/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/MathAlgorithms.h" #include "jit/Bailouts.h" #include "jit/BaselineFrame.h" #include "jit/BaselineJIT.h" #include "jit/CalleeToken.h" #include "jit/JitFrames.h" #include "jit/JitRuntime.h" #include "jit/JitSpewer.h" #ifdef JS_ION_PERF # include "jit/PerfSpewer.h" #endif #include "jit/VMFunctions.h" #include "jit/x86/SharedICHelpers-x86.h" #include "vm/JitActivation.h" // js::jit::JitActivation #include "vm/JSContext.h" #include "vm/Realm.h" #ifdef MOZ_VTUNE # include "vtune/VTuneWrapper.h" #endif #include "jit/MacroAssembler-inl.h" #include "vm/JSScript-inl.h" using mozilla::IsPowerOfTwo; using namespace js; using namespace js::jit; // All registers to save and restore. This includes the stack pointer, since we // use the ability to reference register values on the stack by index. static const LiveRegisterSet AllRegs = LiveRegisterSet(GeneralRegisterSet(Registers::AllMask), FloatRegisterSet(FloatRegisters::AllMask)); enum EnterJitEbpArgumentOffset { ARG_JITCODE = 2 * sizeof(void*), ARG_ARGC = 3 * sizeof(void*), ARG_ARGV = 4 * sizeof(void*), ARG_STACKFRAME = 5 * sizeof(void*), ARG_CALLEETOKEN = 6 * sizeof(void*), ARG_SCOPECHAIN = 7 * sizeof(void*), ARG_STACKVALUES = 8 * sizeof(void*), ARG_RESULT = 9 * sizeof(void*) }; // Generates a trampoline for calling Jit compiled code from a C++ function. // The trampoline use the EnterJitCode signature, with the standard cdecl // calling convention. void JitRuntime::generateEnterJIT(JSContext* cx, MacroAssembler& masm) { enterJITOffset_ = startTrampolineCode(masm); masm.assertStackAlignment(ABIStackAlignment, -int32_t(sizeof(uintptr_t)) /* return address */); // Save old stack frame pointer, set new stack frame pointer. masm.push(ebp); masm.movl(esp, ebp); // Save non-volatile registers. These must be saved by the trampoline, // rather than the JIT'd code, because they are scanned by the conservative // scanner. masm.push(ebx); masm.push(esi); masm.push(edi); // Keep track of the stack which has to be unwound after returning from the // compiled function. masm.movl(esp, esi); // Load the number of values to be copied (argc) into eax masm.loadPtr(Address(ebp, ARG_ARGC), eax); // If we are constructing, that also needs to include newTarget { Label noNewTarget; masm.loadPtr(Address(ebp, ARG_CALLEETOKEN), edx); masm.branchTest32(Assembler::Zero, edx, Imm32(CalleeToken_FunctionConstructing), &noNewTarget); masm.addl(Imm32(1), eax); masm.bind(&noNewTarget); } // eax <- 8*numValues, eax is now the offset betwen argv and the last value. masm.shll(Imm32(3), eax); // Guarantee stack alignment of Jit frames. // // This code compensates for the offset created by the copy of the vector of // arguments, such that the jit frame will be aligned once the return // address is pushed on the stack. // // In the computation of the offset, we omit the size of the JitFrameLayout // which is pushed on the stack, as the JitFrameLayout size is a multiple of // the JitStackAlignment. masm.movl(esp, ecx); masm.subl(eax, ecx); static_assert( sizeof(JitFrameLayout) % JitStackAlignment == 0, "No need to consider the JitFrameLayout for aligning the stack"); // ecx = ecx & 15, holds alignment. masm.andl(Imm32(JitStackAlignment - 1), ecx); masm.subl(ecx, esp); /*************************************************************** Loop over argv vector, push arguments onto stack in reverse order ***************************************************************/ // ebx = argv --argv pointer is in ebp + 16 masm.loadPtr(Address(ebp, ARG_ARGV), ebx); // eax = argv[8(argc)] --eax now points one value past the last argument masm.addl(ebx, eax); // while (eax > ebx) --while still looping through arguments { Label header, footer; masm.bind(&header); masm.cmp32(eax, ebx); masm.j(Assembler::BelowOrEqual, &footer); // eax -= 8 --move to previous argument masm.subl(Imm32(8), eax); // Push what eax points to on stack, a Value is 2 words masm.push(Operand(eax, 4)); masm.push(Operand(eax, 0)); masm.jmp(&header); masm.bind(&footer); } // Push the number of actual arguments. |result| is used to store the // actual number of arguments without adding an extra argument to the enter // JIT. masm.mov(Operand(ebp, ARG_RESULT), eax); masm.unboxInt32(Address(eax, 0x0), eax); masm.push(eax); // Push the callee token. masm.push(Operand(ebp, ARG_CALLEETOKEN)); // Load the InterpreterFrame address into the OsrFrameReg. // This address is also used for setting the