// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::borrow::Borrow; use std::fmt; use std::hash::{BuildHasher, Hash}; use std::iter::{Chain, FromIterator}; use std::ops::{BitAnd, BitOr, BitXor, Sub}; use super::hash_map::{self, HashMap, Keys, RandomState}; use super::Recover; use crate::FailedAllocationError; // Future Optimization (FIXME!) // ============================= // // Iteration over zero sized values is a noop. There is no need // for `bucket.val` in the case of HashSet. I suppose we would need HKT // to get rid of it properly. /// A hash set implemented as a `HashMap` where the value is `()`. /// /// As with the [`HashMap`] type, a `HashSet` requires that the elements /// implement the [`Eq`] and [`Hash`] traits. This can frequently be achieved by /// using `#[derive(PartialEq, Eq, Hash)]`. If you implement these yourself, /// it is important that the following property holds: /// /// ```text /// k1 == k2 -> hash(k1) == hash(k2) /// ``` /// /// In other words, if two keys are equal, their hashes must be equal. /// /// /// It is a logic error for an item to be modified in such a way that the /// item's hash, as determined by the [`Hash`] trait, or its equality, as /// determined by the [`Eq`] trait, changes while it is in the set. This is /// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or /// unsafe code. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// // Type inference lets us omit an explicit type signature (which /// // would be `HashSet<&str>` in this example). /// let mut books = HashSet::new(); /// /// // Add some books. /// books.insert("A Dance With Dragons"); /// books.insert("To Kill a Mockingbird"); /// books.insert("The Odyssey"); /// books.insert("The Great Gatsby"); /// /// // Check for a specific one. /// if !books.contains("The Winds of Winter") { /// println!("We have {} books, but The Winds of Winter ain't one.", /// books.len()); /// } /// /// // Remove a book. /// books.remove("The Odyssey"); /// /// // Iterate over everything. /// for book in &books { /// println!("{}", book); /// } /// ``` /// /// The easiest way to use `HashSet` with a custom type is to derive /// [`Eq`] and [`Hash`]. We must also derive [`PartialEq`], this will in the /// future be implied by [`Eq`]. /// /// ``` /// use std::collections::HashSet; /// #[derive(Hash, Eq, PartialEq, Debug)] /// struct Viking<'a> { /// name: &'a str, /// power: usize, /// } /// /// let mut vikings = HashSet::new(); /// /// vikings.insert(Viking { name: "Einar", power: 9 }); /// vikings.insert(Viking { name: "Einar", power: 9 }); /// vikings.insert(Viking { name: "Olaf", power: 4 }); /// vikings.insert(Viking { name: "Harald", power: 8 }); /// /// // Use derived implementation to print the vikings. /// for x in &vikings { /// println!("{:?}", x); /// } /// ``` /// /// A `HashSet` with fixed list of elements can be initialized from an array: /// /// ``` /// use std::collections::HashSet; /// /// fn main() { /// let viking_names: HashSet<&str> = /// [ "Einar", "Olaf", "Harald" ].iter().cloned().collect(); /// // use the values stored in the set /// } /// ``` /// /// [`Cell`]: ../../std/cell/struct.Cell.html /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// [`HashMap`]: struct.HashMap.html /// [`PartialEq`]: ../../std/cmp/trait.PartialEq.html /// [`RefCell`]: ../../std/cell/struct.RefCell.html #[derive(Clone)] pub struct HashSet { map: HashMap, } impl HashSet where T: Eq + Hash, S: BuildHasher, { /// Creates a new empty hash set which will use the given hasher to hash /// keys. /// /// The hash set is also created with the default initial capacity. /// /// Warning: `hasher` is normally randomly generated, and /// is designed to allow `HashSet`s to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut set = HashSet::with_hasher(s); /// set.insert(2); /// ``` #[inline] pub fn with_hasher(hasher: S) -> HashSet { HashSet { map: HashMap::with_hasher(hasher), } } /// Creates an empty `HashSet` with with the specified capacity, using /// `hasher` to hash the keys. /// /// The hash set will be able to hold at least `capacity` elements without /// reallocating. If `capacity` is 0, the hash set will not allocate. /// /// Warning: `hasher` is normally randomly generated, and /// is designed to allow `HashSet`s to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut set = HashSet::with_capacity_and_hasher(10, s); /// set.insert(1); /// ``` #[inline] pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashSet { HashSet { map: HashMap::with_capacity_and_hasher(capacity, hasher), } } /// Returns a reference to the set's [`BuildHasher`]. /// /// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// use std::collections::hash_map::RandomState; /// /// let hasher = RandomState::new(); /// let set: HashSet = HashSet::with_hasher(hasher); /// let hasher: &RandomState = set.hasher(); /// ``` pub fn hasher(&self) -> &S { self.map.hasher() } /// Returns the number of elements the set can hold without reallocating. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let set: HashSet = HashSet::with_capacity(100); /// assert!(set.capacity() >= 100); /// ``` #[inline] pub fn capacity(&self) -> usize { self.map.capacity() } /// Reserves capacity for at least `additional` more elements to be inserted /// in the `HashSet`. The collection may reserve more space to avoid /// frequent reallocations. /// /// # Panics /// /// Panics if the new allocation size overflows `usize`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let mut set: HashSet = HashSet::new(); /// set.reserve(10); /// assert!(set.capacity() >= 10); /// ``` pub fn reserve(&mut self, additional: usize) { self.map.reserve(additional) } /// Shrinks the capacity of the set as much as possible. It will drop /// down as much as possible while maintaining the internal rules /// and possibly leaving some space in accordance with the resize policy. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let mut set = HashSet::with_capacity(100); /// set.insert(1); /// set.insert(2); /// assert!(set.capacity() >= 100); /// set.shrink_to_fit(); /// assert!(set.capacity() >= 2); /// ``` pub fn shrink_to_fit(&mut self) { self.map.shrink_to_fit() } /// An iterator visiting all elements in arbitrary order. /// The iterator element type is `&'a T`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let mut set = HashSet::new(); /// set.insert("a"); /// set.insert("b"); /// /// // Will print in an arbitrary order. /// for x in set.iter() { /// println!("{}", x); /// } /// ``` pub fn iter(&self) -> Iter { Iter { iter: self.map.keys(), } } /// Visits the values representing the difference, /// i.e. the values that are in `self` but not in `other`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); /// /// // Can be seen as `a - b`. /// for x in a.difference(&b) { /// println!("{}", x); // Print 1 /// } /// /// let diff: HashSet<_> = a.difference(&b).collect(); /// assert_eq!(diff, [1].iter().collect()); /// /// // Note that difference is not symmetric, /// // and `b - a` means something else: /// let diff: HashSet<_> = b.difference(&a).collect(); /// assert_eq!(diff, [4].iter().collect()); /// ``` pub fn difference<'a>(&'a self, other: &'a HashSet) -> Difference<'a, T, S> { Difference { iter: self.iter(), other, } } /// Visits the values representing the symmetric difference, /// i.e. the values that are in `self` or in `other` but not in both. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); /// /// // Print 1, 4 in arbitrary order. /// for x in a.symmetric_difference(&b) { /// println!("{}", x); /// } /// /// let diff1: HashSet<_> = a.symmetric_difference(&b).collect(); /// let diff2: HashSet<_> = b.symmetric_difference(&a).collect(); /// /// assert_eq!(diff1, diff2); /// assert_eq!