bool* swapOperands) { const SimdConstant::I8x16& lanes = control->asInt8x16(); int i = ScanIncreasingUnmasked(lanes, 0); MOZ_ASSERT(i < 16, "Single-operand run should have been handled elswhere"); // First run must end with 15 % 16 if ((lanes[i - 1] & 15) != 15) { return Nothing(); } // Second run must start with 0 % 16 if ((lanes[i] & 15) != 0) { return Nothing(); } // The two runs must come from different inputs if ((lanes[i] & 16) == (lanes[i - 1] & 16)) { return Nothing(); } int suffixLength = i; i = ScanIncreasingUnmasked(lanes, i); // Must end at the left end if (i != 16) { return Nothing(); } // If the suffix is from the lhs then swap the operands if (lanes[0] < 16) { *swapOperands = !*swapOperands; } *control = SimdConstant::SplatX16(suffixLength); return Some(LWasmShuffleSimd128::CONCAT_RIGHT_SHIFT_8x16); } // Blend words: if we pick words from both operands without a pattern but all // the input words stay in their position then this is PBLENDW (immediate mask); // this also handles all larger sizes on x64. static Maybe TryBlendInt16x8(SimdConstant* control) { SimdConstant tmp(*control); if (!ByteMaskToWordMask(&tmp)) { return Nothing(); } SimdConstant::I16x8 masked; MaskLanes(masked, tmp.asInt16x8()); if (!IsIdentity(masked)) { return Nothing(); } SimdConstant::I16x8 mapped; MapLanes(mapped, tmp.asInt16x8(), [](int x) -> int { return x < 8 ? 0 : -1; }); *control = SimdConstant::CreateX8(mapped); return Some(LWasmShuffleSimd128::BLEND_16x8); } // Blend bytes: if we pick bytes ditto then this is a byte blend, which can be // handled with a CONST, PAND, PANDNOT, and POR. // // TODO: Optimization opportunity? If we pick all but one lanes from one with at // most one from the other then it could be a MOV + PEXRB + PINSRB (also if this // element is not in its source location). static Maybe TryBlendInt8x16(SimdConstant* control) { SimdConstant::I8x16 masked; MaskLanes(masked, control->asInt8x16()); if (!IsIdentity(masked)) { return Nothing(); } SimdConstant::I8x16 mapped; MapLanes(mapped, control->asInt8x16(), [](int x) -> int { return x < 16 ? 0 : -1; }); *control = SimdConstant::CreateX16(mapped); return Some(LWasmShuffleSimd128::BLEND_8x16); } template static bool MatchInterleave(const T* lanes, int lhs, int rhs, int len) { for (int i = 0; i < len; i++) { if (lanes[i * 2] != lhs + i || lanes[i * 2 + 1] != rhs + i) { return false; } } return true; } // Unpack/interleave: // - if we interleave the low (bytes/words/doublewords) of the inputs into // the output then this is UNPCKL*W (possibly with a swap of operands). // - if we interleave the high ditto then it is UNPCKH*W (ditto) template static Maybe TryInterleave( const T* lanes, int lhs, int rhs, bool* swapOperands, LWasmShuffleSimd128::Op lowOp, LWasmShuffleSimd128::Op highOp) { int len = int(32 / (sizeof(T) * 4)); if (MatchInterleave(lanes, lhs, rhs, len)) { return Some(lowOp); } if (MatchInterleave(lanes, rhs, lhs, len)) { *swapOperands = !*swapOperands; return Some(lowOp); } if (MatchInterleave(lanes, lhs + len, rhs + len, len)) { return Some(highOp); } if (MatchInterleave(lanes, rhs + len, lhs + len, len)) { *swapOperands = !