constructing bit on all paths. masm.loadPtr(Address(ebp, ARG_STACKFRAME), OsrFrameReg); /***************************************************************** Push the number of bytes we've pushed so far on the stack and call *****************************************************************/ // Create a frame descriptor. masm.subl(esp, esi); masm.makeFrameDescriptor(esi, FrameType::CppToJSJit, JitFrameLayout::Size()); masm.push(esi); CodeLabel returnLabel; CodeLabel oomReturnLabel; { // Handle Interpreter -> Baseline OSR. AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); regs.take(JSReturnOperand); regs.takeUnchecked(OsrFrameReg); regs.take(ebp); regs.take(ReturnReg); Register scratch = regs.takeAny(); Label notOsr; masm.branchTestPtr(Assembler::Zero, OsrFrameReg, OsrFrameReg, ¬Osr); Register numStackValues = regs.takeAny(); masm.loadPtr(Address(ebp, ARG_STACKVALUES), numStackValues); Register jitcode = regs.takeAny(); masm.loadPtr(Address(ebp, ARG_JITCODE), jitcode); // Push return address. masm.mov(&returnLabel, scratch); masm.push(scratch); // Push previous frame pointer. masm.push(ebp); // Reserve frame. Register framePtr = ebp; masm.subPtr(Imm32(BaselineFrame::Size()), esp); masm.touchFrameValues(numStackValues, scratch, framePtr); masm.mov(esp, framePtr); // Reserve space for locals and stack values. masm.mov(numStackValues, scratch); masm.shll(Imm32(3), scratch); masm.subPtr(scratch, esp); // Enter exit frame. masm.addPtr( Imm32(BaselineFrame::Size() + BaselineFrame::FramePointerOffset), scratch); masm.makeFrameDescriptor(scratch, FrameType::BaselineJS, ExitFrameLayout::Size()); masm.push(scratch); // Fake return address. masm.push(Imm32(0)); // No GC things to mark on the stack, push a bare token. masm.loadJSContext(scratch); masm.enterFakeExitFrame(scratch, scratch, ExitFrameType::Bare); masm.push(framePtr); masm.push(jitcode); using Fn = bool (*)(BaselineFrame * frame, InterpreterFrame * interpFrame, uint32_t numStackValues); masm.setupUnalignedABICall(scratch); masm.passABIArg(framePtr); // BaselineFrame masm.passABIArg(OsrFrameReg); // InterpreterFrame masm.passABIArg(numStackValues); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); masm.pop(jitcode); masm.pop(framePtr); MOZ_ASSERT(jitcode != ReturnReg); Label error; masm.addPtr(Imm32(ExitFrameLayout::SizeWithFooter()), esp); masm.addPtr(Imm32(BaselineFrame::Size()), framePtr); masm.branchIfFalseBool(ReturnReg, &error); // If OSR-ing, then emit instrumentation for setting lastProfilerFrame // if profiler instrumentation is enabled. { Label skipProfilingInstrumentation; Register realFramePtr = numStackValues; AbsoluteAddress addressOfEnabled( cx->runtime()->geckoProfiler().addressOfEnabled()); masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation); masm.lea(Operand(framePtr, sizeof(void*)), realFramePtr); masm.profilerEnterFrame(realFramePtr, scratch); masm.bind(&skipProfilingInstrumentation); } masm.jump(jitcode); // OOM: load error value, discard return address and previous frame // pointer and return. masm.bind(&error); masm.mov(framePtr, esp); masm.addPtr(Imm32(2 * sizeof(uintptr_t)), esp); masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); masm.mov(&oomReturnLabel, scratch); masm.jump(scratch); masm.bind(¬Osr); masm.loadPtr(Address(ebp, ARG_SCOPECHAIN), R1.scratchReg()); } // The call will push the return address on the stack, thus we check that // the stack would be aligned once the call is complete. masm.assertStackAlignment(JitStackAlignment, sizeof(uintptr_t)); /*************************************************************** Call passed-in code, get return value and fill in the passed in return value pointer ***************************************************************/ masm.call(Address(ebp, ARG_JITCODE)); { // Interpreter -> Baseline OSR will return here. masm.bind(&returnLabel); masm.addCodeLabel(returnLabel); masm.bind(&oomReturnLabel); masm.addCodeLabel(oomReturnLabel); } // Pop arguments off the stack. // eax <- 8*argc (size of all arguments we pushed on the stack) masm.pop(eax); masm.shrl(Imm32(FRAMESIZE_SHIFT), eax); // Unmark EntryFrame. masm.addl(eax, esp); // |ebp| could have been clobbered by the inner function. // Grab the address for the Value result from the argument stack. // +20 ... arguments ... // +16 // +12 ebp <- original %ebp pointing here. // +8 ebx // +4 esi // +0 edi masm.loadPtr(Address(esp, ARG_RESULT + 3 * sizeof(void*)), eax); masm.storeValue(JSReturnOperand, Operand(eax, 