/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_x86_shared_MacroAssembler_x86_shared_inl_h #define jit_x86_shared_MacroAssembler_x86_shared_inl_h #include "jit/x86-shared/MacroAssembler-x86-shared.h" namespace js { namespace jit { //{{{ check_macroassembler_style // =============================================================== // Move instructions void MacroAssembler::moveFloat32ToGPR(FloatRegister src, Register dest) { vmovd(src, dest); } void MacroAssembler::moveGPRToFloat32(Register src, FloatRegister dest) { vmovd(src, dest); } void MacroAssembler::move8SignExtend(Register src, Register dest) { movsbl(src, dest); } void MacroAssembler::move16SignExtend(Register src, Register dest) { movswl(src, dest); } void MacroAssembler::loadAbiReturnAddress(Register dest) { loadPtr(Address(getStackPointer(), 0), dest); } // =============================================================== // Logical instructions void MacroAssembler::not32(Register reg) { notl(reg); } void MacroAssembler::and32(Register src, Register dest) { andl(src, dest); } void MacroAssembler::and32(Imm32 imm, Register dest) { andl(imm, dest); } void MacroAssembler::and32(Imm32 imm, const Address& dest) { andl(imm, Operand(dest)); } void MacroAssembler::and32(const Address& src, Register dest) { andl(Operand(src), dest); } void MacroAssembler::or32(Register src, Register dest) { orl(src, dest); } void MacroAssembler::or32(Imm32 imm, Register dest) { orl(imm, dest); } void MacroAssembler::or32(Imm32 imm, const Address& dest) { orl(imm, Operand(dest)); } void MacroAssembler::xor32(Register src, Register dest) { xorl(src, dest); } void MacroAssembler::xor32(Imm32 imm, Register dest) { xorl(imm, dest); } void MacroAssembler::xor32(Imm32 imm, const Address& dest) { xorl(imm, Operand(dest)); } void MacroAssembler::xor32(const Address& src, Register dest) { xorl(Operand(src), dest); } void MacroAssembler::clz32(Register src, Register dest, bool knownNotZero) { if (AssemblerX86Shared::HasLZCNT()) { lzcntl(src, dest); return; } bsrl(src, dest); if (!knownNotZero) { // If the source is zero then bsrl leaves garbage in the destination. Label nonzero; j(Assembler::NonZero, &nonzero); movl(Imm32(0x3F), dest); bind(&nonzero); } xorl(Imm32(0x1F), dest); } void MacroAssembler::ctz32(Register src, Register dest, bool knownNotZero) { if (AssemblerX86Shared::HasBMI1()) { tzcntl(src, dest); return; } bsfl(src, dest); if (!knownNotZero) { Label nonzero; j(Assembler::NonZero, &nonzero); movl(Imm32(32), dest); bind(&nonzero); } } void MacroAssembler::popcnt32(Register input, Register output, Register tmp) { if (AssemblerX86Shared::HasPOPCNT()) { popcntl(input, output); return; } MOZ_ASSERT(tmp != InvalidReg); // Equivalent to mozilla::CountPopulation32() movl(input, tmp); if (input != output) { movl(input, output); } shrl(Imm32(1), output); andl(Imm32(0x55555555), output); subl(output, tmp); movl(tmp, output); andl(Imm32(0x33333333), output); shrl(Imm32(2), tmp); andl(Imm32(0x33333333), tmp); addl(output, tmp); movl(tmp, output); shrl(Imm32(4), output); addl(tmp, output); andl(Imm32(0xF0F0F0F), output); imull(Imm32(0x1010101), output, output); shrl(Imm32(24), output); } // =============================================================== // Swap instructions void MacroAssembler::byteSwap16SignExtend(Register reg) { rolw(Imm32(8), reg); movswl(reg, reg); } void MacroAssembler::byteSwap16ZeroExtend(Register reg) { rolw(Imm32(8), reg); movzwl(reg, reg); } void MacroAssembler::byteSwap32(Register reg) { bswapl(reg); } // =============================================================== // Arithmetic instructions void MacroAssembler::add32(Register src, Register dest) { addl(src, dest); } void MacroAssembler::add32(Imm32 imm, Register dest) { addl(imm, dest); } void MacroAssembler::add32(Imm32 imm, const Address& dest) { addl(imm, Operand(dest)); } void MacroAssembler::add32(Imm32 imm, const AbsoluteAddress& dest) { addl(imm, Operand(dest)); } void MacroAssembler::addFloat32(FloatRegister src, FloatRegister dest) { vaddss(src, dest, dest); } void MacroAssembler::addDouble(FloatRegister src, FloatRegister dest) { vaddsd(src, dest, dest); } void MacroAssembler::sub32(Register src, Register dest) { subl(src, dest); } void MacroAssembler::sub32(Imm32 imm, Register dest) { subl(imm, dest); } void MacroAssembler::sub32(const Address& src, Register dest) { subl(Operand(src), dest); } void MacroAssembler::subDouble(FloatRegister src, FloatRegister dest) { vsubsd(src, dest, dest); } void MacroAssembler::subFloat32(FloatRegister src, FloatRegister dest) { vsubss(src, dest, dest); } void MacroAssembler::mul32(Register rhs, Register srcDest) { imull(rhs, srcDest); } void MacroAssembler::mulFloat32(FloatRegister src, FloatRegister dest) { vmulss(src, dest, dest); } void MacroAssembler::mulDouble(FloatRegister src, FloatRegister dest) { vmulsd(src, dest, dest); } void MacroAssembler::quotient32(Register rhs, Register srcDest, bool isUnsigned) { MOZ_ASSERT(srcDest == eax); // Sign extend eax into edx to make (edx:eax): idiv/udiv are 64-bit. if (isUnsigned) { mov(ImmWord(0), edx); udiv(rhs); } else { cdq(); idiv(rhs); } } void MacroAssembler::remainder32(Register rhs, Register srcDest, bool isUnsigned) { MOZ_ASSERT(srcDest == eax); // Sign extend eax into edx to make (edx:eax): idiv/udiv are 64-bit. if (isUnsigned) { mov(ImmWord(0), edx); udiv(rhs); } else { cdq(); idiv(rhs); } mov(edx, eax); } void MacroAssembler::divFloat32(FloatRegister src, FloatRegister dest) { vdivss(src, dest, dest); } void MacroAssembler::divDouble(FloatRegister src, FloatRegister dest) { vdivsd(src, dest, dest); } void MacroAssembler::neg32(Register reg) { negl(reg); } void MacroAssembler::negateFloat(FloatRegister reg) { ScratchFloat32Scope scratch(*this); vpcmpeqw(Operand(scratch), scratch, scratch); vpsllq(Imm32(31), scratch, scratch); // XOR the float in a float register with -0.0. vxorps(scratch, reg, reg); // s ^ 0x80000000 } void MacroAssembler::negateDouble(FloatRegister reg) { // From MacroAssemblerX86Shared::maybeInlineDouble ScratchDoubleScope scratch(*this); vpcmpeqw(Operand(scratch), scratch, scratch); vpsllq(Imm32(63), scratch, scratch); // XOR the float in a float register with -0.0. vxorpd(scratch, reg, reg); // s ^ 0x80000000000000 } void MacroAssembler::absFloat32(FloatRegister src, FloatRegister dest) { ScratchFloat32Scope scratch(*this); loadConstantFloat32(mozilla::SpecificNaN( 0, mozilla::FloatingPoint::kSignificandBits), scratch); vandps(scratch, src, dest); } void MacroAssembler::absDouble(FloatRegister src, FloatRegister dest) { ScratchDoubleScope scratch(*this); loadConstantDouble(mozilla::SpecificNaN( 0, mozilla::FloatingPoint::kSignificandBits), scratch); vandpd(scratch, src, dest); } void MacroAssembler::sqrtFloat32(FloatRegister src, FloatRegister dest) { vsqrtss(src, dest, dest); } void MacroAssembler::sqrtDouble(FloatRegister src, FloatRegister dest) { vsqrtsd(src, dest, dest); } void MacroAssembler::minFloat32(FloatRegister other, FloatRegister srcDest, bool handleNaN) { minMaxFloat32(srcDest, other, handleNaN, false); } void MacroAssembler::minDouble(FloatRegister other, FloatRegister srcDest, bool handleNaN) { minMaxDouble(srcDest, other, handleNaN, false); } void MacroAssembler::maxFloat32(FloatRegister other, FloatRegister srcDest, bool handleNaN) { minMaxFloat32(srcDest, other, handleNaN, true); } void MacroAssembler::maxDouble(FloatRegister other, FloatRegister srcDest, bool handleNaN) { minMaxDouble(srcDest, other, handleNaN, true); } // =============================================================== // Rotation instructions void MacroAssembler::rotateLeft(Imm32 count, Register input, Register dest) { MOZ_ASSERT(input == dest, "defineReuseInput"); count.value &= 0x1f; if (count.value) { roll(count, input); } } void MacroAssembler::rotateLeft(Register count, Register input, Register dest) { MOZ_ASSERT(input == dest, "defineReuseInput"); MOZ_ASSERT(count == ecx, "defineFixed(ecx)"); roll_cl(input); } void MacroAssembler::rotateRight(Imm32 count, Register input, Register dest) { MOZ_ASSERT(input == dest, "defineReuseInput"); count.value &= 0x1f; if (count.value) { rorl(count, input); } } void MacroAssembler::rotateRight(Register count, Register input, Register dest) { MOZ_ASSERT(input == dest, "defineReuseInput"); MOZ_ASSERT(count == ecx, "defineFixed(ecx)"); rorl_cl(input); } // =============================================================== // Shift instructions void MacroAssembler::lshift32(Register shift, Register srcDest) { if (HasBMI2()) { shlxl(srcDest, shift, srcDest); return; } MOZ_ASSERT(shift == ecx); shll_cl(srcDest); } void MacroAssembler::flexibleLshift32(Register shift, Register srcDest) { if (HasBMI2()) { shlxl(srcDest, shift, srcDest); return; } if (shift == ecx) { shll_cl(srcDest); } else { // Shift amount must be in ecx. xchg(shift, ecx); shll_cl(shift == srcDest ? ecx : srcDest == ecx ? shift : srcDest); xchg(shift, ecx); } } void MacroAssembler::rshift32(Register shift, Register srcDest) { if (HasBMI2()) { shrxl(srcDest, shift, srcDest); return; } MOZ_ASSERT(shift == ecx); shrl_cl(srcDest); } void MacroAssembler::flexibleRshift32(Register shift, Register srcDest) { if (HasBMI2()) { shrxl(srcDest, shift, srcDest); return; } if (shift == ecx) { shrl_cl(srcDest); } else { // Shift amount must be in ecx. xchg(shift, ecx); shrl_cl(shift == srcDest ? ecx : srcDest == ecx ? shift : srcDest); xchg(shift, ecx); } } void MacroAssembler::rshift32Arithmetic(Register shift, Register srcDest) { if (HasBMI2()) { sarxl(srcDest, shift, srcDest); return; } MOZ_ASSERT(shift == ecx); sarl_cl(srcDest); } void MacroAssembler::flexibleRshift32Arithmetic(Register shift, Register srcDest) { if (HasBMI2()) { sarxl(srcDest, shift, srcDest); return; } if (shift == ecx) { sarl_cl(srcDest); } else { // Shift amount must be in ecx. xchg(shift, ecx); sarl_cl(shift == srcDest ? ecx : srcDest == ecx ? shift : srcDest); xchg(shift, ecx); } } void MacroAssembler::lshift32(Imm32 shift, Register srcDest) { shll(shift, srcDest); } void MacroAssembler::rshift32(Imm32 shift, Register srcDest) { shrl(shift, srcDest); } void MacroAssembler::rshift32Arithmetic(Imm32 shift, Register srcDest) { sarl(shift, srcDest); } // =============================================================== // Condition functions template void MacroAssembler::cmp32Set(Condition cond, T1 lhs, T2 rhs, Register dest) { cmp32(lhs, rhs); emitSet(cond, dest); } // =============================================================== // Branch instructions template void MacroAssembler::branch32(Condition cond, Register lhs, Register rhs, L label) { cmp32(lhs, rhs); j(cond, label); } template void MacroAssembler::branch32(Condition cond, Register lhs, Imm32 rhs, L label) { cmp32(lhs, rhs); j(cond, label); } void MacroAssembler::branch32(Condition cond, const Address& lhs, Register rhs, Label* label) { cmp32(Operand(lhs), rhs); j(cond, label); } void MacroAssembler::branch32(Condition cond, const Address& lhs, Imm32 rhs, Label* label) { cmp32(Operand(lhs), rhs); j(cond, label); } void MacroAssembler::branch32(Condition cond, const BaseIndex& lhs, Register rhs, Label* label) { cmp32(Operand(lhs), rhs); j(cond, label); } void MacroAssembler::branch32(Condition cond, const BaseIndex& lhs, Imm32 rhs, Label* label) { cmp32(Operand(lhs), rhs); j(cond, label); } void MacroAssembler::branch32(Condition cond, const Operand& lhs, Register rhs, Label* label) { cmp32(lhs, rhs); j(cond, label); } void MacroAssembler::branch32(Condition cond, const Operand& lhs, Imm32 rhs, Label* label) { cmp32(lhs, rhs); j(cond, label); } template void MacroAssembler::branchPtr(Condition cond, Register lhs, Register rhs, L label) { cmpPtr(lhs, rhs); j(cond, label); } void MacroAssembler::branchPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmPtr rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmGCPtr rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmWord rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } template void MacroAssembler::branchPtr(Condition cond, const Address& lhs, Register rhs, L label) { branchPtrImpl(cond, lhs, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmPtr rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmGCPtr rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmWord rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } void MacroAssembler::branchPtr(Condition cond, const BaseIndex& lhs, ImmWord rhs, Label* label) { branchPtrImpl(cond, lhs, rhs, label); } template void MacroAssembler::branchPtrImpl(Condition cond, const T& lhs, const S& rhs, L label) { cmpPtr(Operand(lhs), rhs); j(cond, label); } void MacroAssembler::branchFloat(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs, Label* label) { compareFloat(cond, lhs, rhs); if (cond == DoubleEqual) { Label unordered; j(Parity, &unordered); j(Equal, label); bind(&unordered); return; } if (cond == DoubleNotEqualOrUnordered) { j(NotEqual, label); j(Parity, label); return; } MOZ_ASSERT(!(cond & DoubleConditionBitSpecial)); j(ConditionFromDoubleCondition(cond), label); } void MacroAssembler::branchDouble(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs, Label* label) { compareDouble(cond, lhs, rhs); if (cond == DoubleEqual) { Label unordered; j(Parity, &unordered); j(Equal, label); bind(&unordered); return; } if (cond == DoubleNotEqualOrUnordered) { j(NotEqual, label); j(Parity, label); return; } MOZ_ASSERT(!(cond & DoubleConditionBitSpecial)); j(ConditionFromDoubleCondition(cond), label); } template void MacroAssembler::branchAdd32(Condition cond, T src, Register dest, Label* label) { addl(src, dest); j(cond, label); } template void MacroAssembler::branchSub32(Condition cond, T src, Register dest, Label* label) { subl(src, dest); j(cond, label); } template void MacroAssembler::branchMul32(Condition cond, T src, Register dest, Label* label) { mul32(src, dest); j(cond, label); } template void MacroAssembler::branchRshift32(Condition cond, T src, Register dest, Label* label) { MOZ_ASSERT(cond == Zero || cond == NonZero); rshift32(src, dest); j(cond, label); } void MacroAssembler::branchNeg32(Condition cond, Register reg, Label* label) { MOZ_ASSERT(cond == Overflow); neg32(reg); j(cond, label); } template void MacroAssembler::branchAddPtr(Condition cond, T src, Register dest, Label* label) { addPtr(src, dest); j(cond, label); } template void MacroAssembler::branchSubPtr(Condition cond, T src, Register dest, Label* label) { subPtr(src, dest); j(cond, label); } void MacroAssembler::branchMulPtr(Condition cond, Register src, Register dest, Label* label) { mulPtr(src, dest); j(cond, label); } void MacroAssembler::decBranchPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) { subPtr(rhs, lhs); j(cond, label); } template void MacroAssembler::branchTest32(Condition cond, Register lhs, Register rhs, L label) { MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned); test32(lhs, rhs); j(cond, label); } template void MacroAssembler::branchTest32(Condition cond, Register lhs, Imm32 rhs, L label) { MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned); test32(lhs, rhs); j(cond, label); } void MacroAssembler::branchTest32(Condition cond, const Address& lhs, Imm32 rhs, Label* label) { MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned); test32(Operand(lhs), rhs); j(cond, label); } template void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Register rhs, L label) { testPtr(lhs, rhs); j(cond, label); } void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) { testPtr(lhs, rhs); j(cond, label); } void MacroAssembler::branchTestPtr(Condition cond, const Address& lhs, Imm32 rhs, Label* label) { testPtr(Operand(lhs), rhs); j(cond, label); } void MacroAssembler::branchTestUndefined(Condition cond, Register tag, Label* label) { branchTestUndefinedImpl(cond, tag, label); } void MacroAssembler::branchTestUndefined(Condition cond, const Address& address, Label* label) { branchTestUndefinedImpl(cond, address, label); } void MacroAssembler::branchTestUndefined(Condition cond, const BaseIndex& address, Label* label) { branchTestUndefinedImpl(cond, address, label); } void MacroAssembler::branchTestUndefined(Condition cond, const ValueOperand& value, Label* label) { branchTestUndefinedImpl(cond, value, label); } template void MacroAssembler::branchTestUndefinedImpl(Condition cond, const T& t, Label* label) { cond = testUndefined(cond, t); j(cond, label); } void MacroAssembler::branchTestInt32(Condition cond, Register tag, Label* label) { branchTestInt32Impl(cond, tag, label); } void MacroAssembler::branchTestInt32(Condition cond, const Address& address, Label* label) { branchTestInt32Impl(cond, address, label); } void MacroAssembler::branchTestInt32(Condition cond, const