(diff1, [1, 4].iter().collect()); /// ``` pub fn symmetric_difference<'a>( &'a self, other: &'a HashSet, ) -> SymmetricDifference<'a, T, S> { SymmetricDifference { iter: self.difference(other).chain(other.difference(self)), } } /// Visits the values representing the intersection, /// i.e. the values that are both in `self` and `other`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); /// /// // Print 2, 3 in arbitrary order. /// for x in a.intersection(&b) { /// println!("{}", x); /// } /// /// let intersection: HashSet<_> = a.intersection(&b).collect(); /// assert_eq!(intersection, [2, 3].iter().collect()); /// ``` pub fn intersection<'a>(&'a self, other: &'a HashSet) -> Intersection<'a, T, S> { Intersection { iter: self.iter(), other, } } /// Visits the values representing the union, /// i.e. all the values in `self` or `other`, without duplicates. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); /// /// // Print 1, 2, 3, 4 in arbitrary order. /// for x in a.union(&b) { /// println!("{}", x); /// } /// /// let union: HashSet<_> = a.union(&b).collect(); /// assert_eq!(union, [1, 2, 3, 4].iter().collect()); /// ``` pub fn union<'a>(&'a self, other: &'a HashSet) -> Union<'a, T, S> { Union { iter: self.iter().chain(other.difference(self)), } } /// Returns the number of elements in the set. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let mut v = HashSet::new(); /// assert_eq!(v.len(), 0); /// v.insert(1); /// assert_eq!(v.len(), 1); /// ``` pub fn len(&self) -> usize { self.map.len() } /// Returns true if the set contains no elements. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let mut v = HashSet::new(); /// assert!(v.is_empty()); /// v.insert(1); /// assert!(!v.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.map.is_empty() } /// Clears the set, returning all elements in an iterator. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// assert!(!set.is_empty()); /// /// // print 1, 2, 3 in an arbitrary order /// for i in set.drain() { /// println!("{}", i); /// } /// /// assert!(set.is_empty()); /// ``` #[inline] pub fn drain(&mut self) -> Drain { Drain { iter: self.map.drain(), } } /// Clears the set, removing all values. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let mut v = HashSet::new(); /// v.insert(1); /// v.clear(); /// assert!(v.is_empty()); /// ``` pub fn clear(&mut self) where T: 'static, { self.map.clear() } /// Returns `true` if the set contains a value. /// /// The value may be any borrowed form of the set's value type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the value type. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let set: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// assert_eq!(set.contains(&1), true); /// assert_eq!(set.contains(&4), false); /// ``` /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html pub fn contains(&self, value: &Q) -> bool where T: Borrow, Q: Hash + Eq, { self.map.contains_key(value) } /// Returns a reference to the value in the set, if any, that is equal to the given value. /// /// The value may be any borrowed form of the set's value type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the value type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html pub fn get(&self, value: &Q) -> Option<&T> where T: Borrow, Q: Hash + Eq, { Recover::get(&self.map, value) } /// Returns `true` if `self` has no elements in common with `other`. /// This is equivalent to checking for an empty intersection. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let a: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// let mut b = HashSet::new(); /// /// assert_eq!(a.is_disjoint(&b), true); /// b.insert(4); /// assert_eq!(a.is_disjoint(&b), true); /// b.insert(1); /// assert_eq!(a.is_disjoint(&b), false); /// ``` pub fn is_disjoint(&self, other: &HashSet) -> bool { self.iter().all(|v| !other.contains(v)) } /// Returns `true` if the set is a subset of another, /// i.e. `other` contains at least all the values in `self`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let sup: HashSet<_> = [1, 2, 3].iter().cloned().collect(); /// let mut set = HashSet::new(); /// /// assert_eq!(set.is_subset(&sup), true); /// set.insert(2); /// assert_eq!