/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * A class used for intermediate representations of the -moz-transform property. */ #include "nsStyleTransformMatrix.h" #include "nsLayoutUtils.h" #include "nsPresContext.h" #include "mozilla/MotionPathUtils.h" #include "mozilla/ServoBindings.h" #include "mozilla/StyleAnimationValue.h" #include "mozilla/SVGUtils.h" #include "gfxMatrix.h" #include "gfxQuaternion.h" using namespace mozilla; using namespace mozilla::gfx; namespace nsStyleTransformMatrix { /* Note on floating point precision: The transform matrix is an array * of single precision 'float's, and so are most of the input values * we get from the style system, but intermediate calculations * involving angles need to be done in 'double'. */ // Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp // to have the transform property try // to transform content with continuations as one unified block instead of // several smaller ones. This is currently disabled because it doesn't work // correctly, since when the frames are initially being reflowed, their // continuations all compute their bounding rects independently of each other // and consequently get the wrong value. //#define UNIFIED_CONTINUATIONS void TransformReferenceBox::EnsureDimensionsAreCached() { if (mIsCached) { return; } MOZ_ASSERT(mFrame); mIsCached = true; if (mFrame->HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) { if (mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::FillBox) { // Percentages in transforms resolve against the SVG bbox, and the // transform is relative to the top-left of the SVG bbox. nsRect bboxInAppUnits = nsLayoutUtils::ComputeGeometryBox( const_cast(mFrame), StyleGeometryBox::FillBox); // The mRect of an SVG nsIFrame is its user space bounds *including* // stroke and markers, whereas bboxInAppUnits is its user space bounds // including fill only. We need to note the offset of the reference box // from the frame's mRect in mX/mY. mX = bboxInAppUnits.x - mFrame->GetPosition().x; mY = bboxInAppUnits.y - mFrame->GetPosition().y; mWidth = bboxInAppUnits.width; mHeight = bboxInAppUnits.height; } else { // The value 'border-box' is treated as 'view-box' for SVG content. MOZ_ASSERT( mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::ViewBox || mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::BorderBox, "Unexpected value for 'transform-box'"); // Percentages in transforms resolve against the width/height of the // nearest viewport (or its viewBox if one is applied), and the // transform is relative to {0,0} in current user space. mX = -mFrame->GetPosition().x; mY = -mFrame->GetPosition().y; Size contextSize = SVGUtils::GetContextSize(mFrame); mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width); mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height); } return; } // If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's // bounding rectangle, translated to the origin. Otherwise, it is the // smallest rectangle containing a frame and all of its continuations. For // example, if there is a element with several continuations split // over several lines, this function will return the rectangle containing all // of those continuations. nsRect rect; #ifndef UNIFIED_CONTINUATIONS rect = mFrame->GetRect(); #else // Iterate the continuation list, unioning together the bounding rects: for (const nsIFrame* currFrame = mFrame->FirstContinuation(); currFrame != nullptr; currFrame = currFrame->GetNextContinuation()) { // Get the frame rect in local coordinates, then translate back to the // original coordinates: rect.UnionRect( result, nsRect(currFrame->GetOffsetTo(mFrame), currFrame->GetSize())); } #endif mX = 0; mY = 0; mWidth = rect.Width(); mHeight = rect.Height(); } void TransformReferenceBox::Init(const