/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include "gc/Memory.h" #include "jsapi-tests/tests.h" #if defined(XP_WIN) # include "util/Windows.h" # include #else # include # include # include # include # include # include # include #endif BEGIN_TEST(testGCAllocator) { #ifdef JS_64BIT // If we're using the scattershot allocator, this test does not apply. if (js::gc::UsingScattershotAllocator()) { return true; } #endif size_t PageSize = js::gc::SystemPageSize(); /* Finish any ongoing background free activity. */ js::gc::FinishGC(cx); bool growUp = false; CHECK(addressesGrowUp(&growUp)); if (growUp) { return testGCAllocatorUp(PageSize); } else { return testGCAllocatorDown(PageSize); } } static const size_t Chunk = 512 * 1024; static const size_t Alignment = 2 * Chunk; static const int MaxTempChunks = 4096; static const size_t StagingSize = 16 * Chunk; bool addressesGrowUp(bool* resultOut) { /* * Try to detect whether the OS allocates memory in increasing or decreasing * address order by making several allocations and comparing the addresses. */ static const unsigned ChunksToTest = 20; static const int ThresholdCount = 15; void* chunks[ChunksToTest]; for (unsigned i = 0; i < ChunksToTest; i++) { chunks[i] = mapMemory(2 * Chunk); CHECK(chunks[i]); } int upCount = 0; int downCount = 0; for (unsigned i = 0; i < ChunksToTest - 1; i++) { if (chunks[i] < chunks[i + 1]) { upCount++; } else { downCount++; } } for (unsigned i = 0; i < ChunksToTest; i++) { unmapPages(chunks[i], 2 * Chunk); } /* Check results were mostly consistent. */ CHECK(abs(upCount - downCount) >= ThresholdCount); *resultOut = upCount > downCount; return true; } size_t offsetFromAligned(void* p) { return uintptr_t(p) % Alignment; } enum AllocType { UseNormalAllocator, UseLastDitchAllocator }; bool testGCAllocatorUp(const size_t PageSize) { const size_t UnalignedSize = StagingSize + Alignment - PageSize; void* chunkPool[MaxTempChunks]; // Allocate a contiguous chunk that we can partition for testing. void* stagingArea = mapMemory(UnalignedSize); if (!stagingArea) { return false; } // Ensure that the staging area is aligned. unmapPages(stagingArea, UnalignedSize); if (offsetFromAligned(stagingArea)) { const size_t Offset = offsetFromAligned(stagingArea); // Place the area at the lowest aligned address. stagingArea = (void*)(uintptr_t(stagingArea) + (Alignment - Offset)); } mapMemoryAt(stagingArea, StagingSize); // Make sure there are no available chunks below the staging area. int tempChunks; if (!fillSpaceBeforeStagingArea(tempChunks, stagingArea, chunkPool, false)) { return false; } // Unmap the staging area so we can set it up for testing. unmapPages(stagingArea, StagingSize); // Check that the first chunk is used if it is aligned. CHECK(positionIsCorrect("xxooxxx---------", stagingArea, chunkPool, tempChunks)); // Check that the first chunk is used if it can be aligned. CHECK(positionIsCorrect("x-ooxxx---------", stagingArea, chunkPool, tempChunks)); // Check that an aligned chunk after a single unalignable chunk is used. CHECK(positionIsCorrect("x--xooxxx-------", stagingArea, chunkPool, tempChunks)); // Check that we fall back to the slow path after two unalignable chunks. CHECK(positionIsCorrect("x--xx--xoo--xxx-", stagingArea, chunkPool, tempChunks)); // Check that we also fall back after an unalignable and an alignable chunk. CHECK(positionIsCorrect("x--xx---x-oo--x-", stagingArea, chunkPool, tempChunks)); // Check that the last ditch allocator works as expected. CHECK(positionIsCorrect("x--xx--xx-oox---", stagingArea, chunkPool, tempChunks, UseLastDitchAllocator)); // Check that the last ditch allocator can deal with naturally aligned chunks. CHECK(positionIsCorrect("x--xx--xoo------", stagingArea, chunkPool, tempChunks, UseLastDitchAllocator)); // Clean up. while (--tempChunks >= 0) { unmapPages(chunkPool[tempChunks], 2 * Chunk); } return true; } bool testGCAllocatorDown(const size_t PageSize) { const size_t UnalignedSize = StagingSize + Alignment - PageSize; void* chunkPool[MaxTempChunks]; // Allocate a contiguous chunk that we can partition for testing. void* stagingArea = mapMemory(UnalignedSize); if (!stagingArea) { return false; } // Ensure that the staging area is aligned. unmapPages(stagingArea, UnalignedSize); if (offsetFromAligned(stagingArea)) { void* stagingEnd = (void*)(uintptr_t(stagingArea) + UnalignedSize); const size_t Offset = offsetFromAligned(stagingEnd); // Place the area at the highest aligned address. stagingArea = (void*)(uintptr_t(stagingEnd) - Offset - StagingSize); } mapMemoryAt(stagingArea, StagingSize); // Make sure there are no available chunks above the staging area. int tempChunks; if (!fillSpaceBeforeStagingArea(tempChunks, stagingArea, chunkPool, true)) { return false; } // Unmap the staging area so we can set it up for testing. unmapPages(stagingArea, StagingSize); // Check