(set.is_subset(&sup), true); /// set.insert(4); /// assert_eq!(set.is_subset(&sup), false); /// ``` pub fn is_subset(&self, other: &HashSet) -> bool { self.iter().all(|v| other.contains(v)) } /// Returns `true` if the set is a superset of another, /// i.e. `self` contains at least all the values in `other`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let sub: HashSet<_> = [1, 2].iter().cloned().collect(); /// let mut set = HashSet::new(); /// /// assert_eq!(set.is_superset(&sub), false); /// /// set.insert(0); /// set.insert(1); /// assert_eq!(set.is_superset(&sub), false); /// /// set.insert(2); /// assert_eq!(set.is_superset(&sub), true); /// ``` #[inline] pub fn is_superset(&self, other: &HashSet) -> bool { other.is_subset(self) } /// Adds a value to the set. /// /// If the set did not have this value present, `true` is returned. /// /// If the set did have this value present, `false` is returned. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let mut set = HashSet::new(); /// /// assert_eq!(set.insert(2), true); /// assert_eq!(set.insert(2), false); /// assert_eq!(set.len(), 1); /// ``` pub fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()).is_none() } /// Fallible version of `insert`. #[inline] pub fn try_insert(&mut self, value: T) -> Result { Ok(self.map.try_insert(value, ())?.is_none()) } /// Adds a value to the set, replacing the existing value, if any, that is equal to the given /// one. Returns the replaced value. pub fn replace(&mut self, value: T) -> Option { Recover::replace(&mut self.map, value) } /// Removes a value from the set. Returns `true` if the value was /// present in the set. /// /// The value may be any borrowed form of the set's value type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the value type. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let mut set = HashSet::new(); /// /// set.insert(2); /// assert_eq!(set.remove(&2), true); /// assert_eq!(set.remove(&2), false); /// ``` /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html pub fn remove(&mut self, value: &Q) -> bool where T: Borrow, Q: Hash + Eq, { self.map.remove(value).is_some() } /// Removes and returns the value in the set, if any, that is equal to the given one. /// /// The value may be any borrowed form of the set's value type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the value type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html pub fn take(&mut self, value: &Q) -> Option where T: Borrow, Q: Hash + Eq, { Recover::take(&mut self.map, value) } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` such that `f(&e)` returns `false`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let xs = [1,2,3,4,5,6]; /// let mut set: HashSet = xs.iter().cloned().collect(); /// set.retain(|&k| k % 2 == 0); /// assert_eq!(set.len(), 3); /// ``` pub fn retain(&mut self, mut f: F) where F: FnMut(&T) -> bool, { self.map.retain(|k, _| f(k)); } } impl PartialEq for HashSet where T: Eq + Hash, S: BuildHasher, { fn eq(&self, other: &HashSet) -> bool { if self.len() != other.len() { return false; } self.iter().all(|key| other.contains(key)) } } impl Eq for HashSet where T: Eq + Hash, S: BuildHasher, { } impl fmt::Debug for HashSet where T: Eq + Hash + fmt::Debug, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_set().entries(self.iter()).finish() } } impl FromIterator for HashSet where T: Eq + Hash, S: BuildHasher + Default, { fn from_iter>(iter: I) -> HashSet { let mut set = HashSet::with_hasher(Default::default()); set.extend(iter); set } } impl Extend for HashSet where T: Eq + Hash, S: BuildHasher, { fn extend>(&mut self, iter: I) { self.map.extend(iter.into_iter().map(|k| (k, ()))); } } impl<'a, T, S> Extend<&'a T> for HashSet where T: 'a + Eq + Hash + Copy, S: BuildHasher, { fn extend>(&mut self, iter: I) { self.extend(iter.into_iter().cloned()); } } impl Default for HashSet where T: Eq + Hash, S: BuildHasher + Default, { /// Creates an empty `HashSet` with the `Default` value for the hasher. fn default() -> HashSet { HashSet { map: HashMap::default(), } } } impl<'a, 'b, T, S> BitOr<&'b HashSet> for &'a HashSet where T: Eq + Hash + Clone, S: BuildHasher + Default, { type Output = HashSet; /// Returns the union of `self` and `rhs` as a new `HashSet`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect(); /// /// let set = &a | &b; /// /// let mut i = 0; /// let expected = [1, 2, 3, 4, 5]; /// for x in &set { /// assert!