nsRect& aDimensions) { MOZ_ASSERT(!mFrame && !mIsCached); mX = aDimensions.x; mY = aDimensions.y; mWidth = aDimensions.width; mHeight = aDimensions.height; mIsCached = true; } float ProcessTranslatePart( const LengthPercentage& aValue, TransformReferenceBox* aRefBox, TransformReferenceBox::DimensionGetter aDimensionGetter) { return aValue.ResolveToCSSPixelsWith([&] { return aRefBox && !aRefBox->IsEmpty() ? CSSPixel::FromAppUnits((aRefBox->*aDimensionGetter)()) : CSSCoord(0); }); } /** * Helper functions to process all the transformation function types. * * These take a matrix parameter to accumulate the current matrix. */ /* Helper function to process a matrix entry. */ static void ProcessMatrix(Matrix4x4& aMatrix, const StyleTransformOperation& aOp) { const auto& matrix = aOp.AsMatrix(); gfxMatrix result; result._11 = matrix.a; result._12 = matrix.b; result._21 = matrix.c; result._22 = matrix.d; result._31 = matrix.e; result._32 = matrix.f; aMatrix = result * aMatrix; } static void ProcessMatrix3D(Matrix4x4& aMatrix, const StyleTransformOperation& aOp) { Matrix4x4 temp; const auto& matrix = aOp.AsMatrix3D(); temp._11 = matrix.m11; temp._12 = matrix.m12; temp._13 = matrix.m13; temp._14 = matrix.m14; temp._21 = matrix.m21; temp._22 = matrix.m22; temp._23 = matrix.m23; temp._24 = matrix.m24; temp._31 = matrix.m31; temp._32 = matrix.m32; temp._33 = matrix.m33; temp._34 = matrix.m34; temp._41 = matrix.m41; temp._42 = matrix.m42; temp._43 = matrix.m43; temp._44 = matrix.m44; aMatrix = temp * aMatrix; } // For accumulation for transform functions, |aOne| corresponds to |aB| and // |aTwo| corresponds to |aA| for StyleAnimationValue::Accumulate(). class Accumulate { public: template static T operate(const T& aOne, const T& aTwo, double aCoeff) { return aOne + aTwo * aCoeff; } static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo, double aCoeff) { return (aOne - Point4D(0, 0, 0, 1)) + (aTwo - Point4D(0, 0, 0, 1)) * aCoeff + Point4D(0, 0, 0, 1); } static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo, double aCoeff) { // For scale, the identify element is 1, see AddTransformScale in // StyleAnimationValue.cpp. return (aOne - Point3D(1, 1, 1)) + (aTwo - Point3D(1, 1, 1)) * aCoeff + Point3D(1, 1, 1); } static Matrix4x4 operateForRotate(const gfxQuaternion& aOne, const gfxQuaternion& aTwo, double aCoeff) { if (aCoeff == 0.0) { return aOne.ToMatrix(); } double theta = acos(mozilla::clamped(aTwo.w, -1.0, 1.0)); double scale = (theta != 0.0) ? 1.0 / sin(theta) : 0.0; theta *= aCoeff; scale *= sin(theta); gfxQuaternion result = gfxQuaternion(scale * aTwo.x, scale * aTwo.y, scale * aTwo.z, cos(theta)) * aOne; return result.ToMatrix(); } static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1, const Matrix4x4& aMatrix2, double aProgress) { return aMatrix1; } static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1, const Matrix4x4& aMatrix2, double aCount) { Matrix4x4 result; Servo_MatrixTransform_Operate(MatrixTransformOperator::Accumulate, &aMatrix1.components, &aMatrix2.components, aCount, &result.components); return result; } }; class Interpolate { public: template static T operate(const T& aOne, const T& aTwo, double aCoeff) { return aOne + (aTwo - aOne) * aCoeff; } static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo, double aCoeff) { return aOne + (aTwo - aOne) * aCoeff; } static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo, double aCoeff) { return aOne + (aTwo - aOne) * aCoeff; } static Matrix4x4 operateForRotate(const gfxQuaternion& aOne, const gfxQuaternion& aTwo, double aCoeff) { return aOne.Slerp(aTwo, aCoeff).ToMatrix(); } static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1, const Matrix4x4& aMatrix2, double aProgress) { return aProgress < 0.5 ? aMatrix1 : aMatrix2; } static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1, const