BaseIndex& address, Label* label) { branchTestInt32Impl(cond, address, label); } void MacroAssembler::branchTestInt32(Condition cond, const ValueOperand& value, Label* label) { branchTestInt32Impl(cond, value, label); } template void MacroAssembler::branchTestInt32Impl(Condition cond, const T& t, Label* label) { cond = testInt32(cond, t); j(cond, label); } void MacroAssembler::branchTestInt32Truthy(bool truthy, const ValueOperand& value, Label* label) { Condition cond = testInt32Truthy(truthy, value); j(cond, label); } void MacroAssembler::branchTestDouble(Condition cond, Register tag, Label* label) { branchTestDoubleImpl(cond, tag, label); } void MacroAssembler::branchTestDouble(Condition cond, const Address& address, Label* label) { branchTestDoubleImpl(cond, address, label); } void MacroAssembler::branchTestDouble(Condition cond, const BaseIndex& address, Label* label) { branchTestDoubleImpl(cond, address, label); } void MacroAssembler::branchTestDouble(Condition cond, const ValueOperand& value, Label* label) { branchTestDoubleImpl(cond, value, label); } template void MacroAssembler::branchTestDoubleImpl(Condition cond, const T& t, Label* label) { cond = testDouble(cond, t); j(cond, label); } void MacroAssembler::branchTestDoubleTruthy(bool truthy, FloatRegister reg, Label* label) { Condition cond = testDoubleTruthy(truthy, reg); j(cond, label); } void MacroAssembler::branchTestNumber(Condition cond, Register tag, Label* label) { branchTestNumberImpl(cond, tag, label); } void MacroAssembler::branchTestNumber(Condition cond, const ValueOperand& value, Label* label) { branchTestNumberImpl(cond, value, label); } template void MacroAssembler::branchTestNumberImpl(Condition cond, const T& t, Label* label) { cond = testNumber(cond, t); j(cond, label); } void MacroAssembler::branchTestBoolean(Condition cond, Register tag, Label* label) { branchTestBooleanImpl(cond, tag, label); } void MacroAssembler::branchTestBoolean(Condition cond, const Address& address, Label* label) { branchTestBooleanImpl(cond, address, label); } void MacroAssembler::branchTestBoolean(Condition cond, const BaseIndex& address, Label* label) { branchTestBooleanImpl(cond, address, label); } void MacroAssembler::branchTestBoolean(Condition cond, const ValueOperand& value, Label* label) { branchTestBooleanImpl(cond, value, label); } template void MacroAssembler::branchTestBooleanImpl(Condition cond, const T& t, Label* label) { cond = testBoolean(cond, t); j(cond, label); } void MacroAssembler::branchTestString(Condition cond, Register tag, Label* label) { branchTestStringImpl(cond, tag, label); } void MacroAssembler::branchTestString(Condition cond, const Address& address, Label* label) { branchTestStringImpl(cond, address, label); } void MacroAssembler::branchTestString(Condition cond, const BaseIndex& address, Label* label) { branchTestStringImpl(cond, address, label); } void MacroAssembler::branchTestString(Condition cond, const ValueOperand& value, Label* label) { branchTestStringImpl(cond, value, label); } template void MacroAssembler::branchTestStringImpl(Condition cond, const T& t, Label* label) { cond = testString(cond, t); j(cond, label); } void MacroAssembler::branchTestStringTruthy(bool truthy, const ValueOperand& value, Label* label) { Condition cond = testStringTruthy(truthy, value); j(cond, label); } void MacroAssembler::branchTestSymbol(Condition cond, Register tag, Label* label) { branchTestSymbolImpl(cond, tag, label); } void MacroAssembler::branchTestSymbol(Condition cond, const Address& address, Label* label) { branchTestSymbolImpl(cond, address, label); } void MacroAssembler::branchTestSymbol(Condition cond, const BaseIndex& address, Label* label) { branchTestSymbolImpl(cond, address, label); } void MacroAssembler::branchTestSymbol(Condition cond, const ValueOperand& value, Label* label) { branchTestSymbolImpl(cond, value, label); } template void MacroAssembler::branchTestSymbolImpl(Condition cond, const T& t, Label* label) { cond = testSymbol(cond, t); j(cond, label); } void MacroAssembler::branchTestBigInt(Condition cond, Register tag, Label* label) { branchTestBigIntImpl(cond, tag, label); } void MacroAssembler::branchTestBigInt(Condition cond, const Address& address, Label* label) { branchTestBigIntImpl(cond, address, label); } void MacroAssembler::branchTestBigInt(Condition cond, const BaseIndex& address, Label* label) { branchTestBigIntImpl(cond, address, label); } void MacroAssembler::branchTestBigInt(Condition cond, const ValueOperand& value, Label* label) { branchTestBigIntImpl(cond, value, label); } template void MacroAssembler::branchTestBigIntImpl(Condition cond, const T& t, Label* label) { cond = testBigInt(cond, t); j(cond, label); } void MacroAssembler::branchTestBigIntTruthy(bool truthy, const ValueOperand& value, Label* label) { Condition cond = testBigIntTruthy(truthy, value); j(cond, label); } void MacroAssembler::branchTestNull(Condition cond, Register tag, Label* label) { branchTestNullImpl(cond, tag, label); } void MacroAssembler::branchTestNull(Condition cond, const Address& address, Label* label) { branchTestNullImpl(cond, address, label); } void MacroAssembler::branchTestNull(Condition cond, const BaseIndex& address, Label* label) { branchTestNullImpl(cond, address, label); } void MacroAssembler::branchTestNull(Condition cond, const ValueOperand& value, Label* label) { branchTestNullImpl(cond, value, label); } template void MacroAssembler::branchTestNullImpl(Condition cond, const T& t, Label* label) { cond = testNull(cond, t); j(cond, label); } void MacroAssembler::branchTestObject(Condition cond, Register tag, Label* label) { branchTestObjectImpl(cond, tag, label); } void MacroAssembler::branchTestObject(Condition cond, const Address& address, Label* label) { branchTestObjectImpl(cond, address, label); } void MacroAssembler::branchTestObject(Condition cond, const BaseIndex& address, Label* label) { branchTestObjectImpl(cond, address, label); } void MacroAssembler::branchTestObject(Condition cond, const ValueOperand& value, Label* label) { branchTestObjectImpl(cond, value, label); } template void MacroAssembler::branchTestObjectImpl(Condition cond, const T& t, Label* label) { cond = testObject(cond, t); j(cond, label); } void MacroAssembler::branchTestGCThing(Condition cond, const Address& address, Label* label) { branchTestGCThingImpl(cond, address, label); } void MacroAssembler::branchTestGCThing(Condition cond, const BaseIndex& address, Label* label) { branchTestGCThingImpl(cond, address, label); } void MacroAssembler::branchTestGCThing(Condition cond, const ValueOperand& value, Label* label) { branchTestGCThingImpl(cond, value, label); } template void MacroAssembler::branchTestGCThingImpl(Condition cond, const T& t, Label* label) { cond = testGCThing(cond, t); j(cond, label); } void MacroAssembler::branchTestPrimitive(Condition cond, Register tag, Label* label) { branchTestPrimitiveImpl(cond, tag, label); } void MacroAssembler::branchTestPrimitive(Condition cond, const ValueOperand& value, Label* label) { branchTestPrimitiveImpl(cond, value, label); } template void MacroAssembler::branchTestPrimitiveImpl(Condition cond, const T& t, Label* label) { cond = testPrimitive(cond, t); j(cond, label); } void MacroAssembler::branchTestMagic(Condition cond, Register tag, Label* label) { branchTestMagicImpl(cond, tag, label); } void MacroAssembler::branchTestMagic(Condition cond, const Address& address, Label* label) { branchTestMagicImpl(cond, address, label); } void MacroAssembler::branchTestMagic(Condition cond, const BaseIndex& address, Label* label) { branchTestMagicImpl(cond, address, label); } template void MacroAssembler::branchTestMagic(Condition cond, const ValueOperand& value, L label) { branchTestMagicImpl(cond, value, label); } template void MacroAssembler::branchTestMagicImpl(Condition cond, const T& t, L label) { cond = testMagic(cond, t); j(cond, label); } void MacroAssembler::cmp32Move32(Condition cond, Register lhs, Register rhs, Register src, Register dest) { cmp32(lhs, rhs); cmovCCl(cond, src, dest); } void MacroAssembler::cmp32Move32(Condition cond, Register lhs, const Address& rhs, Register src, Register dest) { cmp32(lhs, Operand(rhs)); cmovCCl(cond, src, dest); } void MacroAssembler::cmp32Load32(Condition cond, Register lhs, const Address& rhs, const Address& src, Register dest) { cmp32(lhs, Operand(rhs)); cmovCCl(cond, Operand(src), dest); } void