that the first chunk is used if it is aligned. CHECK(positionIsCorrect("---------xxxooxx", stagingArea, chunkPool, tempChunks)); // Check that the first chunk is used if it can be aligned. CHECK(positionIsCorrect("---------xxxoo-x", stagingArea, chunkPool, tempChunks)); // Check that an aligned chunk after a single unalignable chunk is used. CHECK(positionIsCorrect("-------xxxoox--x", stagingArea, chunkPool, tempChunks)); // Check that we fall back to the slow path after two unalignable chunks. CHECK(positionIsCorrect("-xxx--oox--xx--x", stagingArea, chunkPool, tempChunks)); // Check that we also fall back after an unalignable and an alignable chunk. CHECK(positionIsCorrect("-x--oo-x---xx--x", stagingArea, chunkPool, tempChunks)); // Check that the last ditch allocator works as expected. CHECK(positionIsCorrect("---xoo-xx--xx--x", stagingArea, chunkPool, tempChunks, UseLastDitchAllocator)); // Check that the last ditch allocator can deal with naturally aligned chunks. CHECK(positionIsCorrect("------oox--xx--x", stagingArea, chunkPool, tempChunks, UseLastDitchAllocator)); // Clean up. while (--tempChunks >= 0) { unmapPages(chunkPool[tempChunks], 2 * Chunk); } return true; } bool fillSpaceBeforeStagingArea(int& tempChunks, void* stagingArea, void** chunkPool, bool addressesGrowDown) { // Make sure there are no available chunks before the staging area. tempChunks = 0; chunkPool[tempChunks++] = mapMemory(2 * Chunk); while (tempChunks < MaxTempChunks && chunkPool[tempChunks - 1] && (chunkPool[tempChunks - 1] < stagingArea) ^ addressesGrowDown) { chunkPool[tempChunks++] = mapMemory(2 * Chunk); if (!chunkPool[tempChunks - 1]) { break; // We already have our staging area, so OOM here is okay. } if ((chunkPool[tempChunks - 1] < chunkPool[tempChunks - 2]) ^ addressesGrowDown) { break; // The address growth direction is inconsistent! } } // OOM also means success in this case. if (!chunkPool[tempChunks - 1]) { --tempChunks; return true; } // Bail if we can't guarantee the right address space layout. if ((chunkPool[tempChunks - 1] < stagingArea) ^ addressesGrowDown || (tempChunks > 1 && (chunkPool[tempChunks - 1] < chunkPool[tempChunks - 2]) ^ addressesGrowDown)) { while (--tempChunks >= 0) { unmapPages(chunkPool[tempChunks], 2 * Chunk); } unmapPages(stagingArea, StagingSize); return false; } return true; } bool positionIsCorrect(const char* str, void* base, void** chunkPool, int tempChunks, AllocType allocator = UseNormalAllocator) { // str represents a region of memory, with each character representing a // region of Chunk bytes. str should contain only x, o and -, where // x = mapped by the test to set up the initial conditions, // o = mapped by the GC allocator, and // - = unmapped. // base should point to a region of contiguous free memory // large enough to hold strlen(str) chunks of Chunk bytes. int len = strlen(str); int i; // Find the index of the desired address. for (i = 0; i < len && str[i] != 'o'; ++i) ; void* desired = (void*)(uintptr_t(base) + i * Chunk); // Map the regions indicated by str. for (i = 0; i < len; ++i) { if (str[i] == 'x') { mapMemoryAt((void*)(uintptr_t(base) + i * Chunk), Chunk); } } // Allocate using the GC's allocator. void* result; if (allocator == UseNormalAllocator) { result = js::gc::MapAlignedPages(2 * Chunk, Alignment); } else { result = js::gc::TestMapAlignedPagesLastDitch(2 * Chunk, Alignment); } // Clean up the mapped regions. if (result) { js::gc::UnmapPages(result, 2 * Chunk); } for (--i; i >= 0; --i) { if (str[i] == 'x') { js::gc::UnmapPages((void*)(uintptr_t(base) + i * Chunk), Chunk); } } // CHECK returns, so clean up on failure. if (result != desired) { while (--tempChunks >= 0) { js::gc::UnmapPages(chunkPool[tempChunks], 2 * Chunk); } } return result == desired; } #if defined(XP_WIN) void* mapMemoryAt(void* desired, size_t length) { return VirtualAlloc(desired, length, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); } void* mapMemory(size_t length) { return VirtualAlloc(nullptr, length, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); } void unmapPages(void* p, size_t size) { MOZ_ALWAYS_TRUE(VirtualFree(p, 0, MEM_RELEASE)); } #else void* mapMemoryAt(void* desired, size_t length) { void* region = mmap(desired, length, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); if (region == MAP_FAILED) { return nullptr; } if (region != desired) { if (munmap(region, length)) { MOZ_RELEASE_ASSERT(errno == ENOMEM); } return nullptr; } return region; } void* mapMemory(size_t length) { int prot = PROT_READ | PROT_WRITE; int flags = MAP_PRIVATE | MAP_ANON; int fd = -1; off_t offset = 0; void* region = mmap(nullptr, length, prot, flags, fd, offset); if (region == MAP_FAILED) { return nullptr; } return region; } void unmapPages(void* p, size_t size) { if (munmap(p, size)) { MOZ_RELEASE_ASSERT(errno == ENOMEM); } } #endif END_TEST(testGCAllocator)