Matrix4x4& aMatrix2, double aProgress) { Matrix4x4 result; Servo_MatrixTransform_Operate(MatrixTransformOperator::Interpolate, &aMatrix1.components, &aMatrix2.components, aProgress, &result.components); return result; } }; template static void ProcessMatrixOperator(Matrix4x4& aMatrix, const StyleTransform& aFrom, const StyleTransform& aTo, float aProgress, TransformReferenceBox& aRefBox) { float appUnitPerCSSPixel = AppUnitsPerCSSPixel(); Matrix4x4 matrix1 = ReadTransforms(aFrom, aRefBox, appUnitPerCSSPixel); Matrix4x4 matrix2 = ReadTransforms(aTo, aRefBox, appUnitPerCSSPixel); aMatrix = Operator::operateByServo(matrix1, matrix2, aProgress) * aMatrix; } /* Helper function to process two matrices that we need to interpolate between */ void ProcessInterpolateMatrix(Matrix4x4& aMatrix, const StyleTransformOperation& aOp, TransformReferenceBox& aRefBox) { const auto& args = aOp.AsInterpolateMatrix(); ProcessMatrixOperator(aMatrix, args.from_list, args.to_list, args.progress._0, aRefBox); } void ProcessAccumulateMatrix(Matrix4x4& aMatrix, const StyleTransformOperation& aOp, TransformReferenceBox& aRefBox) { const auto& args = aOp.AsAccumulateMatrix(); ProcessMatrixOperator(aMatrix, args.from_list, args.to_list, args.count, aRefBox); } /* Helper function to process a translatex function. */ static void ProcessTranslateX(Matrix4x4& aMatrix, const LengthPercentage& aLength, TransformReferenceBox& aRefBox) { Point3D temp; temp.x = ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Width); aMatrix.PreTranslate(temp); } /* Helper function to process a translatey function. */ static void ProcessTranslateY(Matrix4x4& aMatrix, const LengthPercentage& aLength, TransformReferenceBox& aRefBox) { Point3D temp; temp.y = ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Height); aMatrix.PreTranslate(temp); } static void ProcessTranslateZ(Matrix4x4& aMatrix, const Length& aLength) { Point3D temp; temp.z = aLength.ToCSSPixels(); aMatrix.PreTranslate(temp); } /* Helper function to process a translate function. */ static void ProcessTranslate(Matrix4x4& aMatrix, const LengthPercentage& aX, const LengthPercentage& aY, TransformReferenceBox& aRefBox) { Point3D temp; temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width); temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height); aMatrix.PreTranslate(temp); } static void ProcessTranslate3D(Matrix4x4& aMatrix, const LengthPercentage& aX, const LengthPercentage& aY, const Length& aZ, TransformReferenceBox& aRefBox) { Point3D temp; temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width); temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height); temp.z = aZ.ToCSSPixels(); aMatrix.PreTranslate(temp); } /* Helper function to set up a scale matrix. */ static void ProcessScaleHelper(Matrix4x4& aMatrix, float aXScale, float aYScale, float aZScale) { aMatrix.PreScale(aXScale, aYScale, aZScale); } static void ProcessScale3D(Matrix4x4& aMatrix, const StyleTransformOperation& aOp) { const auto& scale = aOp.AsScale3D(); ProcessScaleHelper(aMatrix, scale._0, scale._1, scale._2); } /* Helper function that, given a set of angles, constructs the appropriate * skew matrix. */ static void ProcessSkewHelper(Matrix4x4& aMatrix, const StyleAngle& aXAngle, const StyleAngle& aYAngle) { aMatrix.SkewXY(aXAngle.ToRadians(), aYAngle.ToRadians()); } static void ProcessRotate3D(Matrix4x4& aMatrix, float aX, float aY, float aZ, const StyleAngle& aAngle) { Matrix4x4 temp; temp.SetRotateAxisAngle(aX, aY, aZ, aAngle.ToRadians()); aMatrix = temp * aMatrix; } static void ProcessPerspective(Matrix4x4& aMatrix, const Length& aLength) { float depth = aLength.ToCSSPixels(); ApplyPerspectiveToMatrix(aMatrix, depth); } static void MatrixForTransformFunction(Matrix4x4& aMatrix, const