0)); /************************************************************** Return stack and registers to correct state **************************************************************/ // Restore non-volatile registers masm.pop(edi); masm.pop(esi); masm.pop(ebx); // Restore old stack frame pointer masm.pop(ebp); masm.ret(); } // Push AllRegs in a way that is compatible with RegisterDump, regardless of // what PushRegsInMask might do to reduce the set size. static void DumpAllRegs(MacroAssembler& masm) { #ifdef ENABLE_WASM_SIMD masm.PushRegsInMask(AllRegs); #else // When SIMD isn't supported, PushRegsInMask reduces the set of float // registers to be double-sized, while the RegisterDump expects each of // the float registers to have the maximal possible size // (Simd128DataSize). To work around this, we just spill the double // registers by hand here, using the register dump offset directly. for (GeneralRegisterBackwardIterator iter(AllRegs.gprs()); iter.more(); ++iter) { masm.Push(*iter); } masm.reserveStack(sizeof(RegisterDump::FPUArray)); for (FloatRegisterBackwardIterator iter(AllRegs.fpus()); iter.more(); ++iter) { FloatRegister reg = *iter; Address spillAddress(StackPointer, reg.getRegisterDumpOffsetInBytes()); masm.storeDouble(reg, spillAddress); } #endif } void JitRuntime::generateInvalidator(MacroAssembler& masm, Label* bailoutTail) { invalidatorOffset_ = startTrampolineCode(masm); // We do the minimum amount of work in assembly and shunt the rest // off to InvalidationBailout. Assembly does: // // - Push the machine state onto the stack. // - Call the InvalidationBailout routine with the stack pointer. // - Now that the frame has been bailed out, convert the invalidated // frame into an exit frame. // - Do the normal check-return-code-and-thunk-to-the-interpreter dance. // Push registers such that we can access them from [base + code]. DumpAllRegs(masm); masm.movl(esp, eax); // Argument to jit::InvalidationBailout. // Make space for InvalidationBailout's frameSize outparam. masm.reserveStack(sizeof(size_t)); masm.movl(esp, ebx); // Make space for InvalidationBailout's bailoutInfo outparam. masm.reserveStack(sizeof(void*)); masm.movl(esp, ecx); using Fn = bool (*)(InvalidationBailoutStack * sp, size_t * frameSizeOut, BaselineBailoutInfo * *info); masm.setupUnalignedABICall(edx); masm.passABIArg(eax); masm.passABIArg(ebx); masm.passABIArg(ecx); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); masm.pop(ecx); // Get bailoutInfo outparam. masm.pop(ebx); // Get the frameSize outparam. // Pop the machine state and the dead frame. masm.lea(Operand(esp, ebx, TimesOne, sizeof(InvalidationBailoutStack)), esp); // Jump to shared bailout tail. The BailoutInfo pointer has to be in ecx. masm.jmp(bailoutTail); } void JitRuntime::generateArgumentsRectifier(MacroAssembler& masm, ArgumentsRectifierKind kind) { switch (kind) { case ArgumentsRectifierKind::Normal: argumentsRectifierOffset_ = startTrampolineCode(masm); break; case ArgumentsRectifierKind::TrialInlining: trialInliningArgumentsRectifierOffset_ = startTrampolineCode(masm); break; } // Caller: // [arg2] [arg1] [this] [ [argc] [callee] [descr] [raddr] ] <- esp // Load argc. masm.loadPtr(Address(esp, RectifierFrameLayout::offsetOfNumActualArgs()), esi); // Load the number of |undefined|s to push into %ecx. masm.loadPtr(Address(esp, RectifierFrameLayout::offsetOfCalleeToken()), eax); masm.mov(eax, ecx); masm.andl(Imm32(CalleeTokenMask), ecx); masm.movzwl(Operand(ecx, JSFunction::offsetOfNargs()), ecx); // The frame pointer and its padding are pushed on the stack. // Including |this|, there are (|nformals| + 1) arguments to push to the // stack. Then we push a JitFrameLayout. We compute the padding expressed // in the number of extra |undefined| values to push on the stack. static_assert( sizeof(JitFrameLayout) % JitStackAlignment == 0, "No need to consider the JitFrameLayout for aligning the stack"); static_assert((sizeof(Value) + 2 * sizeof(void*)) % JitStackAlignment == 0, "No need to consider |this| and the frame pointer and its " "padding for aligning the stack"); static_assert( JitStackAlignment % sizeof(Value) == 0, "Ensure that we can pad the stack by pushing extra UndefinedValue"); static_assert(IsPowerOfTwo(JitStackValueAlignment), "must have power of two for masm.andl to do its job"); masm.addl(Imm32(JitStackValueAlignment - 1 /* for padding */), ecx); // Account for newTarget, if necessary. static_assert( CalleeToken_FunctionConstructing == 1, "Ensure that we can use the constructing bit to count an extra push"); masm.mov(eax, edx); masm.andl(Imm32(CalleeToken_FunctionConstructing), edx); masm.addl(edx, ecx); masm.andl(Imm32(~(JitStackValueAlignment - 1)), ecx); masm.subl(esi, ecx); // Copy the number of actual arguments into edx. masm.mov(esi, edx); masm.moveValue(UndefinedValue(), ValueOperand(ebx, edi)); // NOTE: The fact that x86 ArgumentsRectifier saves the FramePointer // is relied upon by the baseline bailout code. If this changes, // fix that code! See the |#if defined(JS_CODEGEN_X86) portions of // BaselineStackBuilder::calculatePrevFramePtr and // BaselineStackBuilder::buildRectifierFrame (in BaselineBailouts.cpp). masm.push(FramePointer); masm.movl(esp, FramePointer); // Save %esp. masm.push(FramePointer /* padding */); // Caller: // [arg2] [arg1] [this] [ [argc] [callee] [descr] [raddr] ] // '-- #esi ---' // // Rectifier frame: // [ebp'] <- ebp [padding] <- esp [undef] [undef] [arg2] [arg1] [this] // '--- #ecx ----' '-- #esi ---' // // [ [argc] [callee] [descr] [raddr] ] // Push undefined. { Label undefLoopTop; masm.bind(&undefLoopTop); masm.push(ebx); // type(undefined); masm.push(edi); // payload(undefined); masm.subl(Imm32(1), ecx); masm.j(Assembler::NonZero, &undefLoopTop); } // Get the topmost argument. We did a push of %ebp earlier, so be sure to // account for this in the offset BaseIndex b(FramePointer, esi, TimesEight, sizeof(RectifierFrameLayout) + sizeof(void*)); masm.lea(Operand(b), ecx); // Push arguments, |nargs| + 1 times (to include |this|). masm.addl(Imm32(1), esi); { Label copyLoopTop; masm.bind(©LoopTop); masm.push(Operand(ecx, sizeof(Value) / 2)); masm.push(Operand(ecx, 0x0)); masm.subl(Imm32(sizeof(Value)), ecx); masm.subl(Imm32(1), esi); masm.j(Assembler::NonZero, ©LoopTop); } { Label notConstructing; masm.mov(eax, ebx); masm.branchTest32(Assembler::Zero, ebx, Imm32(CalleeToken_FunctionConstructing), ¬Constructing); BaseValueIndex src( FramePointer, edx, sizeof(RectifierFrameLayout) + sizeof(Value) + sizeof(void*)); masm.andl(Imm32(CalleeTokenMask), ebx); masm.movzwl(Operand(ebx, JSFunction::offsetOfNargs()), ebx); BaseValueIndex dst(esp, ebx, sizeof(Value)); ValueOperand newTarget(ecx, edi); masm.loadValue(src, newTarget); masm.storeValue(newTarget, dst); masm.bind(¬Constructing); } // Construct descriptor, accounting for pushed frame pointer above masm.lea(Operand(FramePointer, sizeof(void*)), ebx); masm.subl(esp, ebx); masm.makeFrameDescriptor(ebx, FrameType::Rectifier, JitFrameLayout::Size()); // Construct JitFrameLayout. masm.push(edx); // number of actual arguments masm.push(eax); // callee token masm.push(ebx); // descriptor // Call the target function. masm.andl(Imm32(CalleeTokenMask), eax); switch (kind) { case ArgumentsRectifierKind::Normal: masm.loadJitCodeRaw(eax, eax); argumentsRectifierReturnOffset_ = masm.callJitNoProfiler(eax); break; case ArgumentsRectifierKind::TrialInlining: Label noBaselineScript, done; masm.loadBaselineJitCodeRaw(eax, ebx, &noBaselineScript); masm.callJitNoProfiler(ebx); masm.jump(&done); // See BaselineCacheIRCompiler::emitCallInlinedFunction. masm.bind(&noBaselineScript); masm.loadJitCodeRaw(eax, eax); masm.callJitNoProfiler(eax); masm.bind(&done); break; } // Remove the rectifier frame. masm.pop(ebx); // ebx <- descriptor with FrameType. masm.shrl(Imm32(FRAMESIZE_SHIFT), ebx); // ebx <- descriptor. masm.pop(edi); // Discard calleeToken. masm.pop(edi); // Discard number of actual arguments. // Discard pushed arguments, but not the pushed frame pointer. BaseIndex unwind(esp, ebx, TimesOne, -int32_t(sizeof(void*))); masm.lea(Operand(unwind), esp); masm.pop(FramePointer); masm.ret(); } static void PushBailoutFrame(MacroAssembler& masm, uint32_t frameClass, Register spArg) { // Push registers such that we can access them from [base + code]. DumpAllRegs(masm); // Push the bailout table number. masm.push(Imm32(frameClass)); // The current stack pointer is the first argument to jit::Bailout. masm.movl(esp, spArg); } static void GenerateBailoutThunk(MacroAssembler& masm, uint32_t frameClass, Label* bailoutTail) { PushBailoutFrame(masm, frameClass, eax); // Make space for Bailout's baioutInfo outparam. masm.reserveStack(sizeof(void*)); masm.movl(esp, ebx); // Call the bailout function. This will correct the size of the bailout. using Fn = bool (*)(BailoutStack * sp, BaselineBailoutInfo * *info); masm.setupUnalignedABICall(ecx); masm.passABIArg(eax); masm.passABIArg(ebx); masm.callWithABI(MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); masm.pop(ecx); // Get bailoutInfo outparam. // Common size of stuff we've pushed. static const uint32_t BailoutDataSize = 0 + sizeof(void*) // frameClass + sizeof(RegisterDump); // Remove both the bailout frame and the topmost Ion frame's stack. if (frameClass == NO_FRAME_SIZE_CLASS_ID) { // We want the frameSize. Stack is: // ... frame ... // snapshotOffset // frameSize // ... bailoutFrame ... masm.addl(Imm32(BailoutDataSize), esp); masm.pop(ebx); masm.addl(Imm32(sizeof(uint32_t)), esp); masm.addl(ebx, esp); } else { // Stack is: // ... frame ... // bailoutId // ... bailoutFrame ... uint32_t frameSize = FrameSizeClass::FromClass(frameClass).frameSize(); masm.addl(Imm32(BailoutDataSize + sizeof(void*) + frameSize), esp); } // Jump to shared bailout tail. The BailoutInfo pointer has to be in ecx. masm.jmp(bailoutTail); } JitRuntime::BailoutTable JitRuntime::generateBailoutTable(MacroAssembler& masm, Label* bailoutTail, uint32_t frameClass) { uint32_t offset = startTrampolineCode(masm); Label bailout; for (size_t i = 0; i < BAILOUT_TABLE_SIZE; i++) { masm.call(&bailout); } masm.bind(&bailout); GenerateBailoutThunk(masm, frameClass, bailoutTail); return BailoutTable(offset, masm.currentOffset() - offset); } void JitRuntime::generateBailoutHandler(MacroAssembler& masm, Label* bailoutTail) { bailoutHandlerOffset_ = startTrampolineCode(masm); GenerateBailoutThunk(masm, NO_FRAME_SIZE_CLASS_ID, bailoutTail); } bool JitRuntime::generateVMWrapper(JSContext* cx, MacroAssembler& masm, const VMFunctionData& f, DynFn nativeFun, uint32_t* wrapperOffset) { *wrapperOffset = startTrampolineCode(masm); // Avoid conflicts with argument registers while discarding the result after // the function call. AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask); static_assert( (Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0, "Wrapper register set must be a superset of Volatile register set."); // The context is the first argument. Register cxreg = regs.takeAny(); // Stack is: // ... frame ... // +8 [args] // +4 descriptor // +0 returnAddress // // We're aligned to an exit frame, so link it up. masm.loadJSContext(cxreg); masm.enterExitFrame(cxreg, regs.getAny(), &f); // Save the current stack pointer as the base for copying arguments. Register argsBase = InvalidReg; if (f.explicitArgs) { argsBase = regs.takeAny(); masm.lea(Operand(esp, ExitFrameLayout::SizeWithFooter()), argsBase); } // Reserve space for the outparameter. Register outReg = InvalidReg; switch (f.outParam) { case Type_Value: outReg = regs.takeAny(); masm.Push(UndefinedValue()); masm.movl(esp, outReg); break; case Type_Handle: outReg = regs.takeAny(); masm.PushEmptyRooted(f.outParamRootType); masm.movl(esp, outReg); break; case Type_Int32: case Type_Pointer: case Type_Bool: outReg = regs.takeAny(); masm.reserveStack(sizeof(int32_t)); masm.movl(esp, outReg); break; case Type_Double: outReg = regs.takeAny(); masm.reserveStack(sizeof(double)); masm.movl(esp, outReg); break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } if (!generateTLEnterVM(masm, f)) { return false; } masm.setupUnalignedABICall(regs.getAny()); masm.passABIArg(cxreg); size_t argDisp = 0; // Copy arguments. for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) { switch (f.argProperties(explicitArg)) { case VMFunctionData::WordByValue: masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); argDisp += sizeof(void*); break; case VMFunctionData::DoubleByValue: // We don't pass doubles in float registers on x86, so no need // to check for argPassedInFloatReg. masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); argDisp += sizeof(void*); masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); argDisp += sizeof(void*); break; case VMFunctionData::WordByRef: masm.passABIArg( MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL); argDisp += sizeof(void*); break; case VMFunctionData::DoubleByRef: masm.passABIArg( MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL); argDisp += 2 * sizeof(void*); break; } } // Copy the implicit outparam, if any. if (outReg != InvalidReg) { masm.passABIArg(outReg); } masm.callWithABI(nativeFun, MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); if (!generateTLExitVM(masm, f)) { return false; } // Test for failure. switch (f.failType()) { case Type_Object: masm.branchTestPtr(Assembler::Zero, eax, eax, masm.failureLabel()); break; case