(expected.contains(x)); /// i += 1; /// } /// assert_eq!(i, expected.len()); /// ``` fn bitor(self, rhs: &HashSet) -> HashSet { self.union(rhs).cloned().collect() } } impl<'a, 'b, T, S> BitAnd<&'b HashSet> for &'a HashSet where T: Eq + Hash + Clone, S: BuildHasher + Default, { type Output = HashSet; /// Returns the intersection of `self` and `rhs` as a new `HashSet`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); /// let b: HashSet<_> = vec![2, 3, 4].into_iter().collect(); /// /// let set = &a & &b; /// /// let mut i = 0; /// let expected = [2, 3]; /// for x in &set { /// assert!(expected.contains(x)); /// i += 1; /// } /// assert_eq!(i, expected.len()); /// ``` fn bitand(self, rhs: &HashSet) -> HashSet { self.intersection(rhs).cloned().collect() } } impl<'a, 'b, T, S> BitXor<&'b HashSet> for &'a HashSet where T: Eq + Hash + Clone, S: BuildHasher + Default, { type Output = HashSet; /// Returns the symmetric difference of `self` and `rhs` as a new `HashSet`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect(); /// /// let set = &a ^ &b; /// /// let mut i = 0; /// let expected = [1, 2, 4, 5]; /// for x in &set { /// assert!(expected.contains(x)); /// i += 1; /// } /// assert_eq!(i, expected.len()); /// ``` fn bitxor(self, rhs: &HashSet) -> HashSet { self.symmetric_difference(rhs).cloned().collect() } } impl<'a, 'b, T, S> Sub<&'b HashSet> for &'a HashSet where T: Eq + Hash + Clone, S: BuildHasher + Default, { type Output = HashSet; /// Returns the difference of `self` and `rhs` as a new `HashSet`. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// /// let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); /// let b: HashSet<_> = vec![3, 4, 5].into_iter().collect(); /// /// let set = &a - &b; /// /// let mut i = 0; /// let expected = [1, 2]; /// for x in &set { /// assert!(expected.contains(x)); /// i += 1; /// } /// assert_eq!(i, expected.len()); /// ``` fn sub(self, rhs: &HashSet) -> HashSet { self.difference(rhs).cloned().collect() } } /// An iterator over the items of a `HashSet`. /// /// This `struct` is created by the [`iter`] method on [`HashSet`]. /// See its documentation for more. /// /// [`HashSet`]: struct.HashSet.html /// [`iter`]: struct.HashSet.html#method.iter pub struct Iter<'a, K: 'a> { iter: Keys<'a, K, ()>, } /// An owning iterator over the items of a `HashSet`. /// /// This `struct` is created by the [`into_iter`] method on [`HashSet`][`HashSet`] /// (provided by the `IntoIterator` trait). See its documentation for more. /// /// [`HashSet`]: struct.HashSet.html /// [`into_iter`]: struct.HashSet.html#method.into_iter pub struct IntoIter { iter: hash_map::IntoIter, } /// A draining iterator over the items of a `HashSet`. /// /// This `struct` is created by the [`drain`] method on [`HashSet`]. /// See its documentation for more. /// /// [`HashSet`]: struct.HashSet.html /// [`drain`]: struct.HashSet.html#method.drain pub struct Drain<'a, K: 'static> { iter: hash_map::Drain<'a, K, ()>, } /// A lazy iterator producing elements in the intersection of `HashSet`s. /// /// This `struct` is created by the [`intersection`] method on [`HashSet`]. /// See its documentation for more. /// /// [`HashSet`]: struct.HashSet.html /// [`intersection`]: struct.HashSet.html#method.intersection pub struct Intersection<'a, T: 'a, S: 'a> { // iterator of the first set iter: Iter<'a, T>, // the second set other: &'a HashSet, } /// A lazy iterator producing elements in the difference of `HashSet`s. /// /// This `struct` is created by the [`difference`] method on [`HashSet`]. /// See its documentation for