StyleTransformOperation& aOp, TransformReferenceBox& aRefBox) { /* Get the keyword for the transform. */ switch (aOp.tag) { case StyleTransformOperation::Tag::TranslateX: ProcessTranslateX(aMatrix, aOp.AsTranslateX(), aRefBox); break; case StyleTransformOperation::Tag::TranslateY: ProcessTranslateY(aMatrix, aOp.AsTranslateY(), aRefBox); break; case StyleTransformOperation::Tag::TranslateZ: ProcessTranslateZ(aMatrix, aOp.AsTranslateZ()); break; case StyleTransformOperation::Tag::Translate: ProcessTranslate(aMatrix, aOp.AsTranslate()._0, aOp.AsTranslate()._1, aRefBox); break; case StyleTransformOperation::Tag::Translate3D: return ProcessTranslate3D(aMatrix, aOp.AsTranslate3D()._0, aOp.AsTranslate3D()._1, aOp.AsTranslate3D()._2, aRefBox); break; case StyleTransformOperation::Tag::ScaleX: ProcessScaleHelper(aMatrix, aOp.AsScaleX(), 1.0f, 1.0f); break; case StyleTransformOperation::Tag::ScaleY: ProcessScaleHelper(aMatrix, 1.0f, aOp.AsScaleY(), 1.0f); break; case StyleTransformOperation::Tag::ScaleZ: ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aOp.AsScaleZ()); break; case StyleTransformOperation::Tag::Scale: ProcessScaleHelper(aMatrix, aOp.AsScale()._0, aOp.AsScale()._1, 1.0f); break; case StyleTransformOperation::Tag::Scale3D: ProcessScale3D(aMatrix, aOp); break; case StyleTransformOperation::Tag::SkewX: ProcessSkewHelper(aMatrix, aOp.AsSkewX(), StyleAngle::Zero()); break; case StyleTransformOperation::Tag::SkewY: ProcessSkewHelper(aMatrix, StyleAngle::Zero(), aOp.AsSkewY()); break; case StyleTransformOperation::Tag::Skew: ProcessSkewHelper(aMatrix, aOp.AsSkew()._0, aOp.AsSkew()._1); break; case StyleTransformOperation::Tag::RotateX: aMatrix.RotateX(aOp.AsRotateX().ToRadians()); break; case StyleTransformOperation::Tag::RotateY: aMatrix.RotateY(aOp.AsRotateY().ToRadians()); break; case StyleTransformOperation::Tag::RotateZ: aMatrix.RotateZ(aOp.AsRotateZ().ToRadians()); break; case StyleTransformOperation::Tag::Rotate: aMatrix.RotateZ(aOp.AsRotate().ToRadians()); break; case StyleTransformOperation::Tag::Rotate3D: ProcessRotate3D(aMatrix, aOp.AsRotate3D()._0, aOp.AsRotate3D()._1, aOp.AsRotate3D()._2, aOp.AsRotate3D()._3); break; case StyleTransformOperation::Tag::Matrix: ProcessMatrix(aMatrix, aOp); break; case StyleTransformOperation::Tag::Matrix3D: ProcessMatrix3D(aMatrix, aOp); break; case StyleTransformOperation::Tag::InterpolateMatrix: ProcessInterpolateMatrix(aMatrix, aOp, aRefBox); break; case StyleTransformOperation::Tag::AccumulateMatrix: ProcessAccumulateMatrix(aMatrix, aOp, aRefBox); break; case StyleTransformOperation::Tag::Perspective: ProcessPerspective(aMatrix, aOp.AsPerspective()); break; default: MOZ_ASSERT_UNREACHABLE("Unknown transform function!"); } } Matrix4x4 ReadTransforms(const StyleTransform& aTransform, TransformReferenceBox& aRefBox, float aAppUnitsPerMatrixUnit) { Matrix4x4 result; for (const StyleTransformOperation& op : aTransform.Operations()) { MatrixForTransformFunction(result, op, aRefBox); } float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit; result.PreScale(1 / scale, 1 / scale, 1 / scale); result.PostScale(scale, scale, scale); return result; } static void ProcessTranslate(Matrix4x4& aMatrix, const StyleTranslate& aTranslate, TransformReferenceBox& aRefBox) { switch (aTranslate.tag) { case StyleTranslate::Tag::None: return; case StyleTranslate::Tag::Translate: return ProcessTranslate3D(aMatrix, aTranslate.AsTranslate()._0, aTranslate.AsTranslate()._1, aTranslate.AsTranslate()._2, aRefBox); default: MOZ_ASSERT_UNREACHABLE("Huh?"); } } static void ProcessRotate(Matrix4x4& aMatrix, const StyleRotate& aRotate) { switch (aRotate.tag) { case StyleRotate::Tag::None: return; case StyleRotate::Tag::Rotate: aMatrix.RotateZ(aRotate.AsRotate().ToRadians()); return; case StyleRotate::Tag::Rotate3D: return