*swapOperands; return Some(highOp); } return Nothing(); } static Maybe TryInterleave64x2(SimdConstant* control, bool* swapOperands) { SimdConstant tmp = *control; if (!ByteMaskToQWordMask(&tmp)) { return Nothing(); } const SimdConstant::I64x2& lanes = tmp.asInt64x2(); return TryInterleave(lanes, 0, 2, swapOperands, LWasmShuffleSimd128::INTERLEAVE_LOW_64x2, LWasmShuffleSimd128::INTERLEAVE_HIGH_64x2); } static Maybe TryInterleave32x4(SimdConstant* control, bool* swapOperands) { SimdConstant tmp = *control; if (!ByteMaskToDWordMask(&tmp)) { return Nothing(); } const SimdConstant::I32x4& lanes = tmp.asInt32x4(); return TryInterleave(lanes, 0, 4, swapOperands, LWasmShuffleSimd128::INTERLEAVE_LOW_32x4, LWasmShuffleSimd128::INTERLEAVE_HIGH_32x4); } static Maybe TryInterleave16x8(SimdConstant* control, bool* swapOperands) { SimdConstant tmp = *control; if (!ByteMaskToWordMask(&tmp)) { return Nothing(); } const SimdConstant::I16x8& lanes = tmp.asInt16x8(); return TryInterleave(lanes, 0, 8, swapOperands, LWasmShuffleSimd128::INTERLEAVE_LOW_16x8, LWasmShuffleSimd128::INTERLEAVE_HIGH_16x8); } static Maybe TryInterleave8x16(SimdConstant* control, bool* swapOperands) { const SimdConstant::I8x16& lanes = control->asInt8x16(); return TryInterleave(lanes, 0, 16, swapOperands, LWasmShuffleSimd128::INTERLEAVE_LOW_8x16, LWasmShuffleSimd128::INTERLEAVE_HIGH_8x16); } static LWasmShuffleSimd128::Op AnalyzeTwoArgShuffle(SimdConstant* control, bool* swapOperands) { Maybe op; op = TryConcatRightShift8x16(control, swapOperands); if (!op) { op = TryBlendInt16x8(control); } if (!op) { op = TryBlendInt8x16(control); } if (!op) { op = TryInterleave64x2(control, swapOperands); } if (!op) { op = TryInterleave32x4(control, swapOperands); } if (!op) { op = TryInterleave16x8(control, swapOperands); } if (!op) { op = TryInterleave8x16(control, swapOperands); } if (!op) { op = Some(LWasmShuffleSimd128::SHUFFLE_BLEND_8x16); } return *op; } // Reorder the operands if that seems useful, notably, move a constant to the // right hand side. Rewrites the control to account for any move. static bool MaybeReorderShuffleOperands(MDefinition** lhs, MDefinition** rhs, SimdConstant* control) { if ((*lhs)->isWasmFloatConstant()) { MDefinition* tmp = *lhs; *lhs = *rhs; *rhs = tmp; int8_t controlBytes[16]; const SimdConstant::I8x16& lanes = control->asInt8x16(); for (unsigned i = 0; i < 16; i++) { controlBytes[i] = lanes[i] ^ 16; } *control = SimdConstant::CreateX16(controlBytes); return true; } return false; } Shuffle LIRGeneratorShared::AnalyzeShuffle(MWasmShuffleSimd128* ins) { // Control may be updated, but only once we commit to an operation or when we // swap operands. SimdConstant control = ins->control(); MDefinition* lhs = ins->lhs(); MDefinition* rhs = ins->rhs(); // If only one of the inputs is used, determine which. bool useLeft = true; bool useRight = true; if (lhs == rhs) { useRight = false; } else { bool allAbove = true; bool allBelow = true; const SimdConstant::I8x16& lanes = control.asInt8x16(); for (unsigned i = 0; i < 16; i++) { allAbove = allAbove && lanes[i] >= 16; allBelow = allBelow && lanes[i] < 16; } if (allAbove) { useLeft = false; } else if (allBelow) { useRight = false; } } // Deal with one-ignored-input. if (!