more. /// /// [`HashSet`]: struct.HashSet.html /// [`difference`]: struct.HashSet.html#method.difference pub struct Difference<'a, T: 'a, S: 'a> { // iterator of the first set iter: Iter<'a, T>, // the second set other: &'a HashSet, } /// A lazy iterator producing elements in the symmetric difference of `HashSet`s. /// /// This `struct` is created by the [`symmetric_difference`] method on /// [`HashSet`]. See its documentation for more. /// /// [`HashSet`]: struct.HashSet.html /// [`symmetric_difference`]: struct.HashSet.html#method.symmetric_difference pub struct SymmetricDifference<'a, T: 'a, S: 'a> { iter: Chain, Difference<'a, T, S>>, } /// A lazy iterator producing elements in the union of `HashSet`s. /// /// This `struct` is created by the [`union`] method on [`HashSet`]. /// See its documentation for more. /// /// [`HashSet`]: struct.HashSet.html /// [`union`]: struct.HashSet.html#method.union pub struct Union<'a, T: 'a, S: 'a> { iter: Chain, Difference<'a, T, S>>, } impl<'a, T, S> IntoIterator for &'a HashSet where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } impl IntoIterator for HashSet where T: Eq + Hash, S: BuildHasher, { type Item = T; type IntoIter = IntoIter; /// Creates a consuming iterator, that is, one that moves each value out /// of the set in arbitrary order. The set cannot be used after calling /// this. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// let mut set = HashSet::new(); /// set.insert("a".to_string()); /// set.insert("b".to_string()); /// /// // Not possible to collect to a Vec with a regular `.iter()`. /// let v: Vec = set.into_iter().collect(); /// /// // Will print in an arbitrary order. /// for x in &v { /// println!("{}", x); /// } /// ``` fn into_iter(self) -> IntoIter { IntoIter { iter: self.map.into_iter(), } } } impl<'a, K> Clone for Iter<'a, K> { fn clone(&self) -> Iter<'a, K> { Iter { iter: self.iter.clone(), } } } impl<'a, K> Iterator for Iter<'a, K> { type Item = &'a K; fn next(&mut self) -> Option<&'a K> { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, K> ExactSizeIterator for Iter<'a, K> { fn len(&self) -> usize { self.iter.len() } } impl<'a, K: fmt::Debug> fmt::Debug for Iter<'a, K> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } impl Iterator for IntoIter { type Item = K; fn next(&mut self) -> Option { self.iter.next().map(|(k, _)| k) } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl ExactSizeIterator for IntoIter { fn len(&self) -> usize { self.iter.len() } } impl fmt::Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let entries_iter = self.iter.inner.iter().map(|(k, _)| k); f.debug_list().entries(entries_iter).finish() } } impl<'a, K> Iterator for Drain<'a, K> { type Item = K; fn next(&mut self) -> Option { self.iter.next().map(|(k, _)| k) } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, K> ExactSizeIterator for Drain<'a, K> { fn len(&self) -> usize { self.iter.len() } } impl<'a, K: fmt::Debug> fmt::Debug for Drain<'a, K> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let entries_iter = self.iter.inner.iter().map(|(k, _)| k); f.debug_list().entries(entries_iter).finish() } } impl<'a, T, S> Clone for Intersection<'a, T, S> { fn clone(&self) -> Intersection<'a, T, S> { Intersection { iter: self.iter.clone(), ..*self } } } impl<'a, T, S> Iterator for Intersection<'a, T, S> where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option<&'a T> { loop { let elt = self.iter.next()?; if self.other.contains(elt) { return Some(elt); } } } fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) } } impl<'a, T, S> fmt::Debug for Intersection<'a, T, S> where T: fmt::Debug + Eq + Hash, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } impl<'a, T, S> Clone for Difference<'a, T, S> { fn clone(&self) -> Difference<'a, T, S> { Difference { iter: self.iter.clone(), ..