ProcessRotate3D(aMatrix, aRotate.AsRotate3D()._0, aRotate.AsRotate3D()._1, aRotate.AsRotate3D()._2, aRotate.AsRotate3D()._3); default: MOZ_ASSERT_UNREACHABLE("Huh?"); } } static void ProcessScale(Matrix4x4& aMatrix, const StyleScale& aScale) { switch (aScale.tag) { case StyleScale::Tag::None: return; case StyleScale::Tag::Scale: return ProcessScaleHelper(aMatrix, aScale.AsScale()._0, aScale.AsScale()._1, aScale.AsScale()._2); default: MOZ_ASSERT_UNREACHABLE("Huh?"); } } Matrix4x4 ReadTransforms(const StyleTranslate& aTranslate, const StyleRotate& aRotate, const StyleScale& aScale, const Maybe& aMotion, const StyleTransform& aTransform, TransformReferenceBox& aRefBox, float aAppUnitsPerMatrixUnit) { Matrix4x4 result; ProcessTranslate(result, aTranslate, aRefBox); ProcessRotate(result, aRotate); ProcessScale(result, aScale); if (aMotion.isSome()) { // Create the equivalent translate and rotate function, according to the // order in spec. We combine the translate and then the rotate. // https://drafts.fxtf.org/motion-1/#calculating-path-transform // // Besides, we have to shift the object by the delta between anchor-point // and transform-origin, to make sure we rotate the object according to // anchor-point. result.PreTranslate(aMotion->mTranslate.x + aMotion->mShift.x, aMotion->mTranslate.y + aMotion->mShift.y, 0.0); if (aMotion->mRotate != 0.0) { result.RotateZ(aMotion->mRotate); } // Shift the origin back to transform-origin. result.PreTranslate(-aMotion->mShift.x, -aMotion->mShift.y, 0.0); } for (const StyleTransformOperation& op : aTransform.Operations()) { MatrixForTransformFunction(result, op, aRefBox); } float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit; result.PreScale(1 / scale, 1 / scale, 1 / scale); result.PostScale(scale, scale, scale); return result; } mozilla::CSSPoint Convert2DPosition(const mozilla::LengthPercentage& aX, const mozilla::LengthPercentage& aY, const CSSSize& aSize) { return { aX.ResolveToCSSPixels(aSize.width), aY.ResolveToCSSPixels(aSize.height), }; } CSSPoint Convert2DPosition(const LengthPercentage& aX, const LengthPercentage& aY, TransformReferenceBox& aRefBox) { return { aX.ResolveToCSSPixelsWith( [&] { return CSSPixel::FromAppUnits(aRefBox.Width()); }), aY.ResolveToCSSPixelsWith( [&] { return CSSPixel::FromAppUnits(aRefBox.Height()); }), }; } Point Convert2DPosition(const LengthPercentage& aX, const LengthPercentage& aY, TransformReferenceBox& aRefBox, int32_t aAppUnitsPerPixel) { float scale = mozilla::AppUnitsPerCSSPixel() / float(aAppUnitsPerPixel); CSSPoint p = Convert2DPosition(aX, aY, aRefBox); return {p.x * scale, p.y * scale}; } /* * The relevant section of the transitions specification: * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types- * defers all of the details to the 2-D and 3-D transforms specifications. * For the 2-D transforms specification (all that's relevant for us, right * now), the relevant section is: * http://dev.w3.org/csswg/css3-2d-transforms/#animation * This, in turn, refers to the unmatrix program in Graphics Gems, * available from http://tog.acm.org/resources/GraphicsGems/ , and in * particular as the file GraphicsGems/gemsii/unmatrix.c * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz * * The unmatrix reference is for general 3-D transform matrices (any of the * 16 components can have any value). * * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant: * * [ A C E ] * [ B D F ] * [ 0 0 1 ] * * For that case, I believe the algorithm in unmatrix reduces to: * * (1) If A * D - B * C == 0, the matrix is singular. Fail. * * (2) Set translation components (Tx and Ty) to the translation parts of * the matrix (E and F) and then ignore them for the rest of the time. * (For us, E and F each actually consist of three constants: a * length, a multiplier for the width, and a