Type_Bool: masm.testb(eax, eax); masm.j(Assembler::Zero, masm.failureLabel()); break; case Type_Void: break; default: MOZ_CRASH("unknown failure kind"); } // Load the outparam and free any allocated stack. switch (f.outParam) { case Type_Handle: masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand); break; case Type_Value: masm.Pop(JSReturnOperand); break; case Type_Int32: case Type_Pointer: masm.Pop(ReturnReg); break; case Type_Bool: masm.Pop(ReturnReg); masm.movzbl(ReturnReg, ReturnReg); break; case Type_Double: if (JitOptions.supportsFloatingPoint) { masm.Pop(ReturnDoubleReg); } else { masm.assumeUnreachable( "Unable to pop to float reg, with no FP support."); } break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } // Until C++ code is instrumented against Spectre, prevent speculative // execution from returning any private data. if (f.returnsData() && JitOptions.spectreJitToCxxCalls) { masm.speculationBarrier(); } masm.leaveExitFrame(); masm.retn(Imm32(sizeof(ExitFrameLayout) + f.explicitStackSlots() * sizeof(void*) + f.extraValuesToPop * sizeof(Value))); return true; } uint32_t JitRuntime::generatePreBarrier(JSContext* cx, MacroAssembler& masm, MIRType type) { uint32_t offset = startTrampolineCode(masm); static_assert(PreBarrierReg == edx); Register temp1 = eax; Register temp2 = ebx; Register temp3 = ecx; masm.push(temp1); masm.push(temp2); masm.push(temp3); Label noBarrier; masm.emitPreBarrierFastPath(cx->runtime(), type, temp1, temp2, temp3, &noBarrier); // Call into C++ to mark this GC thing. masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); LiveRegisterSet save; if (JitOptions.supportsFloatingPoint) { save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask), FloatRegisterSet(FloatRegisters::VolatileMask)); } else { save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask), FloatRegisterSet()); } masm.PushRegsInMask(save); masm.movl(ImmPtr(cx->runtime()), ecx); masm.setupUnalignedABICall(eax); masm.passABIArg(ecx); masm.passABIArg(edx); masm.callWithABI(JitMarkFunction(type)); masm.PopRegsInMask(save); masm.ret(); masm.bind(&noBarrier); masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); masm.ret(); return offset; } void JitRuntime::generateExceptionTailStub(MacroAssembler& masm, Label* profilerExitTail) { exceptionTailOffset_ = startTrampolineCode(masm); masm.bind(masm.failureLabel()); masm.handleFailureWithHandlerTail(profilerExitTail); } void JitRuntime::generateBailoutTailStub(MacroAssembler& masm, Label* bailoutTail) { bailoutTailOffset_ = startTrampolineCode(masm); masm.bind(bailoutTail); masm.generateBailoutTail(edx, ecx); } void JitRuntime::generateProfilerExitFrameTailStub(MacroAssembler& masm, Label* profilerExitTail) { profilerExitFrameTailOffset_ = startTrampolineCode(masm); masm.bind(profilerExitTail); Register scratch1 = eax; Register scratch2 = ebx; Register scratch3 = esi; Register scratch4 = edi; // // The code generated below expects that the current stack pointer points // to an Ion or Baseline frame, at the state it would be immediately // before a ret(). Thus, after this stub's business is done, it executes // a ret() and returns directly to the caller script, on behalf of the // callee script that jumped to this code. // // Thus the expected stack is: // // StackPointer ----+ // v // ..., ActualArgc, CalleeToken, Descriptor, ReturnAddr // MEM-HI MEM-LOW // // // The generated jitcode is responsible for overwriting the // jitActivation->lastProfilingFrame field with a pointer to the previous // Ion or Baseline jit-frame that was pushed before this one. It is also // responsible for overwriting jitActivation->lastProfilingCallSite with // the return address into that frame. The frame could either be an // immediate "caller" frame, or it could be a frame in a previous // JitActivation (if the current frame was entered from C++, and the C++ // was entered by some caller jit-frame further down the stack). // // So this jitcode is responsible for "walking up" the jit stack, finding // the previous Ion or Baseline JS frame, and storing its address and the // return address into the appropriate fields on the current jitActivation. // // There are a fixed number of different path types that can lead to the // current frame, which is either a baseline or ion frame: // // // ^ // | // ^--- Ion // | // ^--- Baseline Stub <---- Baseline // | // ^--- Argument Rectifier // | ^ // | | // | ^--- Ion // | | // | ^--- Baseline Stub <---- Baseline // | // ^--- Entry Frame (From C++) // Register actReg = scratch4; masm.loadJSContext(actReg); masm.loadPtr(Address(actReg, offsetof(JSContext, profilingActivation_)), actReg); Address lastProfilingFrame(actReg, JitActivation::offsetOfLastProfilingFrame()); Address lastProfilingCallSite(actReg, JitActivation::offsetOfLastProfilingCallSite()); #ifdef DEBUG // Ensure that frame we are exiting is current lastProfilingFrame { masm.loadPtr(lastProfilingFrame, scratch1); Label checkOk; masm.branchPtr(Assembler::Equal, scratch1, ImmWord(0), &checkOk); masm.branchPtr(Assembler::Equal, StackPointer, scratch1, &checkOk); masm.assumeUnreachable( "Mismatch between stored lastProfilingFrame and current stack " "pointer."); masm.bind(&checkOk); } #endif // Load the frame descriptor into |scratch1|, figure out what to do // depending on its type. masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfDescriptor()), scratch1); // Going into the conditionals, we will have: // FrameDescriptor.size in scratch1 // FrameDescriptor.type in scratch2 masm.movePtr(scratch1, scratch2); masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1); masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch2); // Handling of each case is dependent on FrameDescriptor.type Label handle_IonJS; Label handle_BaselineStub; Label handle_Rectifier; Label handle_IonICCall; Label handle_Entry; Label end; masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::IonJS), &handle_IonJS); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::BaselineJS), &handle_IonJS); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::BaselineStub), &handle_BaselineStub); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::Rectifier), &handle_Rectifier); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::IonICCall), &handle_IonICCall); masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::CppToJSJit), &handle_Entry); // The WasmToJSJit is just another kind of entry. masm.branch32(Assembler::Equal, scratch2, Imm32(FrameType::WasmToJSJit), &handle_Entry); masm.assumeUnreachable( "Invalid caller frame type when exiting from Ion frame."); // // FrameType::IonJS // // Stack layout: // ... // Ion-Descriptor // Prev-FP ---> Ion-ReturnAddr // ... previous frame data ... |- Descriptor.Size // ... arguments ... | // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // masm.bind(&handle_IonJS); { // |scratch1| contains Descriptor.size // returning directly to an IonJS frame. Store return addr to frame // in lastProfilingCallSite. masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfReturnAddress()), scratch2); masm.storePtr(scratch2, lastProfilingCallSite); // Store return frame in lastProfilingFrame. // scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size(); masm.lea(Operand(StackPointer, scratch1, TimesOne, JitFrameLayout::Size()), scratch2); masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // // FrameType::BaselineStub // // Look past the stub and store the frame pointer to // the baselineJS frame prior to it. // // Stack layout: // ... // BL-Descriptor // Prev-FP ---> BL-ReturnAddr // +-----> BL-PrevFramePointer // | ... BL-FrameData ... // | BLStub-Descriptor // | BLStub-ReturnAddr // | BLStub-StubPointer | // +------ BLStub-SavedFramePointer |- Descriptor.Size // ... arguments ... | // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // // We take advantage of the fact that the stub frame saves the frame // pointer pointing to the baseline frame, so a bunch of calculation can // be avoided. // masm.bind(&handle_BaselineStub); { BaseIndex stubFrameReturnAddr( StackPointer, scratch1, TimesOne, JitFrameLayout::Size() + BaselineStubFrameLayout::offsetOfReturnAddress()); masm.loadPtr(stubFrameReturnAddr, scratch2); masm.storePtr(scratch2, lastProfilingCallSite); BaseIndex stubFrameSavedFramePtr( StackPointer, scratch1, TimesOne, JitFrameLayout::Size() - (2 * sizeof(void*))); masm.loadPtr(stubFrameSavedFramePtr, scratch2); masm.addPtr(Imm32(sizeof(void*)), scratch2); // Skip past BL-PrevFramePtr masm.storePtr(scratch2, lastProfilingFrame); masm.ret(); } // // FrameType::Rectifier // // The rectifier frame can be preceded by either an IonJS, a BaselineStub, // or a CppToJSJit/WasmToJSJit frame. // // Stack layout if caller of rectifier was Ion or CppToJSJit/WasmToJSJit: // // Ion-Descriptor // Ion-ReturnAddr // ... ion frame data ... |- Rect-Descriptor.Size // < COMMON LAYOUT > // // Stack layout if caller of rectifier