*self } } } impl<'a, T, S> Iterator for Difference<'a, T, S> where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option<&'a T> { loop { let elt = self.iter.next()?; if !self.other.contains(elt) { return Some(elt); } } } fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) } } impl<'a, T, S> fmt::Debug for Difference<'a, T, S> where T: fmt::Debug + Eq + Hash, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } impl<'a, T, S> Clone for SymmetricDifference<'a, T, S> { fn clone(&self) -> SymmetricDifference<'a, T, S> { SymmetricDifference { iter: self.iter.clone(), } } } impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option<&'a T> { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, T, S> fmt::Debug for SymmetricDifference<'a, T, S> where T: fmt::Debug + Eq + Hash, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } impl<'a, T, S> Clone for Union<'a, T, S> { fn clone(&self) -> Union<'a, T, S> { Union { iter: self.iter.clone(), } } } impl<'a, T, S> fmt::Debug for Union<'a, T, S> where T: fmt::Debug + Eq + Hash, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } impl<'a, T, S> Iterator for Union<'a, T, S> where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option<&'a T> { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[allow(dead_code)] fn assert_covariance() { fn set<'new>(v: HashSet<&'static str>) -> HashSet<&'new str> { v } fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> { v } fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> { v } fn difference<'a, 'new>( v: Difference<'a, &'static str, RandomState>, ) -> Difference<'a, &'new str, RandomState> { v } fn symmetric_difference<'a, 'new>( v: SymmetricDifference<'a, &'static str, RandomState>, ) -> SymmetricDifference<'a, &'new str, RandomState> { v } fn intersection<'a, 'new>( v: Intersection<'a, &'static str, RandomState>, ) -> Intersection<'a, &'new str, RandomState> { v } fn union<'a, 'new>( v: Union<'a, &'static str, RandomState>, ) -> Union<'a, &'new str, RandomState> { v } fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> { d } } #[cfg(test)] mod test_set { use super::hash_map::RandomState; use super::HashSet; #[test] fn test_zero_capacities() { type HS = HashSet; let s = HS::new(); assert_eq!(s.capacity(), 0); let s = HS::default(); assert_eq!(s.capacity(), 0); let s = HS::with_hasher(RandomState::new()); assert_eq!(s.capacity(), 0); let s = HS::with_capacity(0); assert_eq!(s.capacity(), 0); let s = HS::with_capacity_and_hasher(0, RandomState::new()); assert_eq!(s.capacity(), 0); let mut s = HS::new(); s.insert(1); s.insert(2); s.remove(&1); s.remove(&2); s.shrink_to_fit(); assert_eq!(s.capacity(), 0); let mut s = HS::new(); s.reserve(0); assert_eq!(s.capacity(), 0); } #[test] fn test_disjoint() { let mut xs = HashSet::new(); let mut ys = HashSet::new(); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(xs.insert(5)); assert!(ys.insert(11)); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(xs.insert(7)); assert!(xs.insert(19)); assert!(xs.insert(4)); assert!(ys.insert(2)); assert!(ys.insert(-11)); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(ys.insert(7)); assert!(!xs.is_disjoint(&ys)); assert!(!ys.is_disjoint(&xs)); } #[test] fn test_subset_and_superset() { let mut a = HashSet::new(); assert!(a.insert(0)); assert!(a.insert(5)); assert!(a.insert(11)); assert!(a.insert(7)); let mut b = HashSet::new(); assert!(b.insert(0)); assert!(b.insert(7)); assert!(b.insert(19)); assert!(b.insert(250)); assert!(b.insert(11)); assert!(b.insert(200)); assert!(!a.is_subset(&b)); assert!(!a.is_superset(&b)); assert!(!b.is_subset(&a)); assert!(!b.is_superset(&a)); assert!(b.insert(5)); assert!(a.is_subset(&b)); assert!(!a.is_superset(&b)); assert!(!b.is_subset(&a)); assert!(b.is_superset(&a)); } #[test] fn test_iterate() { let mut a = HashSet::new(); for i in 0..32 { assert!(a.insert(i)); } let mut observed: u32 = 0; for k in &a { observed |= 1 << *k; } assert_eq!(observed, 0xFFFF_FFFF); } #[test] fn test_intersection() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(11)); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(77)); assert!(a.insert(103)); assert!(a.insert(5)); assert!