multiplier for the * height. This actually requires its own decomposition, but I'll * keep that separate.) * * (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B * by it. * * (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times * the XY shear. From D, subtract B times the XY shear. * * (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY * shear (K) by it. * * (6) At this point, A * D - B * C is either 1 or -1. If it is -1, * negate the XY shear (K), the X scale (Sx), and A, B, C, and D. * (Alternatively, we could negate the XY shear (K) and the Y scale * (Sy).) * * (7) Let the rotation be R = atan2(B, A). * * Then the resulting decomposed transformation is: * * translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy) * * An interesting result of this is that all of the simple transform * functions (i.e., all functions other than matrix()), in isolation, * decompose back to themselves except for: * 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes * to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the * alternate sign possibilities that would get fixed in step 6): * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = * sin(φ). In step 4, the XY shear is sin(φ). Thus, after step 4, C = * -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). Thus, in step 5, the Y scale is * sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). Thus, after step 5, C = -sin(φ), D * = cos(φ), and the XY shear is tan(φ). Thus, in step 6, A * D - B * C = * cos²(φ) + sin²(φ) = 1. In step 7, the rotation is thus φ. * * skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes * to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring * the alternate sign possibilities that would get fixed in step 6): * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = * sin(φ). In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). Thus, after step 4, * C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ) * D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ) * Thus, in step 5, the Y scale is sqrt(C² + D²) = * sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) - * 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) + * (sin²(φ)cos²(φ) + cos⁴(φ))) = * sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) = * cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so * we avoid flipping in step 6). * After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is * (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) = * (dividing both numerator and denominator by cos(φ)) * (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ). * (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .) * Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1. * In step 7, the rotation is thus φ. * * To check this result, we can multiply things back together: * * [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ] * [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ] * * [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ] * [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ] * * but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)), * cos(φ)tan(θ + φ) - sin(φ) * = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ) * = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ) * = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ) * = tan(θ) (cos(φ) + sin(φ)tan(φ)) * = tan(θ) sec(φ) (cos²(φ) + sin²(φ)) * = tan(θ) sec(φ) * and * sin(φ)tan(θ + φ) + cos(φ) * = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ) * = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ) * = sec(φ) (sin²(φ) + cos²(φ)) * = sec(φ) * so the above is: * [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ] * [ sin(φ) sec(φ) ] [ 0 cos(φ) ] * * [ 1 tan(θ) ] * [ tan(φ) 1 ] */ /* * Decompose2DMatrix implements the above decomposition algorithm. */ bool Decompose2DMatrix(const Matrix& aMatrix, Point3D& aScale, ShearArray& aShear, gfxQuaternion& aRotate, Point3D& aTranslate) { float A = aMatrix._11, B = aMatrix._12, C = aMatrix._21, D = aMatrix._22; if (A * D == B * C) { // singular matrix return false; } float scaleX = sqrt(A * A + B * B); A /= scaleX; B /= scaleX; float XYshear = A * C + B * D; C -= A * XYshear; D -= B * XYshear; float scaleY = sqrt(C * C + D * D); C /= scaleY; D /= scaleY; XYshear /= scaleY; float determinant = A * D - B * C; // Determinant should now be 1 or -1. if (0.99 > Abs(determinant) || Abs(determinant) > 1.01) { return false; } if (determinant < 0) { A = -A; B = -B; C = -C; D = -D; XYshear = -XYshear; scaleX = -scaleX; } float rotate = atan2f(B, A); aRotate = gfxQuaternion(0, 0, sin(rotate / 2), cos(rotate / 2)); aShear[ShearType::XY] = XYshear; aScale.x = scaleX; aScale.y = scaleY; aTranslate.x = aMatrix._31; aTranslate.y = aMatrix._32; return true; } /** * Implementation of the unmatrix algorithm, specified by: * * http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix * * This, in turn, refers to the unmatrix program in Graphics Gems, * available from http://tog.acm.org/resources/GraphicsGems/ , and in * particular as the file GraphicsGems/gemsii/unmatrix.c * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz */ bool Decompose3DMatrix(const Matrix4x4& aMatrix, Point3D& aScale, ShearArray& aShear, gfxQuaternion& aRotate, Point3D& aTranslate, Point4D& aPerspective) { Matrix4x4 local = aMatrix; if (local[3][3] == 0) { return false; } /* Normalize the matrix */ local.Normalize(); /** * perspective is used to solve for perspective, but it also provides * an easy way to test for singularity of the upper 3x3 component. */ Matrix4x4 perspective = local; Point4D empty(0, 0, 0, 1); perspective.SetTransposedVector(3, empty); if (perspective.Determinant() == 0.0) { return false; } /* First, isolate perspective. */ if (local[0][3] != 0 || local[1][3] != 0 || local[2][3] != 0) { /* aPerspective is the right hand side of the equation. */ aPerspective = local.TransposedVector(3); /** * Solve the equation by inverting perspective and multiplying * aPerspective by the inverse. */ perspective.Invert(); aPerspective = perspective.TransposeTransform4D(aPerspective); /* Clear the perspective partition */ local.SetTransposedVector(3, empty); } else { aPerspective = Point4D(0, 0, 0, 1); } /* Next take care of translation */ for (int i = 0; i < 3; i++) { aTranslate[i] = local[3][i]; local[3][i] = 0; } /* Now get scale and shear. */ /* Compute X scale factor and normalize first row. */ aScale.x = local[0].Length(); local[0] /= aScale.x; /* Compute XY shear factor and make 2nd local orthogonal to 1st. */ aShear[ShearType::XY] = local[0].DotProduct(local[1]); local[1] -= local[0] * aShear[ShearType::XY]; /* Now, compute Y scale and normalize 2nd local. */ aScale.y = local[1].Length(); local[1] /= aScale.y; aShear[ShearType::XY] /= aScale.y; /* Compute XZ and YZ shears, make 3rd local orthogonal */ aShear[ShearType::XZ] = local[0].DotProduct(local[2]); local[2] -= local[0] * aShear[ShearType::XZ]; aShear[ShearType::YZ] = local[1].DotProduct(local[2]); local[2] -= local[1] * aShear[ShearType::YZ]; /* Next, get Z scale and normalize 3rd local. */ aScale.z = local[2].Length(); local[2] /= aScale.z; aShear[ShearType::XZ] /= aScale.z; aShear[ShearType::YZ] /= aScale.z; /** * At this point, the matrix (in locals) is orthonormal. * Check for a coordinate system flip. If the determinant * is -1, then negate the matrix and the scaling factors. */ if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) { aScale *= -1; for (int i = 0; i < 3; i++) { local[i] *= -1; } } /* Now, get the rotations out */ aRotate = gfxQuaternion(local); return true; } } // namespace nsStyleTransformMatrix