MacroAssembler::cmp32Load32(Condition cond, Register lhs, Register rhs, const Address& src, Register dest) { cmp32(lhs, rhs); cmovCCl(cond, Operand(src), dest); } void MacroAssembler::spectreZeroRegister(Condition cond, Register scratch, Register dest) { // Note: use movl instead of move32/xorl to ensure flags are not clobbered. movl(Imm32(0), scratch); spectreMovePtr(cond, scratch, dest); } // ======================================================================== // Memory access primitives. void MacroAssembler::storeUncanonicalizedDouble(FloatRegister src, const Address& dest) { vmovsd(src, dest); } void MacroAssembler::storeUncanonicalizedDouble(FloatRegister src, const BaseIndex& dest) { vmovsd(src, dest); } void MacroAssembler::storeUncanonicalizedDouble(FloatRegister src, const Operand& dest) { switch (dest.kind()) { case Operand::MEM_REG_DISP: storeUncanonicalizedDouble(src, dest.toAddress()); break; case Operand::MEM_SCALE: storeUncanonicalizedDouble(src, dest.toBaseIndex()); break; default: MOZ_CRASH("unexpected operand kind"); } } template void MacroAssembler::storeDouble(FloatRegister src, const Operand& dest); void MacroAssembler::storeUncanonicalizedFloat32(FloatRegister src, const Address& dest) { vmovss(src, dest); } void MacroAssembler::storeUncanonicalizedFloat32(FloatRegister src, const BaseIndex& dest) { vmovss(src, dest); } void MacroAssembler::storeUncanonicalizedFloat32(FloatRegister src, const Operand& dest) { switch (dest.kind()) { case Operand::MEM_REG_DISP: storeUncanonicalizedFloat32(src, dest.toAddress()); break; case Operand::MEM_SCALE: storeUncanonicalizedFloat32(src, dest.toBaseIndex()); break; default: MOZ_CRASH("unexpected operand kind"); } } template void MacroAssembler::storeFloat32(FloatRegister src, const Operand& dest); void MacroAssembler::memoryBarrier(MemoryBarrierBits barrier) { if (barrier & MembarStoreLoad) { storeLoadFence(); } } // ======================================================================== // Wasm SIMD // // Some parts of the masm API are currently agnostic as to the data's // interpretation as int or float, despite the Intel architecture having // separate functional units and sometimes penalizing type-specific instructions // that operate on data in the "wrong" unit. // // For the time being, we always choose the integer interpretation when we are // forced to choose blind, but whether that is right or wrong depends on the // application. This applies to moveSimd128, zeroSimd128, loadConstantSimd128, // loadUnalignedSimd128, and storeUnalignedSimd128, at least. // // SSE4.1 or better is assumed. // // The order of operations here follows the header file. // Moves. See comments above regarding integer operation. void MacroAssembler::moveSimd128(FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::moveSimd128Int(src, dest); } // Constants. See comments above regarding integer operation. void MacroAssembler::zeroSimd128(FloatRegister dest) { MacroAssemblerX86Shared::zeroSimd128Int(dest); } void MacroAssembler::loadConstantSimd128(const SimdConstant& v, FloatRegister dest) { if (v.isFloatingType()) { loadConstantSimd128Float(v, dest); } else { loadConstantSimd128Int(v, dest); } } // Splat void MacroAssembler::splatX16(Register src, FloatRegister dest) { MacroAssemblerX86Shared::splatX16(src, dest); } void MacroAssembler::splatX8(Register src, FloatRegister dest) { MacroAssemblerX86Shared::splatX8(src, dest); } void MacroAssembler::splatX4(Register src, FloatRegister dest) { MacroAssemblerX86Shared::splatX4(src, dest); } void MacroAssembler::splatX4(FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::splatX4(src, dest); } void MacroAssembler::splatX2(FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::splatX2(src, dest); } // Extract lane as scalar void MacroAssembler::extractLaneInt8x16(uint32_t lane, FloatRegister src, Register dest) { MacroAssemblerX86Shared::extractLaneInt8x16(src, dest, lane, SimdSign::Signed); } void MacroAssembler::unsignedExtractLaneInt8x16(uint32_t lane, FloatRegister src, Register dest) { MacroAssemblerX86Shared::extractLaneInt8x16(src, dest, lane, SimdSign::Unsigned); } void MacroAssembler::extractLaneInt16x8(uint32_t lane, FloatRegister src, Register dest) { MacroAssemblerX86Shared::extractLaneInt16x8(src, dest, lane, SimdSign::Signed); } void MacroAssembler::unsignedExtractLaneInt16x8(uint32_t lane, FloatRegister src, Register dest) { MacroAssemblerX86Shared::extractLaneInt16x8(src, dest, lane, SimdSign::Unsigned); } void MacroAssembler::extractLaneInt32x4(uint32_t lane, FloatRegister src, Register dest) { MacroAssemblerX86Shared::extractLaneInt32x4(src, dest, lane); } void MacroAssembler::extractLaneFloat32x4(uint32_t lane, FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::extractLaneFloat32x4(src, dest, lane); } void MacroAssembler::extractLaneFloat64x2(uint32_t lane, FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::extractLaneFloat64x2(src, dest, lane); } // Replace lane value void MacroAssembler::replaceLaneInt8x16(unsigned lane, Register rhs, FloatRegister lhsDest) { vpinsrb(lane, rhs, lhsDest, lhsDest); } void MacroAssembler::replaceLaneInt16x8(unsigned lane, Register rhs, FloatRegister lhsDest) { vpinsrw(lane, rhs, lhsDest, lhsDest); } void MacroAssembler::replaceLaneInt32x4(unsigned lane, Register rhs, FloatRegister lhsDest) { vpinsrd(lane, rhs, lhsDest, lhsDest); } void MacroAssembler::replaceLaneFloat32x4(unsigned lane, FloatRegister rhs, FloatRegister lhsDest) { MacroAssemblerX86Shared::replaceLaneFloat32x4(rhs, lhsDest, lane); } void MacroAssembler::replaceLaneFloat64x2(unsigned lane, FloatRegister rhs, FloatRegister lhsDest) { MacroAssemblerX86Shared::replaceLaneFloat64x2(rhs, lhsDest, lane); } // Shuffle - permute with immediate indices void MacroAssembler::shuffleInt8x16(const uint8_t lanes[16], FloatRegister rhs, FloatRegister lhsDest) { MacroAssemblerX86Shared::shuffleInt8x16(lhsDest, rhs, lhsDest, lanes); } void MacroAssembler::blendInt8x16(const uint8_t lanes[16], FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp) { MacroAssemblerX86Shared::blendInt8x16(lhsDest, rhs, lhsDest, temp, lanes); } void MacroAssembler::blendInt16x8(const uint16_t lanes[8], FloatRegister rhs, FloatRegister lhsDest) { MacroAssemblerX86Shared::blendInt16x8(lhsDest, rhs, lhsDest, lanes); } void MacroAssembler::interleaveHighInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpunpckhwd(rhs, lhsDest, lhsDest); } void MacroAssembler::interleaveHighInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpunpckhdq(rhs, lhsDest, lhsDest); } void MacroAssembler::interleaveHighInt64x2(FloatRegister rhs, FloatRegister lhsDest) { vpunpckhqdq(rhs, lhsDest, lhsDest); } void MacroAssembler::interleaveHighInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpunpckhbw(rhs, lhsDest, lhsDest); } void MacroAssembler::interleaveLowInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpunpcklwd(rhs, lhsDest, lhsDest); } void MacroAssembler::interleaveLowInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpunpckldq(rhs, lhsDest, lhsDest); } void MacroAssembler::interleaveLowInt64x2(FloatRegister rhs, FloatRegister lhsDest) { vpunpcklqdq(rhs, lhsDest, lhsDest); } void MacroAssembler::interleaveLowInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpunpcklbw(rhs, lhsDest, lhsDest); } void MacroAssembler::permuteInt8x16(const uint8_t lanes[16], FloatRegister src, FloatRegister dest) { ScratchSimd128Scope scratch(*this); loadConstantSimd128Int(SimdConstant::CreateX16((const int8_t*)lanes), scratch); moveSimd128Int(src, dest); vpshufb(scratch, dest, dest); } void MacroAssembler::permuteLowInt16x8(const uint16_t lanes[4], FloatRegister src, FloatRegister dest) { MOZ_ASSERT(lanes[0] < 4 && lanes[1] < 4 && lanes[2] < 4 && lanes[3] < 4); vpshuflw(ComputeShuffleMask(lanes[0], lanes[1], lanes[2], lanes[3]), src, dest); } void MacroAssembler::permuteHighInt16x8(const uint16_t lanes[4], FloatRegister src, FloatRegister dest) { MOZ_ASSERT(lanes[0] < 4 && lanes[1] < 4 && lanes[2] < 4 && lanes[3] < 4); vpshufhw(ComputeShuffleMask(lanes[0], lanes[1], lanes[2], lanes[3]), src, dest); } void MacroAssembler::permuteInt32x4(const uint32_t lanes[4], FloatRegister src, FloatRegister dest) { vpshufd(ComputeShuffleMask(lanes[0], lanes[1], lanes[2], lanes[3]), src, dest); } void MacroAssembler::concatAndRightShiftInt8x16(FloatRegister