(a.insert(-5)); assert!(b.insert(2)); assert!(b.insert(11)); assert!(b.insert(77)); assert!(b.insert(-9)); assert!(b.insert(-42)); assert!(b.insert(5)); assert!(b.insert(3)); let mut i = 0; let expected = [3, 5, 11, 77]; for x in a.intersection(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_difference() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(3)); assert!(b.insert(9)); let mut i = 0; let expected = [1, 5, 11]; for x in a.difference(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_symmetric_difference() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(-2)); assert!(b.insert(3)); assert!(b.insert(9)); assert!(b.insert(14)); assert!(b.insert(22)); let mut i = 0; let expected = [-2, 1, 5, 11, 14, 22]; for x in a.symmetric_difference(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_union() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(a.insert(16)); assert!(a.insert(19)); assert!(a.insert(24)); assert!(b.insert(-2)); assert!(b.insert(1)); assert!(b.insert(5)); assert!(b.insert(9)); assert!(b.insert(13)); assert!(b.insert(19)); let mut i = 0; let expected = [-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]; for x in a.union(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_from_iter() { let xs = [1, 2, 3, 4, 5, 6, 7, 8, 9]; let set: HashSet<_> = xs.iter().cloned().collect(); for x in &xs { assert!(set.contains(x)); } } #[test] fn test_move_iter() { let hs = { let mut hs = HashSet::new(); hs.insert('a'); hs.insert('b'); hs }; let v = hs.into_iter().collect::>(); assert!(v == ['a', 'b'] || v == ['b', 'a']); } #[test] fn test_eq() { // These constants once happened to expose a bug in insert(). // I'm keeping them around to prevent a regression. let mut s1 = HashSet::new(); s1.insert(1); s1.insert(2); s1.insert(3); let mut s2 = HashSet::new(); s2.insert(1); s2.insert(2); assert_ne!(s1, s2); s2.insert(3); assert_eq!(s1, s2); } #[test] fn test_show() { let mut set = HashSet::new(); let empty = HashSet::::new(); set.insert(1); set.insert(2); let set_str = format!("{:?}", set); assert!(set_str == "{1, 2}" || set_str == "{2, 1}"); assert_eq!(format!("{:?}", empty), "{}"); } #[test] fn test_trivial_drain() { let mut s = HashSet::::new(); for _ in s.drain() {} assert!(s.is_empty()); drop(s); let mut s = HashSet::::new(); drop(s.drain()); assert!(s.is_empty()); } #[test] fn test_drain() { let mut s: HashSet<_> = (1..100).collect(); // try this a bunch of times to make sure we don't screw up internal state. for _ in 0..20 { assert_eq!(s.len(), 99); { let mut last_i = 0; let mut d = s.drain(); for (i, x) in d.by_ref().take(50).enumerate() { last_i = i; assert_ne!(x, 0); } assert_eq!(last_i, 49); } for _ in &s { panic!("s should be empty!"); } // reset to try again. s.extend(1..100); } } #[test] fn test_replace() { use hash; #[derive(Debug)] struct Foo(&'static str, i32); impl PartialEq for Foo { fn eq(&self, other: &Self) -> bool { self.0 == other.0 } } impl Eq for Foo {} impl hash::Hash for Foo { fn hash(&self, h: &mut H) { self.0.hash(h); } } let mut s = HashSet::new(); assert_eq!(s.replace(Foo("a", 1)), None); assert_eq!(s.len(), 1); assert_eq!(s.replace(Foo("a", 2)), Some(Foo("a", 1))); assert_eq!(s.len(), 1); let mut it = s.iter(); assert_eq!(it.next(), Some(&Foo("a", 2))); assert_eq!(it.next(), None); } #[test] fn test_extend_ref() { let mut a = HashSet::new(); a.insert(1); a.extend(&[2, 3, 4]); assert_eq!(a.len(), 4); assert!(a.contains(&1)); assert!(a.contains(&2)); assert!(a.contains(&3)); assert!(a.contains(&4)); let mut b = HashSet::new(); b.insert(5); b.insert(6); a.extend(&b); assert_eq!(a.len(), 6); assert!(a.contains(&1)); assert!(a.contains(&2)); assert!(a.contains(&3)); assert!(a.contains(&4)); assert!(a.contains(&5)); assert!(a.contains(&6)); } #[test] fn test_retain() { let xs = [1, 2, 3, 4, 5, 6]; let mut set: HashSet = xs.iter().cloned().collect(); set.retain(|&k| k % 2 == 0); assert_eq!(set.len(), 3); assert!(set.contains(&2)); assert!(set.contains(&4)); assert!(set.contains(&6)); } }