(useLeft && useRight)) { LWasmPermuteSimd128::Op op = AnalyzePermute(&control); return Shuffle::permute( useLeft ? Shuffle::Operand::LEFT : Shuffle::Operand::RIGHT, control, op); } // Move constants to rhs. bool swapOperands = MaybeReorderShuffleOperands(&lhs, &rhs, &control); // Deal with constant rhs. if (rhs->isWasmFloatConstant()) { SimdConstant rhsConstant = rhs->toWasmFloatConstant()->toSimd128(); if (rhsConstant.isZeroBits()) { Maybe op = AnalyzeShuffleWithZero(&control); if (op) { return Shuffle::permute( swapOperands ? Shuffle::Operand::RIGHT : Shuffle::Operand::LEFT, control, *op); } } } // Two operands both of which are used. If there's one constant operand it is // now on the rhs. LWasmShuffleSimd128::Op op = AnalyzeTwoArgShuffle(&control, &swapOperands); return Shuffle::shuffle( swapOperands ? Shuffle::Operand::BOTH_SWAPPED : Shuffle::Operand::BOTH, control, op); } # ifdef DEBUG void LIRGeneratorShared::ReportShuffleSpecialization(const Shuffle& s) { switch (s.opd) { case Shuffle::Operand::BOTH: case Shuffle::Operand::BOTH_SWAPPED: switch (*s.shuffleOp) { case LWasmShuffleSimd128::SHUFFLE_BLEND_8x16: js::wasm::ReportSimdAnalysis("shuffle -> shuffle+blend 8x16"); break; case LWasmShuffleSimd128::BLEND_8x16: js::wasm::ReportSimdAnalysis("shuffle -> blend 8x16"); break; case LWasmShuffleSimd128::BLEND_16x8: js::wasm::ReportSimdAnalysis("shuffle -> blend 16x8"); break; case LWasmShuffleSimd128::CONCAT_RIGHT_SHIFT_8x16: js::wasm::ReportSimdAnalysis("shuffle -> concat+shift-right 8x16"); break; case LWasmShuffleSimd128::INTERLEAVE_HIGH_8x16: js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 8x16"); break; case LWasmShuffleSimd128::INTERLEAVE_HIGH_16x8: js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 16x8"); break; case LWasmShuffleSimd128::INTERLEAVE_HIGH_32x4: js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 32x4"); break; case LWasmShuffleSimd128::INTERLEAVE_HIGH_64x2: js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 64x2"); break; case LWasmShuffleSimd128::INTERLEAVE_LOW_8x16: js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 8x16"); break; case LWasmShuffleSimd128::INTERLEAVE_LOW_16x8: js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 16x8"); break; case LWasmShuffleSimd128::INTERLEAVE_LOW_32x4: js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 32x4"); break; case LWasmShuffleSimd128::INTERLEAVE_LOW_64x2: js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 64x2"); break; default: MOZ_CRASH("Unexpected shuffle op"); } break; case Shuffle::Operand::LEFT: case Shuffle::Operand::RIGHT: switch (*s.permuteOp) { case LWasmPermuteSimd128::BROADCAST_8x16: js::wasm::ReportSimdAnalysis("shuffle -> broadcast 8x16"); break; case LWasmPermuteSimd128::BROADCAST_16x8: js::wasm::ReportSimdAnalysis("shuffle -> broadcast 16x8"); break; case LWasmPermuteSimd128::MOVE: js::wasm::ReportSimdAnalysis("shuffle -> move"); break; case LWasmPermuteSimd128::PERMUTE_8x16: js::wasm::ReportSimdAnalysis("shuffle -> permute 8x16"); break; case LWasmPermuteSimd128::PERMUTE_16x8: { int op = s.control.asInt16x8()[0] >> 8; char buf[256]; sprintf(buf, "shuffle -> permute 16x8%s%s%s", op & LWasmPermuteSimd128::SWAP_QWORDS ? " swap" : "", op & LWasmPermuteSimd128::PERM_HIGH ? " high" : "", op & LWasmPermuteSimd128::PERM_LOW ? " low" : ""); js::wasm::ReportSimdAnalysis(buf); break; } case LWasmPermuteSimd128::PERMUTE_32x4: js::wasm::ReportSimdAnalysis("shuffle -> permute 32x4"); break; case LWasmPermuteSimd128::ROTATE_RIGHT_8x16: js::wasm::ReportSimdAnalysis("shuffle -> rotate-right 8x16"); break; case LWasmPermuteSimd128::SHIFT_LEFT_8x16: js::wasm::ReportSimdAnalysis("shuffle -> shift-left 8x16"); break; case LWasmPermuteSimd128::SHIFT_RIGHT_8x16: js::wasm::ReportSimdAnalysis("shuffle -> shift-right 8x16"); break; default: MOZ_CRASH("Unexpected permute op"); } break; } } # endif // DEBUG #endif // ENABLE_WASM_SIMD