rhs, FloatRegister lhsDest, uint32_t shift) { vpalignr(Operand(rhs), lhsDest, shift); } void MacroAssembler::leftShiftSimd128(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpslldq(count, dest, dest); } void MacroAssembler::rightShiftSimd128(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsrldq(count, dest, dest); } // All lanes true void MacroAssembler::allTrueInt8x16(FloatRegister src, Register dest) { ScratchSimd128Scope xtmp(*this); // xtmp is all-00h vpxor(xtmp, xtmp, xtmp); // Set FFh if byte==0 otherwise 00h // Operand ordering constraint: lhs==output vpcmpeqb(Operand(src), xtmp, xtmp); // Get all bytes' high bits vpmovmskb(xtmp, dest); // Now set dest to 1 if it is zero, otherwise to zero. testl(dest, dest); setCC(Zero, dest); movzbl(dest, dest); } void MacroAssembler::allTrueInt16x8(FloatRegister src, Register dest) { ScratchSimd128Scope xtmp(*this); // xtmp is all-00h vpxor(xtmp, xtmp, xtmp); // Set FFFFh if byte==0 otherwise 0000h // Operand ordering constraint: lhs==output vpcmpeqw(Operand(src), xtmp, xtmp); // Get all bytes' high bits vpmovmskb(xtmp, dest); // Now set dest to 1 if it is zero, otherwise to zero. testl(dest, dest); setCC(Zero, dest); movzbl(dest, dest); } void MacroAssembler::allTrueInt32x4(FloatRegister src, Register dest) { ScratchSimd128Scope xtmp(*this); // xtmp is all-00h vpxor(xtmp, xtmp, xtmp); // Set FFFFFFFFh if byte==0 otherwise 00000000h // Operand ordering constraint: lhs==output vpcmpeqd(Operand(src), xtmp, xtmp); // Get all bytes' high bits vpmovmskb(xtmp, dest); // Now set dest to 1 if it is zero, otherwise to zero. testl(dest, dest); setCC(Zero, dest); movzbl(dest, dest); } // Bitmask void MacroAssembler::bitmaskInt8x16(FloatRegister src, Register dest) { vpmovmskb(src, dest); } void MacroAssembler::bitmaskInt16x8(FloatRegister src, Register dest) { ScratchSimd128Scope scratch(*this); // A three-instruction sequence is possible by using scratch as a don't-care // input and shifting rather than masking at the end, but creates a false // dependency on the old value of scratch. The better fix is to allow src to // be clobbered. moveSimd128(src, scratch); vpacksswb(Operand(scratch), scratch, scratch); vpmovmskb(scratch, dest); andl(Imm32(0xFF), dest); } void MacroAssembler::bitmaskInt32x4(FloatRegister src, Register dest) { vmovmskps(src, dest); } // Swizzle - permute with variable indices void MacroAssembler::swizzleInt8x16(FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp) { ScratchSimd128Scope scratch(*this); loadConstantSimd128Int(SimdConstant::SplatX16(15), scratch); moveSimd128Int(rhs, temp); vpcmpgtb(Operand(scratch), temp, temp); // set high bit vpor(Operand(rhs), temp, temp); // for values > 15 vpshufb(temp, lhsDest, lhsDest); // permute } // Integer Add void MacroAssembler::addInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpaddb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddb, &MacroAssembler::vpaddbSimd128); } void MacroAssembler::addInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpaddw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddw, &MacroAssembler::vpaddwSimd128); } void MacroAssembler::addInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpaddd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddd, &MacroAssembler::vpadddSimd128); } void MacroAssembler::addInt64x2(FloatRegister rhs, FloatRegister lhsDest) { vpaddq(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addInt64x2(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddq, &MacroAssembler::vpaddqSimd128); } // Integer subtract void MacroAssembler::subInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpsubb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubb, &MacroAssembler::vpsubbSimd128); } void MacroAssembler::subInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpsubw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubw, &MacroAssembler::vpsubwSimd128); } void MacroAssembler::subInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpsubd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubd, &MacroAssembler::vpsubdSimd128); } void MacroAssembler::subInt64x2(FloatRegister rhs, FloatRegister lhsDest) { vpsubq(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subInt64x2(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubq, &MacroAssembler::vpsubqSimd128); } // Integer multiply void MacroAssembler::mulInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpmullw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::mulInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmullw, &MacroAssembler::vpmullwSimd128); } void MacroAssembler::mulInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpmulld(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::mulInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmulld, &MacroAssembler::vpmulldSimd128); } void MacroAssembler::mulInt64x2(FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp) { ScratchSimd128Scope temp2(*this); // lhsDest = // rhs = // result = <(DG+CH)_low+CG_high CG_low> <(BE+AF)_low+AE_high AE_low> moveSimd128(lhsDest, temp); // temp = vpsrlq(Imm32(32), temp, temp); // temp = <0 D> <0 B> vpmuludq(rhs, temp, temp); // temp = moveSimd128(rhs, temp2); // temp2 = vpsrlq(Imm32(32), temp2, temp2); // temp2 = <0 H> <0 F> vpmuludq(lhsDest, temp2, temp2); // temp2 = vpaddq(Operand(temp), temp2, temp2); // temp2 = vpsllq(Imm32(32), temp2, temp2); // temp2 = <(DG+CH)_low 0> // <(BE+AF)_low 0> vpmuludq(rhs, lhsDest, lhsDest); // lhsDest = // vpaddq(Operand(temp2), lhsDest, lhsDest); // lhsDest = // <(DG+CH)_low+CG_high CG_low> // <(BE+AF)_low+AE_high AE_low> } // Integer negate void MacroAssembler::negInt8x16(FloatRegister src, FloatRegister dest) { ScratchSimd128Scope scratch(*this); if (src == dest) { moveSimd128Int(src, scratch); src = scratch; } vpxor(Operand(dest), dest, dest); vpsubb(Operand(src), dest, dest); } void MacroAssembler::negInt16x8(FloatRegister src, FloatRegister dest) { ScratchSimd128Scope scratch(*this); if (src == dest) { moveSimd128Int(src, scratch); src = scratch; } vpxor(Operand(dest), dest, dest); vpsubw(Operand(src), dest, dest); } void MacroAssembler::negInt32x4(FloatRegister src, FloatRegister dest) { ScratchSimd128Scope scratch(*this); if (src == dest) { moveSimd128Int(src, scratch); src = scratch; } vpxor(Operand(dest), dest, dest); vpsubd(Operand(src), dest, dest); } void MacroAssembler::negInt64x2(FloatRegister src, FloatRegister dest) { ScratchSimd128Scope scratch(*this); if (src == dest) { moveSimd128Int(src, scratch); src = scratch; } vpxor(Operand(dest), dest, dest); vpsubq(Operand(src), dest, dest); } // Saturating integer add void MacroAssembler::addSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpaddsb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addSatInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddsb, &MacroAssembler::vpaddsbSimd128); } void MacroAssembler::unsignedAddSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpaddusb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedAddSatInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddusb, &MacroAssembler::vpaddusbSimd128); } void MacroAssembler::addSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpaddsw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addSatInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddsw, &MacroAssembler::vpaddswSimd128); } void MacroAssembler::unsignedAddSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpaddusw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedAddSatInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpaddusw, &MacroAssembler::vpadduswSimd128); } // Saturating integer subtract void MacroAssembler::subSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpsubsb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subSatInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubsb, &MacroAssembler::vpsubsbSimd128); } void MacroAssembler::unsignedSubSatInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpsubusb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedSubSatInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubusb, &MacroAssembler::vpsubusbSimd128); } void MacroAssembler::subSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpsubsw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subSatInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubsw, &MacroAssembler::vpsubswSimd128); } void