was Baseline: // // BL-Descriptor // Prev-FP ---> BL-ReturnAddr // +-----> BL-SavedFramePointer // | ... baseline frame data ... // | BLStub-Descriptor // | BLStub-ReturnAddr // | BLStub-StubPointer | // +------ BLStub-SavedFramePointer |- Rect-Descriptor.Size // ... args to rectifier ... | // < COMMON LAYOUT > // // Common stack layout: // // ActualArgc | // CalleeToken |- IonRectitiferFrameLayout::Size() // Rect-Descriptor | // Rect-ReturnAddr | // ... rectifier data & args ... |- Descriptor.Size // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | // masm.bind(&handle_Rectifier); { // scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size() masm.lea(Operand(StackPointer, scratch1, TimesOne, JitFrameLayout::Size()), scratch2); masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfDescriptor()), scratch3); masm.movePtr(scratch3, scratch1); masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch3); masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1); // Now |scratch1| contains Rect-Descriptor.Size // and |scratch2| points to Rectifier frame // and |scratch3| contains Rect-Descriptor.Type masm.assertRectifierFrameParentType(scratch3); // Check for either Ion or BaselineStub frame. Label notIonFrame; masm.branch32(Assembler::NotEqual, scratch3, Imm32(FrameType::IonJS), ¬IonFrame); // Handle Rectifier <- IonJS // scratch3 := RectFrame[ReturnAddr] masm.loadPtr( Address(scratch2, RectifierFrameLayout::offsetOfReturnAddress()), scratch3); masm.storePtr(scratch3, lastProfilingCallSite); // scratch3 := RectFrame + Rect-Descriptor.Size + // RectifierFrameLayout::Size() masm.lea( Operand(scratch2, scratch1, TimesOne, RectifierFrameLayout::Size()), scratch3); masm.storePtr(scratch3, lastProfilingFrame); masm.ret(); masm.bind(¬IonFrame); // Check for either BaselineStub or a CppToJSJit/WasmToJSJit entry // frame. masm.branch32(Assembler::NotEqual, scratch3, Imm32(FrameType::BaselineStub), &handle_Entry); // Handle Rectifier <- BaselineStub <- BaselineJS BaseIndex stubFrameReturnAddr( scratch2, scratch1, TimesOne, RectifierFrameLayout::Size() + BaselineStubFrameLayout::offsetOfReturnAddress()); masm.loadPtr(stubFrameReturnAddr, scratch3); masm.storePtr(scratch3, lastProfilingCallSite); BaseIndex stubFrameSavedFramePtr( scratch2, scratch1, TimesOne, RectifierFrameLayout::Size() - (2 * sizeof(void*))); masm.loadPtr(stubFrameSavedFramePtr, scratch3); masm.addPtr(Imm32(sizeof(void*)), scratch3); masm.storePtr(scratch3, lastProfilingFrame); masm.ret(); } // FrameType::IonICCall // // The caller is always an IonJS frame. // // Ion-Descriptor // Ion-ReturnAddr // ... ion frame data ... |- CallFrame-Descriptor.Size // StubCode | // ICCallFrame-Descriptor |- IonICCallFrameLayout::Size() // ICCallFrame-ReturnAddr | // ... call frame data & args ... |- Descriptor.Size // ActualArgc | // CalleeToken |- JitFrameLayout::Size() // Descriptor | // FP -----> ReturnAddr | masm.bind(&handle_IonICCall); { // scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size() masm.lea(Operand(StackPointer, scratch1, TimesOne, JitFrameLayout::Size()), scratch2); // scratch3 := ICCallFrame-Descriptor.Size masm.loadPtr(Address(scratch2, IonICCallFrameLayout::offsetOfDescriptor()), scratch3); #ifdef DEBUG // Assert previous frame is an IonJS frame. masm.movePtr(scratch3, scratch1); masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1); { Label checkOk; masm.branch32(Assembler::Equal, scratch1, Imm32(FrameType::IonJS), &checkOk); masm.assumeUnreachable("IonICCall frame must be preceded by IonJS frame"); masm.bind(&checkOk); } #endif masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3); // lastProfilingCallSite := ICCallFrame-ReturnAddr masm.loadPtr( Address(scratch2, IonICCallFrameLayout::offsetOfReturnAddress()), scratch1); masm.storePtr(scratch1, lastProfilingCallSite); // lastProfilingFrame := ICCallFrame + ICCallFrame-Descriptor.Size + // IonICCallFrameLayout::Size() masm.lea( Operand(scratch2, scratch3, TimesOne, IonICCallFrameLayout::Size()), scratch1); masm.storePtr(scratch1, lastProfilingFrame); masm.ret(); } // // FrameType::CppToJSJit / FrameType::WasmToJSJit // // If at an entry frame, store null into both fields. // A fast-path wasm->jit transition frame is an entry frame from the point // of view of the JIT. // masm.bind(&handle_Entry); { masm.movePtr(ImmPtr(nullptr), scratch1); masm.storePtr(scratch1, lastProfilingCallSite); masm.storePtr(scratch1, lastProfilingFrame); masm.ret(); } }