MacroAssembler::unsignedSubSatInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpsubusw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedSubSatInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpsubusw, &MacroAssembler::vpsubuswSimd128); } // Lane-wise integer minimum void MacroAssembler::minInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpminsb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::minInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpminsb, &MacroAssembler::vpminsbSimd128); } void MacroAssembler::unsignedMinInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpminub(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedMinInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpminub, &MacroAssembler::vpminubSimd128); } void MacroAssembler::minInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpminsw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::minInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpminsw, &MacroAssembler::vpminswSimd128); } void MacroAssembler::unsignedMinInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpminuw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedMinInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpminuw, &MacroAssembler::vpminuwSimd128); } void MacroAssembler::minInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpminsd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::minInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpminsd, &MacroAssembler::vpminsdSimd128); } void MacroAssembler::unsignedMinInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpminud(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedMinInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpminud, &MacroAssembler::vpminudSimd128); } // Lane-wise integer maximum void MacroAssembler::maxInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpmaxsb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::maxInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmaxsb, &MacroAssembler::vpmaxsbSimd128); } void MacroAssembler::unsignedMaxInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpmaxub(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedMaxInt8x16(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmaxub, &MacroAssembler::vpmaxubSimd128); } void MacroAssembler::maxInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpmaxsw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::maxInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmaxsw, &MacroAssembler::vpmaxswSimd128); } void MacroAssembler::unsignedMaxInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpmaxuw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedMaxInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmaxuw, &MacroAssembler::vpmaxuwSimd128); } void MacroAssembler::maxInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpmaxsd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::maxInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmaxsd, &MacroAssembler::vpmaxsdSimd128); } void MacroAssembler::unsignedMaxInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpmaxud(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedMaxInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmaxud, &MacroAssembler::vpmaxudSimd128); } // Lane-wise integer rounding average void MacroAssembler::unsignedAverageInt8x16(FloatRegister rhs, FloatRegister lhsDest) { vpavgb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedAverageInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpavgw(Operand(rhs), lhsDest, lhsDest); } // Lane-wise integer absolute value void MacroAssembler::absInt8x16(FloatRegister src, FloatRegister dest) { vpabsb(Operand(src), dest); } void MacroAssembler::absInt16x8(FloatRegister src, FloatRegister dest) { vpabsw(Operand(src), dest); } void MacroAssembler::absInt32x4(FloatRegister src, FloatRegister dest) { vpabsd(Operand(src), dest); } // Left shift by scalar void MacroAssembler::leftShiftInt8x16(Register rhs, FloatRegister lhsDest, Register temp1, FloatRegister temp2) { MacroAssemblerX86Shared::packedLeftShiftByScalarInt8x16(lhsDest, rhs, temp1, temp2, lhsDest); } void MacroAssembler::leftShiftInt8x16(Imm32 count, FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::packedLeftShiftByScalarInt8x16(count, src, dest); } void MacroAssembler::leftShiftInt16x8(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedLeftShiftByScalarInt16x8(lhsDest, rhs, temp, lhsDest); } void MacroAssembler::leftShiftInt16x8(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsllw(count, src, dest); } void MacroAssembler::leftShiftInt32x4(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedLeftShiftByScalarInt32x4(lhsDest, rhs, temp, lhsDest); } void MacroAssembler::leftShiftInt32x4(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpslld(count, src, dest); } void MacroAssembler::leftShiftInt64x2(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedLeftShiftByScalarInt64x2(lhsDest, rhs, temp, lhsDest); } void MacroAssembler::leftShiftInt64x2(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsllq(count, src, dest); } // Right shift by scalar void MacroAssembler::rightShiftInt8x16(Register rhs, FloatRegister lhsDest, Register temp1, FloatRegister temp2) { MacroAssemblerX86Shared::packedRightShiftByScalarInt8x16(lhsDest, rhs, temp1, temp2, lhsDest); } void MacroAssembler::rightShiftInt8x16(Imm32 count, FloatRegister src, FloatRegister dest, FloatRegister temp) { MacroAssemblerX86Shared::packedRightShiftByScalarInt8x16(count, src, temp, dest); } void MacroAssembler::unsignedRightShiftInt8x16(Register rhs, FloatRegister lhsDest, Register temp1, FloatRegister temp2) { MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt8x16( lhsDest, rhs, temp1, temp2, lhsDest); } void MacroAssembler::unsignedRightShiftInt8x16(Imm32 count, FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt8x16(count, src, dest); } void MacroAssembler::rightShiftInt16x8(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedRightShiftByScalarInt16x8(lhsDest, rhs, temp, lhsDest); } void MacroAssembler::rightShiftInt16x8(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsraw(count, src, dest); } void MacroAssembler::unsignedRightShiftInt16x8(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt16x8( lhsDest, rhs, temp, lhsDest); } void MacroAssembler::unsignedRightShiftInt16x8(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsrlw(count, src, dest); } void MacroAssembler::rightShiftInt32x4(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedRightShiftByScalarInt32x4(lhsDest, rhs, temp, lhsDest); } void MacroAssembler::rightShiftInt32x4(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsrad(count, src, dest); } void MacroAssembler::unsignedRightShiftInt32x4(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt32x4( lhsDest, rhs, temp, lhsDest); } void MacroAssembler::unsignedRightShiftInt32x4(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsrld(count, src, dest); } void MacroAssembler::rightShiftInt64x2(Imm32 count, FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::packedRightShiftByScalarInt64x2(count, src, dest); } void MacroAssembler::unsignedRightShiftInt64x2(Register rhs, FloatRegister lhsDest, Register temp) { MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt64x2( lhsDest, rhs, temp, lhsDest); } void MacroAssembler::unsignedRightShiftInt64x2(Imm32 count, FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); vpsrlq(count, src, dest); } // Bitwise and, or, xor, not void MacroAssembler::bitwiseAndSimd128(FloatRegister rhs, FloatRegister lhsDest) { vpand(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::bitwiseAndSimd128(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpand, &MacroAssembler::vpandSimd128); } void MacroAssembler::bitwiseOrSimd128(FloatRegister rhs, FloatRegister lhsDest) { vpor(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::bitwiseOrSimd128(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpor, &MacroAssembler::vporSimd128); } void MacroAssembler::bitwiseXorSimd128(FloatRegister rhs, FloatRegister lhsDest) { vpxor(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::bitwiseXorSimd128(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpxor, &MacroAssembler::vpxorSimd128); } void MacroAssembler::bitwiseNotSimd128(FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); bitwiseXorSimd128(SimdConstant::SplatX16(-1), dest); } // Bitwise and-not void MacroAssembler::bitwiseNotAndSimd128(FloatRegister rhs, FloatRegister lhsDest) { vpandn(Operand(rhs), lhsDest, lhsDest); } // Bitwise select void MacroAssembler::bitwiseSelectSimd128(FloatRegister mask, FloatRegister onTrue, FloatRegister onFalse, FloatRegister dest, FloatRegister temp) { MacroAssemblerX86Shared::selectSimd128(mask, onTrue, onFalse, temp, dest); } // Comparisons (integer and floating-point) void MacroAssembler::compareInt8x16(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { MacroAssemblerX86Shared::compareInt8x16(lhsDest, Operand(rhs), cond, lhsDest); } void MacroAssembler::compareInt8x16(Assembler::Condition cond, const SimdConstant& rhs, FloatRegister lhsDest) { MOZ_ASSERT(cond != Assembler::Condition::LessThan && cond != Assembler::Condition::GreaterThanOrEqual); MacroAssemblerX86Shared::compareInt8x16(cond, rhs, lhsDest); } void MacroAssembler::unsignedCompareInt8x16(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp1, FloatRegister temp2) { MacroAssemblerX86Shared::unsignedCompareInt8x16(lhsDest, Operand(rhs), cond, lhsDest, temp1, temp2); } void MacroAssembler::compareInt16x8(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { MacroAssemblerX86Shared::compareInt16x8(lhsDest, Operand(rhs), cond, lhsDest); } void MacroAssembler::compareInt16x8(Assembler::Condition cond, const SimdConstant& rhs, FloatRegister lhsDest) { MOZ_ASSERT(cond != Assembler::Condition::LessThan && cond != Assembler::Condition::GreaterThanOrEqual); MacroAssemblerX86Shared::compareInt16x8(cond, rhs, lhsDest); } void MacroAssembler::unsignedCompareInt16x8(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp1, FloatRegister temp2) { MacroAssemblerX86Shared::unsignedCompareInt16x8(lhsDest, Operand(rhs), cond, lhsDest, temp1, temp2); } void MacroAssembler::compareInt32x4(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { MacroAssemblerX86Shared::compareInt32x4(lhsDest, Operand(rhs), cond, lhsDest); } void MacroAssembler::compareInt32x4(Assembler::Condition cond, const SimdConstant& rhs, FloatRegister lhsDest) { MOZ_ASSERT(cond != Assembler::Condition::LessThan && cond != Assembler::Condition::GreaterThanOrEqual); MacroAssemblerX86Shared::compareInt32x4(cond, rhs, lhsDest); } void MacroAssembler::unsignedCompareInt32x4(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp1, FloatRegister temp2) { MacroAssemblerX86Shared::unsignedCompareInt32x4(lhsDest, Operand(rhs), cond, lhsDest, temp1, temp2); } void MacroAssembler::compareFloat32x4(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { // Code in the SIMD implementation allows operands to be reversed like this, // this benefits the baseline compiler. Ion takes care of the reversing // itself and never generates GT/GE. if (cond == Assembler::GreaterThan) { MacroAssemblerX86Shared::compareFloat32x4(rhs, Operand(lhsDest), Assembler::LessThan, lhsDest); } else if (cond == Assembler::GreaterThanOrEqual) { MacroAssemblerX86Shared::compareFloat32x4( rhs, Operand(lhsDest), Assembler::LessThanOrEqual, lhsDest); } else { MacroAssemblerX86Shared::compareFloat32x4(lhsDest, Operand(rhs), cond, lhsDest); } } void MacroAssembler::compareFloat32x4(Assembler::Condition cond, const SimdConstant& rhs, FloatRegister lhsDest) { MOZ_ASSERT(cond != Assembler::Condition::GreaterThan && cond != Assembler::Condition::GreaterThanOrEqual); MacroAssemblerX86Shared::compareFloat32x4(cond, rhs, lhsDest); } void MacroAssembler::compareFloat64x2(Assembler::Condition cond, FloatRegister rhs, FloatRegister lhsDest) { // Code in the SIMD implementation allows operands to be reversed like this, // this benefits the baseline compiler. Ion takes care of the reversing // itself and never generates GT/GE. if (cond == Assembler::GreaterThan) { MacroAssemblerX86Shared::compareFloat64x2(rhs, Operand(lhsDest), Assembler::LessThan, lhsDest); } else if (cond == Assembler::GreaterThanOrEqual) { MacroAssemblerX86Shared::compareFloat64x2( rhs, Operand(lhsDest), Assembler::LessThanOrEqual, lhsDest); } else { MacroAssemblerX86Shared::compareFloat64x2(lhsDest, Operand(rhs), cond, lhsDest); } } void MacroAssembler::compareFloat64x2(Assembler::Condition cond, const SimdConstant& rhs, FloatRegister lhsDest) { MOZ_ASSERT(cond != Assembler::Condition::GreaterThan && cond != Assembler::Condition::GreaterThanOrEqual); MacroAssemblerX86Shared::compareFloat64x2(cond, rhs, lhsDest); } // Load. See comments above regarding integer operation. void MacroAssembler::loadUnalignedSimd128(const Operand& src, FloatRegister dest) { loadUnalignedSimd128Int(src, dest); } void MacroAssembler::loadUnalignedSimd128(const Address& src, FloatRegister dest) { loadUnalignedSimd128Int(src, dest); } void MacroAssembler::loadUnalignedSimd128(const BaseIndex& src, FloatRegister dest) { loadUnalignedSimd128Int(src, dest); } // Store. See comments above regarding integer operation. void MacroAssembler::storeUnalignedSimd128(FloatRegister src, const Address& dest) { storeUnalignedSimd128Int(src, dest); } void MacroAssembler::storeUnalignedSimd128(FloatRegister src, const BaseIndex& dest) { storeUnalignedSimd128Int(src, dest); } // Floating point negation void MacroAssembler::negFloat32x4(FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); bitwiseXorSimd128(SimdConstant::SplatX4(-0.f), dest); } void MacroAssembler::negFloat64x2(FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); bitwiseXorSimd128(SimdConstant::SplatX2(-0.0), dest); } // Floating point absolute value void MacroAssembler::absFloat32x4(FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); bitwiseAndSimd128(SimdConstant::SplatX4(0x7FFFFFFF), dest); } void MacroAssembler::absFloat64x2(FloatRegister src, FloatRegister dest) { moveSimd128(src, dest); bitwiseAndSimd128(SimdConstant::SplatX2(int64_t(0x7FFFFFFFFFFFFFFFll)), dest); } // NaN-propagating minimum void MacroAssembler::minFloat32x4(FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp1, FloatRegister temp2) { MacroAssemblerX86Shared::minFloat32x4(lhsDest, Operand(rhs), temp1, temp2, lhsDest); } void MacroAssembler::minFloat64x2(FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp1, FloatRegister temp2) { MacroAssemblerX86Shared::minFloat64x2(lhsDest, Operand(rhs), temp1, temp2, lhsDest); } // NaN-propagating maximum void MacroAssembler::maxFloat32x4(FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp1, FloatRegister temp2) { MacroAssemblerX86Shared::maxFloat32x4(lhsDest, Operand(rhs), temp1, temp2, lhsDest); } void MacroAssembler::maxFloat64x2(FloatRegister rhs, FloatRegister lhsDest, FloatRegister temp1, FloatRegister temp2) { MacroAssemblerX86Shared::maxFloat64x2(lhsDest, Operand(rhs), temp1, temp2, lhsDest); } // Compare-based minimum void MacroAssembler::pseudoMinFloat32x4(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { // Shut up the linter by using the same names as in the declaration, then // aliasing here. FloatRegister rhsDest = rhsOrRhsDest; FloatRegister lhs = lhsOrLhsDest; vminps(Operand(lhs), rhsDest, rhsDest); } void MacroAssembler::pseudoMinFloat64x2(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { FloatRegister rhsDest = rhsOrRhsDest; FloatRegister lhs = lhsOrLhsDest; vminpd(Operand(lhs), rhsDest, rhsDest); } // Compare-based maximum void MacroAssembler::pseudoMaxFloat32x4(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { FloatRegister rhsDest = rhsOrRhsDest; FloatRegister lhs = lhsOrLhsDest; vmaxps(Operand(lhs), rhsDest, rhsDest); } void MacroAssembler::pseudoMaxFloat64x2(FloatRegister rhsOrRhsDest, FloatRegister lhsOrLhsDest) { FloatRegister rhsDest = rhsOrRhsDest; FloatRegister lhs = lhsOrLhsDest; vmaxpd(Operand(lhs), rhsDest, rhsDest); } // Widening/pairwise integer dot product void MacroAssembler::widenDotInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpmaddwd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::widenDotInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpmaddwd, &MacroAssembler::vpmaddwdSimd128); } // Rounding void MacroAssembler::ceilFloat32x4(FloatRegister src, FloatRegister dest) { vroundps(Assembler::SSERoundingMode::Ceil, Operand(src), dest); } void MacroAssembler::ceilFloat64x2(FloatRegister src, FloatRegister dest) { vroundpd(Assembler::SSERoundingMode::Ceil, Operand(src), dest); } void MacroAssembler::floorFloat32x4(FloatRegister src, FloatRegister dest) { vroundps(Assembler::SSERoundingMode::Floor, Operand(src), dest); } void MacroAssembler::floorFloat64x2(FloatRegister src, FloatRegister dest) { vroundpd(Assembler::SSERoundingMode::Floor, Operand(src), dest); } void MacroAssembler::truncFloat32x4(FloatRegister src, FloatRegister dest) { vroundps(Assembler::SSERoundingMode::Trunc, Operand(src), dest); } void MacroAssembler::truncFloat64x2(FloatRegister src, FloatRegister dest) { vroundpd(Assembler::SSERoundingMode::Trunc, Operand(src), dest); } void MacroAssembler::nearestFloat32x4(FloatRegister src, FloatRegister dest) { vroundps(Assembler::SSERoundingMode::Nearest, Operand(src), dest); } void MacroAssembler::nearestFloat64x2(FloatRegister src, FloatRegister dest) { vroundpd(Assembler::SSERoundingMode::Nearest, Operand(src), dest); } // Floating add void MacroAssembler::addFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { vaddps(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addFloat32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vaddps, &MacroAssembler::vaddpsSimd128); } void MacroAssembler::addFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { vaddpd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::addFloat64x2(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vaddpd, &MacroAssembler::vaddpdSimd128); } // Floating subtract void MacroAssembler::subFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { vsubps(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subFloat32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vsubps, &MacroAssembler::vsubpsSimd128); } void MacroAssembler::subFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { AssemblerX86Shared::vsubpd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::subFloat64x2(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vsubpd, &MacroAssembler::vsubpdSimd128); } // Floating division void MacroAssembler::divFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { vdivps(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::divFloat32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vdivps, &MacroAssembler::vdivpsSimd128); } void MacroAssembler::divFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { vdivpd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::divFloat64x2(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vdivpd, &MacroAssembler::vdivpdSimd128); } // Floating Multiply void MacroAssembler::mulFloat32x4(FloatRegister rhs, FloatRegister lhsDest) { vmulps(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::mulFloat32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vmulps, &MacroAssembler::vmulpsSimd128); } void MacroAssembler::mulFloat64x2(FloatRegister rhs, FloatRegister lhsDest) { vmulpd(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::mulFloat64x2(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vmulpd, &MacroAssembler::vmulpdSimd128); } // Floating square root void MacroAssembler::sqrtFloat32x4(FloatRegister src, FloatRegister dest) { vsqrtps(Operand(src), dest); } void MacroAssembler::sqrtFloat64x2(FloatRegister src, FloatRegister dest) { vsqrtpd(Operand(src), dest); } // Integer to floating point with rounding void MacroAssembler::convertInt32x4ToFloat32x4(FloatRegister src, FloatRegister dest) { vcvtdq2ps(src, dest); } void MacroAssembler::unsignedConvertInt32x4ToFloat32x4(FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::unsignedConvertInt32x4ToFloat32x4(src, dest); } // Floating point to integer with saturation void MacroAssembler::truncSatFloat32x4ToInt32x4(FloatRegister src, FloatRegister dest) { MacroAssemblerX86Shared::truncSatFloat32x4ToInt32x4(src, dest); } void MacroAssembler::unsignedTruncSatFloat32x4ToInt32x4(FloatRegister src, FloatRegister dest, FloatRegister temp) { MacroAssemblerX86Shared::unsignedTruncSatFloat32x4ToInt32x4(src, temp, dest); } // Integer to integer narrowing void MacroAssembler::narrowInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpacksswb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::narrowInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpacksswb, &MacroAssembler::vpacksswbSimd128); } void MacroAssembler::unsignedNarrowInt16x8(FloatRegister rhs, FloatRegister lhsDest) { vpackuswb(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedNarrowInt16x8(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpackuswb, &MacroAssembler::vpackuswbSimd128); } void MacroAssembler::narrowInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpackssdw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::narrowInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpackssdw, &MacroAssembler::vpackssdwSimd128); } void MacroAssembler::unsignedNarrowInt32x4(FloatRegister rhs, FloatRegister lhsDest) { vpackusdw(Operand(rhs), lhsDest, lhsDest); } void MacroAssembler::unsignedNarrowInt32x4(const SimdConstant& rhs, FloatRegister lhsDest) { binarySimd128(rhs, lhsDest, &MacroAssembler::vpackusdw, &MacroAssembler::vpackusdwSimd128); } // Integer to integer widening void MacroAssembler::widenLowInt8x16(FloatRegister src, FloatRegister dest) { vpmovsxbw(Operand(src), dest); } void MacroAssembler::widenHighInt8x16(FloatRegister src, FloatRegister dest) { vpalignr(Operand(src), dest, 8); vpmovsxbw(Operand(dest), dest); } void MacroAssembler::unsignedWidenLowInt8x16(FloatRegister src, FloatRegister dest) { vpmovzxbw(Operand(src), dest); } void MacroAssembler::unsignedWidenHighInt8x16(FloatRegister src, FloatRegister dest) { vpalignr(Operand(src), dest, 8); vpmovzxbw(Operand(dest), dest); } void MacroAssembler::widenLowInt16x8(FloatRegister src, FloatRegister dest) { vpmovsxwd(Operand(src), dest); } void MacroAssembler::widenHighInt16x8(FloatRegister src, FloatRegister dest) { vpalignr(Operand(src), dest, 8); vpmovsxwd(Operand(dest), dest); } void MacroAssembler::unsignedWidenLowInt16x8(FloatRegister src, FloatRegister dest) { vpmovzxwd(Operand(src), dest); } void MacroAssembler::unsignedWidenHighInt16x8(FloatRegister src, FloatRegister dest) { vpalignr(Operand(src), dest, 8); vpmovzxwd(Operand(dest), dest); } void MacroAssembler::widenLowInt32x4(FloatRegister src, FloatRegister dest) { vpmovsxdq(Operand(src), dest); } void MacroAssembler::unsignedWidenLowInt32x4(FloatRegister src, FloatRegister dest) { vpmovzxdq(Operand(src), dest); } // ======================================================================== // Truncate floating point. void MacroAssembler::truncateFloat32ToInt64(Address src, Address dest, Register temp) { if (Assembler::HasSSE3()) { fld32(Operand(src)); fisttp(Operand(dest)); return; } if (src.base == esp) { src.offset += 2 * sizeof(int32_t); } if (dest.base == esp) { dest.offset += 2 * sizeof(int32_t); } reserveStack(2 * sizeof(int32_t)); // Set conversion to truncation. fnstcw(Operand(esp, 0)); load32(Operand(esp, 0), temp); andl(Imm32(~0xFF00), temp); orl(Imm32(0xCFF), temp); store32(temp, Address(esp, sizeof(int32_t))); fldcw(Operand(esp, sizeof(int32_t))); // Load double on fp stack, convert and load regular stack. fld32(Operand(src)); fistp(Operand(dest)); // Reset the conversion flag. fldcw(Operand(esp, 0)); freeStack(2 * sizeof(int32_t)); } void MacroAssembler::truncateDoubleToInt64(Address src, Address dest, Register temp) { if (Assembler::HasSSE3()) { fld(Operand(src)); fisttp(Operand(dest)); return; } if (src.base == esp) { src.offset += 2 * sizeof(int32_t); } if (dest.base == esp) { dest.offset += 2 * sizeof(int32_t); } reserveStack(2 * sizeof(int32_t)); // Set conversion to truncation. fnstcw(Operand(esp, 0)); load32(Operand(esp, 0), temp); andl(Imm32(~0xFF00), temp); orl(Imm32(0xCFF), temp); store32(temp, Address(esp, 1 * sizeof(int32_t))); fldcw(Operand(esp, 1 * sizeof(int32_t))); // Load double on fp stack, convert and load regular stack. fld(Operand(src)); fistp(Operand(dest)); // Reset the conversion flag. fldcw(Operand(esp, 0)); freeStack(2 * sizeof(int32_t)); } // =============================================================== // Clamping functions. void MacroAssembler::clampIntToUint8(Register reg) { Label inRange; branchTest32(Assembler::Zero, reg, Imm32(0xffffff00), &inRange); { sarl(Imm32(31), reg); notl(reg); andl(Imm32(255), reg); } bind(&inRange); } //}}} check_macroassembler_style // =============================================================== } // namespace jit } // namespace js #endif /* jit_x86_shared_MacroAssembler_x86_shared_inl_h */